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Abstract— In this paper, we propose a new framework
for supervisory control of discrete-event systems in tactical
environments. In contrast to the standard supervisory control
theory, where the environments are considered fully adversarial,
we consider the possibility of the presence of attackers who have
their own objectives that may not necessarily be in opposition
to the specification of the supervisor. We formulate this scenario
as a Stakelberg game in the leader-follower setting, where
the designer proposes a supervisor, and the attacker takes a
best response to the supervisor. We characterize the solution
to the Stakelberg supervisory control problem as having both
cooperative and antagonistic solutions. Moreover, we provide an
effective algorithm for synthesizing a cooperative supervisor
that enables both players to achieve their objectives. Our
work makes an initial step forward from the traditional zero-
sum setting of supervisory control theory to the non-zero-sum
setting. Examples are provided to illustrate our results.

I. INTRODUCTION

Discrete-Event Systems (DES) are an important class of
systems characterized by their discrete state spaces and
event-triggered dynamics [6]. They play a crucial role in
modeling, analyzing, and controlling the high-level logic be-
haviors of complex systems such as intelligent manufacturing
systems, embedded software, and autonomous robots. In the
context of DES, one of the most important problem is to
enforce the closed-loop properties of the system. Supervisory
Control Theory (SCT), initiated by Ramadge and Wonham
[17], is one of the most widely used formal frameworks for
controller synthesis of DES and has been extensively studied
in the past few decades; see, e.g., the textbooks [22] and
some recent developments [1], [8]–[11], [18], [26].

In the context of SCT, it is typically assumed that the
system has a language for expressing its desired behavior,
known as a specification. Additionally, to account for the
uncertainty of the environment, some events are considered
to be uncontrollable, meaning that their occurrences cannot
be prevented by the supervisor. The supervisor is then
designed using a worst-case analysis, which ensures that the
specification can be achieved regardless of the environment’s
actions. This standard SCT setting can be viewed as a zero-
sum game, where the environment player aims to violate
the supervisor’s specification, while the supervisor player
attempts to counter this by preventing such violations.
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Fig. 1. Conceptual illustration of the supervisory control theory under
tactical environments.

The emergence of networked control architecture nowa-
days has led to an increased demand for information trans-
mission in the implementation of supervisory control. How-
ever, this also makes sensors and actuators vulnerable to
attacks. As a result, there has been a growing interest in the
development of resilient supervisory control strategies that
can withstand such attacks. Recent research efforts have been
devoted to the modeling and synthesis of resilient supervisors
in the presence of attackers, as demonstrated by studies such
as [2], [5], [12], [14], [15], [19]–[21], [23], [24]. In this
context, the design process requires the consideration of an
additional player, namely the attacker player, in addition to
the supervisor and environment players in the standard SCT.
As a result, the design of the supervisor may become more
conservative since it must consider the potential damage that
an attacker can inflict.

The majority of existing works on supervisory control
under attack still adopt the zero-sum approach of the standard
SCT framework. In this approach, the supervisor is designed
to ensure that the system satisfies its specifications regardless
of the behavior of the attacker. While this is reasonable for
robustness analysis, it fails to account for the differences
between attackers and passive environments. Unlike passive
disturbances, attackers usually have their own objectives and
motivations for launching an attack, and simply failing the
supervisor may not be their only goal. Therefore, it is more
appropriate to consider a non-zero sum setting, in which the
attacker is assumed to be rational and seeking to maximize
its own utility. This approach takes into account the potential
gains that an attacker may derive from their actions and
enables the supervisor to make more informed decisions
to achieve its objectives while mitigating the effects of the
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attacker’s actions.
Motivated by the above observations, in this paper, we

propose a novel framework for supervisory control of DES
under the presence of attackers. We adopt a leader-follower
setting, specifically the Stackelberg game, where the super-
visor is designed first. Once the supervisor is synthesized, its
implementation becomes public information, and the attacker
seeks to maximize its own utility by taking a best response.
Our approach models the objectives of both the supervisor
and the attacker using two different prefixed-closed speci-
fication languages. In addition to satisfying their respective
specifications, both entities also strive to ensure the liveness
of the system and maintain a high degree of permissiveness.
We refer to this problem formulation as the Stackelberg
supervisory control problem (SCCP), as illustrated in Fig-
ure 1. We then consider a specific type of attack known as
the disablement attack (DA), and demonstrate that SCCP-
DA may have two incomparable solutions: cooperative or
antagonistic. We propose a sound and complete algorithm
for synthesizing a cooperative solution that enables both
the supervisor and the attacker to achieve their respective
objectives.

Our work is related to non-zero-sum graph games that
have been studied in the context of reactive synthesis [3]. For
instance, in [7], the co-synthesis problem was investigated,
and the notion of assume-guarantee synthesis was proposed,
where two processes compete conditionally. This idea has
also been explored in the context of decentralized synthesis
problems [13]. Additionally, in [4], the authors studied
Stackelberg games played on graphs from a new perspective
where the followers have several goals, and the best response
is defined by a Pareto-optimal payoff. A similar idea has
been employed in solving the minimum violation problem on
stochastic systems [16], where the globally optimal solution
with numeric utilities was investigated. However, to the best
of our knowledge, the context of Stackelberg games has not
yet been considered in the context of SCT of DES.

II. PRELIMINARY

A. System Model

Let Σ be a finite set of events. A string is a finite sequence
of events and Σ∗ denotes the set of all strings over Σ
including the empty string ϵ. For any string s ∈ Σ∗, |s|
denotes the length of s with |ϵ| = 0. A language L ⊆ Σ∗

is a set of strings and we denote by L̄ the prefix-closure of
language L, i.e., L̄ = {s ∈ Σ∗ : ∃w ∈ Σ∗ s.t. sw ∈ L}. We
say that a language is prefix-closed if L = L̄. Given language
L and a string s ∈ L, we denote the active event set at s in
L by ∆L(s) = {σ ∈ Σ : sσ ∈ L}. We say language L is
live if ∀s ∈ L : ∆L(s) ̸= ∅.

We consider a DES modeled by a deterministic finite-state
automaton (DFA)

G = (X,Σ, δ, x0),

where X is the finite set of states, Σ is the finite set of events,
δ : X × Σ → X is the partial transition function such that
δ(x, σ) = x′ denotes the transition labeled by σ from state

x to state x′, and x0 ∈ X is the unique initial state. The
transition function is also extended to δ : X × Σ∗ → X
recursively by: (i) for any x ∈ X , δ(x, ϵ) = x; and (ii) for
any x ∈ X, s ∈ Σ∗, σ ∈ Σ, we have δ(x, sσ) = δ(δ(x, s), σ).
The set of all strings generated by G starting from state x ∈
X is defined as L(G, x) = {s ∈ Σ∗ : δ(x, s)!}, where “!”
means “is defined”. The language generated by G is defined
as L(G) := L(G, x0). For simplicity, we write δ(x0, s) as
δ(s) for any s ∈ L(G).

B. Standard Supervisory Control Theory

As we mentioned above, in the standard framework of
supervisory control theory, the event set is partitioned as

Σ = Σc∪̇Σuc,

where Σc is the set of controllable events and Σuc is the set
of uncontrollable events. A supervisor is a mechanism that
dynamically disables controllable events in order to enforce
some specifications. We denote Γ = {γ ∈ 2Σ : Σuc ⊆ γ} as
the set of admissible control decisions. Then a supervisor is
a function S : L(G) → Γ. We use notation S/G to represent
the controlled system and the language generated by S/G,
denoted by L(S/G) is defined recursively by:

(i) ϵ ∈ L(S/G);
(ii) [s∈L(S/G)∧sσ∈L(G)∧σ∈S(s)] ⇔ [sσ∈L(S/G)].

The specification of the system is a prefix-closed sub-
language K1 = K1 ⊆ L(G). The standard safety control
problem is to design a supervisor S such that L(S/G) ⊆ K1

and as permissive as possible.

III. SUPERVISORY CONTROL UNDER TACTICAL
ENVIRONMENTS

In this section, we first present the model of attackers, then
we formulate the supervisory control problem under tactical
environments and provide examples to illustrate our problem
setting and the underlying challenges.

A. General Model of Attackers

Similar to the supervisor, we model an attacker as a mech-
anism that dynamically makes attack decisions to achieve its
own goals. Let Ξ be a set of symbols representing attack
actions and ψ be a new symbol presenting that “no attack”
is launched. An attacker is a function

A : L(G) → Ξ ∪ {ψ}

that makes attack decisions based on the history. Then at
each instant, the actual set of events enabled in the system is
determined together by the decisions of the supervisor and
the attacker under certain fusion mechanism. We use function

⊕ : Γ× (Ξ ∪ {ψ}) → 2Σ

to represent the fusion rule of the supervisor and the attacker,
where for any γ ∈ Γ, we have ⊕(γ, ψ) = γ. We say an
attacker A is non-interfering if ∀s ∈ L(G) : A(s) = ψ and
denote this attacker strategy by Aψ .
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Given supervisor S, we define SA,⊕ as the resulting
overall supervisor under attacker A with fusion rule ⊕.
Specifically, this overall supervisor is defined by:

∀s ∈ L(G) : SA,⊕(s) = ⊕(S(s), A(s))

and we denote by L(SA,⊕/G) the language generated by the
system under attack. Clearly, for non-interfering attacker A,
we always have L(SA,⊕/G) = L(S/G).

B. Stackelberg Game Formulation

To formalize the tactical behaviors of the attacker, we
consider the following leader-follower setting:

• The supervisor is designed first and the implementation
of supervisor S : L(G) → Γ is a public information;

• The attacker then determines its strategy A : L(G) →
Ξ∪{ψ} based on the existing supervisor S, or chooses
to not interfere at all.

In the context of game theory, the above leader-follower
setting is referred to as a two-player Stackelberg game. In this
game, since the supervisor is fixed first, a rational attacker
can only seek its best response to achieve its own objective.
Similarly, when designing the supervisor to achieve its own
objective, it is assumed that the attacker will not deviate from
its best response. This assumption enables the supervisor to
anticipate the attacker’s behavior and design a strategy that
maximizes its own objective while taking into account the
attacker’s potential moves.

Formally, we assume the attacker has its own objective
that may not necessarily be opposed to the objective of the
supervisor. Specifically, we denote by K2 = K2 ⊆ L(G) the
prefix-closed specification language of the attacker. When
the supervisor S is given, the objective of the attacker is to
interfere with the supervisor in such a way that the overall
system behavior remains within K2, while ensuring that the
system’s liveness is not affected.

Definition 1 (Successful Attacks): Given system G and
supervisor S, we say A : L(G) → Ξ ∪ {ψ} is a successful
attack strategy w.r.t. S, ⊕ and K2 if it satisfies the following
conditions:
C1 L(SA,⊕/G) ⊆ K2; and
C2 L(SA,⊕/G) is live; and
C3 For any A′ satisfying C1 and C2, we have

L(SA,⊕/G) ̸⊂ L(SA′,⊕/G).

It is important to note that in some cases, successful
attackers may not be possible. In such situations, a rational
attacker would choose not to interfere since it would not help
achieve its objective. This concept of rational behavior leads
to the definition of best responses.

Definition 2 (Best Responses): Given system G and su-
pervisor S, we say A : L(G) → Ξ∪{ψ} is a best response of
the attacker against supervisor S if it is a successful attack
strategy. If no successful attack is possible, then the best
response is the non-interfering attack strategy Aψ . We denote
by BR(S) the set of best responses against supervisor S.

Since the supervisor assume that the attacker will take
a best response, the supervisor needs to propose a strategy

such that its own objective K1 as well as liveness can always
be achieved under any best responses. This leads to the
following Stackelberg Supervisory Control Problem (SSCP).

Problem 1 (SSCP): Given system G, specifications
K1,K2 ⊆ L(G), synthesize a supervisor S, such that:
C1 For any A ∈ BR(S), we have L(SA,⊕/G) ⊆ K1;
C2 For any A ∈ BR(S), we have L(SA,⊕/G) is live;
C3 “as permissive as possible” when satisfying C1 and C2.

Intuitively, C1 and C2 require that the proposed supervisor
should be safe w.r.t. K1 and live whenever the attacker reacts
rationally. Regarding “as permissive as possible” in C3, we
do not provide a mathematical definition here since it may
not always be well-defined. In the next section, we will
provide a concrete definition of permissiveness for a specific
instance of the general problem formulation.

IV. CASE OF DISABLEMENT ATTACKERS

The previous section formulates a very general Stackelberg
supervisory control problem. In particular, the attack decision
set Ξ and the fusion rule ⊕ are generic without any physical
meaning. Depending on the specific setting of the system,
they can be further concretized.

A. Disablement Attackers

Hereafter in this paper, we will focus a concrete type of
attacker called disablement attackers [5]. In the setting, the
attacker can further disable some events that are originally
enabled by the supervisor. Specifically, we assume that

Σa ⊆ Σ

is the set of events that can be disabled by the attacker and
we denote Σua = Σ\Σa. The the action space of the attacker
for this setting can be concretized by

Ξ = {ξ ∈ 2Σ : Σua ⊆ ξ}.

The fusion rule ⊕ then boils down to the set intersection
∩, i.e., for any control decision γ ∈ Γ and attack decision
ξ ∈ Ξ, we have ⊕(γ, ξ) = γ∩ξ. Furthermore, the “no attack”
decision ψ can also be replaced by ψ = Σ, i.e., the attacker
disables nothing. By understanding the concrete meaning of
Ξ and ⊕ = ∩, hereafter, the overall supervisor SA,∩ will be
simplified as SA.

B. Properties of Disablement Attackers

Note that, given a supervisor S, the set of its best responses
can be of form

• BR(S) = {Aψ}; or
• BR(S) = {A1, . . . , An}, where Ai ̸= Aψ .

In the first case, we say that the supervisor is antagonistic
since it does not leave any opportunity for the attacker to
achieve its objective K2, and thus, the attacker gives up.
In the second case, however, we say that the supervisor is
cooperative since it allows the attacker to interfere with the
system without harming the objective K1 of the supervisor.

In general, when the supervisor is cooperative, its best re-
sponse may not be unique. This is why “permissiveness” may
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Fig. 2. An example of Stakelberg supervisory control problem, where
Σc = {a} and Σa = {b}.

not be well-defined in Problem 1. However, the following
result shows that, for disablement attacks, the best response
is always unique in terms of the generated language.

Proposition 1: Given supervisor S, for any best re-
sponses A,A′ ∈ BR(S), we have L(SA/G) = L(SA′/G).

Based on the above result, we know that the best response
against supervisor S is always unique (in the sense of the
generated language), which is either Aψ for the antagonistic
case, or an arbitrary strategy in BR(S) for the cooperative
case. Therefore, hereafter, we denote by SBR = SA the
overall supervisor under the unique best response A.

With the above properties for the case of disablement
attacks (DA), the general formulation of SSCP in Problem 1
can be further concretized as SSCP-DA as follows.

Problem 2 (SSCP-DA): Given system G, specifications
K1,K2 ⊆ L(G), synthesize a supervisor S, such that:

C1 L(SBR/G) ⊆ K1;
C2 L(SBR/G) is live;
C3 For any S′ satisfying C1 and C2, we have

L(SBR/G) ̸⊂ L(S′
BR/G).

Note that we can formulate “permissiveness” as C3, since
the overall supervisor under rational attack is unique. Without
Proposition 1, this definition may be problematic.

Without loss of generality, we assume that the spec-
ification language Ki, i = 1, 2 is generated by Hi =
(XHi

,Σ, δHi
, xHi,0), which is a sub-automaton of G. Then

for any s ∈ L(G), we have s ∈ Ki iff it does not pass
through any states in X \XHi .

C. Illustrative Examples and Potential Challenges

Before we present the solution to SSCP-DA. We first
present two examples to illustrate the problem formulation
as well as its potential challenges.

Example 1 (Non-Uniqueness of the Solution): Let us
consider system G shown in Figure 2(a), where we have
Σc = {a} and Σa = {b}. For the supervisor, the specification
K1 is to avoid reaching red state 2, and for the attacker, the
specification K2 is to avoid reaching blue state 6.

One can easily find a cooperative supervisor Scop that
only disables event a at state 1. Once this supervisor is
posted, the best response of the attacker is to disable event
b at state 5. Then the overall controlled system SBR/G is
shown in Figure 2(b), where both supervisor and attacker
achieve their goals K1 and K2, respectively. This supervisor
is indeed a solution to SSCP-DA. However, one can find
an antagonistic supervisor Sant that is incomparable with
the above cooperative solution Scop. Specifically, one can
consider a supervisor Sant that not only disables event a
at state 1, but also disables event a at state 5. Once this
supervisor is posted, the rational attacker will not choose
to disable event b at state 5 anymore since this will block
the entire system. Therefore, the best response to such a
supervisor is the non-interfering attacker. In this case, the
overall controlled system SBR/G is shown in Figure 2(c),
where only the supervisor achieve its objective K1. Clearly,
Scop and Sant are incomparable, although Scop is already a
solution to SSCP-DA.

In the above example, we have show that for a cooperative
solution, there may exists an incomparable antagonistic so-
lution. The following result further shows that a maximally
permissive antagonistic solution may not even exist.

Example 2 (Non-Existence of Antagonistic Solution):
We still consider the system in Example 1. In fact, we can
make Sant in the above example more permissive as follow.
We define a supervisor Skant such that it enables event a for
the first k times visiting state 5 and choose to disable event
a at state 5 when this state is visited for more that k times.
We note that, for any k, BR(Skant) = {Aψ} since if the
attacker tries to avoid reaching state 6 by disabling event
b at state 5 after the kth visit of state 5, then the system
will be blocked. Furthermore, Sk+1

ant is always strictly more
permissive than Skant. Therefore, a maximally permissive
antagonistic solution does not even exist.

Based on the above discussions, hereafter, we will focus
on finding a cooperative solution to SSCP-DA. How to find
a reasonably permissive antagonistic solution is left for our
future work.

V. SYNTHESIS OF COOPERATIVE SOLUTIONS

In this section, we discuss how to synthesis a supervisor in
a tactical environment. Specifically, the synthesized supervi-
sor is cooperative in the sense that its best response attacker
is interfering and can also achieve its own objective.
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A. Attack-Decision Structures

The SSCP involves three key players: the supervisor, the
attacker, and the environment. Specifically, the supervisor is
the first to propose a decision, which is then followed by the
attacker’s best response. Finally, the environment selects an
actual event that is permitted by the combination of the first
two players’ decisions. To capture this three-stage process,
the plant is unfolded by incorporating the decisions of the
supervisor and the attacker into it.

Definition 3 (Attack-Decision Structure): An attack
decision structure (ADS) w.r.t. G is defined by

T = (XT , X̂T , hTDE , h
T
ED,Σ,Γ,Ξ, x

T
0 ),

where
• XT ⊆ X is the set of decision states (D-states), which

is a subset of plant states;
• X̂T ⊆ X × Γ × Ξ is the set of environment states (E-

states), which is a subset of plant states augmented with
control and attack decisions;

• hTDE : X×(Γ×Ξ) → X̂ is the partial transition function
from D-states to E-states such that: for any x ∈ XT , γ ∈
Γ, ξ ∈ Ξ and x̂ = (x′, γ′, ξ′) ∈ X̂T , we have

hTDE(x, (γ, ξ))=X̂ ⇒ (x′, γ′, ξ′)=(x, γ, ξ)

• hTED : X̂ × Σ → XT is the partial transition function
from E-states to D-states such that: for any x̂ =
(x, γ, ξ) ∈ X̂T , σ ∈ Σ and x′ ∈ XT , we have

hTED(x̂, σ) = x′ ⇒ [σ ∈ ⊕(γ, ξ)] ∧ [x′ = δ(x, σ)]

• Σ is the set of events of G, Γ is the set of admissible
control decisions of the supervisor and Ξ is the set of
attack decisions;

• xT0 = x0 ∈ XT is the initial D-state.
Intuitively, a D-state x ∈ XT is just a plant state at which

both the supervisor and the attack make decisions (γ, ξ) ∈
Γ × Ξ. Then the system moves to E-state x̂ = (x, γ, ξ) by
simply remembering the decisions. Then at this E-state, only
events allowed by both players can occur, and once σ ∈
⊕(γ, ξ) occurs, the system moves to D-state x′ = δ(x, σ)
following the dynamic of the plant.

Given an ADS T , we define the set of decisions at D-state
x ∈ XT as DT (x) := {(γ, ξ) ∈ Γ × Ξ : hTDE(x, (γ, ξ))!}.
Then for the purpose of control, we need to require the
supervisor and the attacker can always react to any events
that occurred. Formally, given an ADS T , we say

• a D-state x ∈ XT is complete in T if DT (x) ̸= ∅;
• an E-state x̂ = (x, γ, ξ) ∈ X̂T is complete in T if for

any σ ∈ ⊕(γ, ξ), we have δ(x, σ)! ⇒ hTED(x̂, σ)!.
We say ADS T is complete if all states in it are complete.

Note that the ADS contains multiple control and attack
decisions in general. Given a supervisor S and an attacker
A, the corresponding D- and E-state reached upon the string
s ∈ L(SA/G) can be computed recursively by applying the
corresponding control and attack decisions along string s,
which we denote as XT

SA
(s) and X̂T

SA
(s), respectively.

Definition 4 (Included Supervisors): Given a supervi-
sor S and an attacker A, we say an overall supervisor SA
is included in ADS T if for any s ∈ L(SA/G), we have
(S(s), A(s)) ∈ DT (X

T
SA

(s)). Also, we say a supervisor S
is included in ADS T if there exists an attacker A such that
the overall supervisor SA is included in ADS T .

B. Characterizing Attacker’s Best Response

As we mentioned above, in this work, we seek for finding
a cooperative solution. Therefore, we already assume that
the attacker can achieve its objective K2, which means that
we can restrict the state space of T to XH2

Furthermore, in
addition to the satisfication of K2, the attacker also concerns
about the liveness of the controlled system.

Definition 5 (Live States): Given an ADS T , an E-state
x̂ = (x, γ, ξ) ∈ X̂T is said to be live if there exists an event
σ ∈ ⊕(γ, ξ) such that δ(x, σ)!.

The following result connects the liveness of the overall
controlled system and live states.

Proposition 2: Given system G and supervisor SA, the
overall controlled system SA/G is live if and only if for any
s ∈ L(SA/G), the E-state encountered X̂T

SA
(s) is live.

Now, we introduce the all cooperative structure (ACS)
that contains all cooperative solutions.

Definition 6 (All Cooperative Structures): Given sys-
tem G and attack specification H2, the all cooperative
structure (ACS), denote by

ACS = (XACS , X̂ACS , hACSDE , hACSED ,Σ,Γ,Ξ, xACS0 ),

is the largest complete ADS w.r.t. G such that
1) XACS ⊆ XH2

; and
2) For any x̂ ∈ X̂ACS , E-state x̂ is live.

By “largest”, we mean that for any complete ADS T satis-
fying 1) and 2), we have T ⊑ ACS, where “⊑” denotes the
standard sub-graph inclusion.

Remark 5.1: The ACS construction procedure is similar
to the construction of the all inclusive controller in [25].
We refer the reader to [25] for details on the construction
algorithm.

We use the following example to illustrate the ACS.
Example 3: Again we consider system G shown in

Fig 2(a). An example of the ACS is as shown in Fig 3, where
circle states represent D-states, rectangular states represent
E-states. Take a part of this figure as an example, at D-state
5, the supervisor has two possible decisions {a, b} and {b},
and the attacker can make decisions {a, b} or {a}. Thus, in
the largest ADS Ttotal, there should be four decision-pairs at
state 5. However, for the cases {a, b}∩{a, b} or{b}∩{a, b},
since event b is feasible, the system can go into D-state 6,
which is in XH2

. Therefore, E-states (5, {a, b}, {a, b}) and
(5, {b}, {a, b}) should be removed when constructing the
ACS. On the other hand, in case of {b}∩{a}, the system will
be blocked since no out-going event is feasible. Therefore,
there is only one transition defined at state 5 in the ACS as
shown in Figure 3.

The following theorem shows that the ACS indeed and
only contains all cooperative supervisors.
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Fig. 3. The ACS, where D-states and E-states are represented by circle
and rectangular states, respectively.

Theorem 1: For any supervisor S and attacker A, the
following two statements are equivalent:

1) L(SA/G) ⊆ K2 and L(SA/G) is live;
2) SA is included in ACS.
Given a cooperative supervisor S in the ACS, since the

attacker also wants to be maximally permissive, at each state,
once the supervisor makes a control decision, it will pick a
locally maximal decision within the ACS. Formally, for any
D-state x ∈ XACS and control decision γ ∈ Γ, we define

LOCMAX(x, γ) =

{
ξ ∈ Ξ :

(γ, ξ) ∈ DACS(x)∧
[∀(γ, ξ′)∈DACS(x) : ξ ̸⊂ ξ′]

}
as the set of locally maximal attacker decisions at x when
the supervisor’s decision is γ. In fact, LOCMAX(x, γ) is a
singleton in the sense of non-redundant decisions when we
consider the disablement attackers.

Then the best response of the attacker is characterized by
the following result.

Proposition 3: Let S be a cooperative supervisor such
that BR(S) = {A}, where A ̸= Aψ . Then for any s ∈
L(SA/G), we have A(s) ∈ LOCMAX(XACS

SA
(s), S(s)).

C. Synthesis of Cooperative Supervisors

Moving on to the synthesis of cooperative supervisors,
as discussed earlier, when given a cooperative supervisor,
the attacker always seeks to pick a locally maximal attack
decision based on the supervisor’s decision. As a result,
to ensure the satisfaction of its own specification K1 (or
XH1

in terms of states), the supervisor needs to anticipate
the ”rational” behavior of the attacker. This motivates us to
introduce the following definition.

Definition 7 (Safe Control Decisions): Given the ACS
w.r.t. H2, a control decision γ ∈ Γ is said to be safe at D-
state x ∈ XACS w.r.t. H1 if for any maximal attack decision
ξ ∈ LOCMAX(x, γ) and any feasible event σ ∈ ⊕(γ, ξ)

hACSED (hACSDE (x, (γ, ξ)), σ) ∈ XH1
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Fig. 4. The maximally permissive cooperative supervisor S∗.

Note that the above condition is equivalent to δ(x, σ) ∈ XH1
.

The following result shows that, from the supervisor’s
perspective, to enforce its own specification K1, it always
needs to make safe control decisions.

Proposition 4: Let S be a cooperative supervisor such
that the attacker can achieve K2, then the supervisor achieves
K1, i.e., L(SBR/G) ⊆ K1 if and only if

∀s ∈ L(SBR/G) : S(s) is safe at δ(s).
Intuitively, a control decision is safe if it cannot reach

an unsafe state outside of XH2
in one step when the attack

responses in a maximally permissive manner. However, to
ensure safety of S, the above result states that the control
decision needs to be safe globally. Therefore, to decode
cooperative supervisor from the ACS, we need to further
find the largest complete sub-system of the ACS such that
1) all control decisions are safe. To find T ∗, we need to first
remove all transitions hACSDE (x, (γ, ξ)) such that γ is not safe
at x. However, this may introduce new incomplete states, and
we still need to iteratively remove incomplete state until the
ADS becomes complete. If the T ∗ is non-empty, we can
decode the maximally permissive cooperative supervisor S∗

from it by picking the locally maximal control and attack
decisions for each reachable D-states x, i.e.,

LOCMAX(x) =

{
γ ∈ Γ :

((γ, ·) ∈ DT∗(x)∧
[∀(γ′, ·)∈DT∗(x) : γ ̸⊂ γ′]

}
and picking all feasible events for each reachable E-states.
This will result an ADS T containing one supervisor ST ,
which is our solution. The complete synthesis algorithm
is formally described by Algorithm 1. Similar to the case
of LOCMAX(x, γ), for disablement attacks, we also have
that LOCMAX(x) a singleton in the sense of non-redundant
decisions.

Now we show the correctness of our algorithm.
Theorem 2: Algorithm 1 is both sound and complete
We illustrate Algorithm 1 by the following example.
Example 4: We still return to our running example. The

ACS has been shown in Fig 3. We note that control decision
{a, b} is not safe at state 1 because there exists an event
a ∈ {a, b}∩{a, b} leading to state 2 ̸∈ XH1

under the locally
maximal attack decision = {a, b} ∈ LOCMAX(1, {a, b}).
Therefore, we remove transitions hACSDE (1, {a, b}, {a, b}) and
hACSDE (1, {a, b}, {a}). This removal does not introduce any
new incomplete state and we obtain T ∗ as shown in the
box marked by red lines. Now we synthesize a supervisor
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Algorithm 1: Cooperative Supervisor Synthesis
Input: system G and trim automatons H1 and H2

Output: S∗

1 construct ACS
2 construct the largest complete sub-system of ACS in

which all control decisions are safe, denoted by T ∗

3 if T ∗ = ∅ then
4 return no solution exists
5 else
6 XT = {x0}, X̂T = ∅, hT = ∅
7 Expand(T, T ∗, x0)
8 return ST

9 procedure Expand(T, T ∗, x)
10 γ ∈ LOCMAX(x), ξ ∈ LOCMAX(x, γ)
11 hT = hT ∪ {(x, γ, ξ, x̂)}
12 if x̂ ̸∈ X̂T then
13 X̂T = X̂T ∪ {x̂}
14 for σ ∈ ⊕(γ, ξ) do
15 x′ = hT

∗

ED(x̂, σ), h
T = hT ∪ {(x̂, σ, x′)}

16 if x′ ̸∈ XT then
17 XT = XT ∪ {x′}
18 Expand(T, T ∗, x′)

as follows. Starting from state 0, the algorithm chooses a
maximally permissive control decision {a, c}, which will be
responded by attack decision {a, c} as shown in T ∗. By
this choice, the system moves to E-state (0, {a, c}, {a, c}),
and we need to consider all successor D-states 1 and 8, at
which the locally maximal control decision are {c} and {b},
respectively, and so forth. The result structure is shown in
Figure 4, which essentially gives us a cooperative supervisor
and its best response attacker. This is consistent with our
earlier discussion as shown in Fig 2(b).

VI. CONCLUSION

In this paper, we introduced a novel framework for super-
visory control in tactical environments, where attacks with
their own objectives may not be fully opposed to the control
objective. We formulated this scenario as a leader-follower
Stackelberg game and proposed an algorithm for synthesiz-
ing a cooperative supervisor that enables both players to
achieve their objectives, while the supervisor has the pri-
ority to maximize its objective. There are several promising
directions for future research within this framework. Firstly,
instead of cooperative solutions, we plan to investigate how
to synthesize a reasonably permissive antagonistic solution.
Secondly, we aim to extend our results to different types
of attacks beyond disablement attacks. Lastly, we note that
in this work, the objectives of both the supervisor and the
attacker are captured by safety. However, in the future, we
plan to consider non-prefix-closed specification languages for
both players.
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