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Abstract: This paper investigates the problem of task planning for high-level specifications
described by linear temporal logic (LTL) formulae. Existing works on this topic mainly based
on the assumption that the functionalities of the system are always correct during the execution.
In this work, we consider the scenario where the system is subject to internal failures that cannot
be measured directly but may be inferred by a sequence of actions. The objective is to design
a failure-aware task plan such that (i) the system will achieve the LTL task when there is no
failure; and (ii) along the designed plan, any potential failure can be detected within a bounded
number of steps. We provide a framework for modeling the behavior of the system with potential
internal failures. Furthermore, an effective algorithm is designed to synthesize an optimal self-
diagnostic plan, in the form of the prefix-suffix structure, such that these two requirements are
satisfied. We illustrate the proposed framework by a case study of production task planning.
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1. INTRODUCTION

Task planning and decision-making in dynamic environ-
ments are the central problems in the applications of au-
tonomous systems. In recent years, there has been growing
interest in designing high-level plannings for robots in
order to achieve some complex tasks described by formal
languages or temporal logics such as linear temporal logic
(LTL) (Kress-Gazit et al., 2018). LTL is an expressive and
user-friendly language for expressing high-level require-
ments such as “first do something and then do something”
or “repeating some actions infinitely often” (Baier and
Katoen, 2008).

In the context of robot task planning, considerable works
have been done in the past years on synthesizing plans
for LTL tasks; see, e.g., Ulusoy et al. (2013); Kloetzer
and Mahulea (2020); Shi et al. (2022); Yu et al. (2022).
For example, Smith et al. (2011) provides a framework
for finding an infinite plan in the prefix-suffix structure
such that a surveillance task is achieved optimally. In
Guo and Dimarogonas (2015), the authors consider how to
redesign the plan when the environment changes. In Luo
et al. (2021), sampling-based techniques are developed to
enhance the scalability of the planning process. Learning-
based techniques have also been developed when the
environment is unknown (Cai et al., 2020).

The above mentioned works mainly focus on task planning
problems for the ideal case, where robots are assumed
to work correctly as desired. In practice, however, the
robot itself or some of its functionalities may fail during
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its execution. For example, consider a surveillance robot
whose task is to visit a critical region infinitely so that
pictures can be taken and then been uploaded to the
cloud. However, if the camera of the robot is broken
during the execution, although the robot is still visiting the
critical region infinitely often (and tries to take pictures),
the actual task will be not achieved due to the failure.
Therefore, the robot should be aware of the failure when
it occurs in order to reconfigure the plan or to fix the
failure component.

There have been many studies on LTL task planning under
uncertainty or in the presence of adversaries (Ding et al.,
2014; Niu and Clark, 2019; Ramasubramanian et al., 2020;
Xie et al., 2021). In particular, a game-based model is
usually used to capture the transition non-determinism
of the system when taking actions. However, in general,
uncertainties are different from failures. Although both of
them are uncontrollable, the consequences of uncertainties
can usually be observed directly, while failures are usually
internal or hidden, which cannot be directly measured.
One may need to choose a well-designed sequence in
order to infer the occurrence of failure. How to achieve a
desired task while maintaining the capability in detecting
potential internal failures is an important but challenging
task.

In this work, we formulate and solve a new failure-aware
task planning problem for LTL specifications. Specifically,
we consider a scenario where, in addition to the external
dynamic of the system such as the mobility of the robot,
the system also has an internal dynamic which is subject
to failures. Furthermore, we assume that the occurrences
of failures may not be observed directly by the system.
Therefore, one needs to carefully design a plan such that
it is (i) task satisfying in the sense that the LTL task is
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achieved when no failure occurs; and (ii) self-diagnostic
in the sense that the failure can always be detected
within a bounded number of steps whenever it occurs. Our
contributions are twofold. First, we provide a modeling
framework using transducers to capture this failure-aware
task planning scenario. Second, we provide an effective
algorithm for designing an optimal plan, in the prefix-
suffix structure, such that it is both task satisfying and
self-diagnostic.

Our works is closely related to the literature on fault
diagnosis of discrete-event systems Yin and Lafortune
(2017); Ma et al. (2021); Dong et al. (2023), particularly,
active diagnosis Sampath et al. (1998); Yin and Lafortune
(2016); Lin et al. (2017); Hu et al. (2020). However, in
active diagnosis, one aim to design a feedback control
strategy to detect fault rather than a failure-aware open-
loop plan. Therefore, the problem setting is different from
ours. Furthermore, existing works on active diagnosis do
not consider ensuring high-level tasks such as LTL tasks
as we considered in this work.

Basic Notations: For a set A, we denote by |A| and 2A its
cardinality and its power set, respectively. A finite word
σ over A is a sequence in the form of σ=a1 · · · an, where
ai∈A and we denote by A∗ the set of all finite words over
A. Analogously, we denote by Aω the set of all infinite
words over A. Given a set of words L ⊆ Σ∗ ∪ Σω and a
word σ ∈ L, we denote by L/σ the set of the post-words for
w in L, i.e., L/σ := {w ∈ Σ∗ : σw ∈ L}. We also define the
prefix closure of L as L = {σ ∈ Σ∗ : ∃w ∈ Σ∗ s.t. σw ∈ L}.

2. A MOTIVATING EXAMPLE

To motivate our study, let us consider an automatic
manufacturing factory shown in Figure 1, where there are
a team of AGVs and four types of production modules
including:

(1) a stock (S) where raw materials can be loaded on the
AGVs for further processing;

(2) amaterial processing machine (M) where raw materials
can be processed, denoted by action a0, into compo-
nents commonly required by two different products;

(3) an assembly machine (A) which can assemble the
processed components into two different products (
Product 1 and 2) by actions a1 and a2, respectively;

(4) two product storages (P1/P2) where Product 1 and 2
are deposited, respectively.

The above modules can be employed to constitute two
available production lines:

L1 :
(

S
m
−→ M

a0−→ A
a1−→ P1

a-1−−→ S
)ω

L2 :
(

S
m
−→ M

a0−→ A
a2−→ P2

a-1−−→ S
)ω

where actions m and a-1 denote “move” and “back and
reset” actions available for the AGVs, respectively.

Now we assume that process a0 in the material processing
machine may have small chance to result in a permanent
failure of the machine. Once failure occurs, the processed
material will be unqualified which will further lead to the
products assembled in the assembly machine unqualified.
This internal change from normal status to failure status
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Fig. 1. Motivating example: an automatic factory

Table 1. Observation Map

N1 F1 N2 F 1

2
F 2

2
F 3

2

T1 o1 o1 o1 o1 χ1 χ1

T2 χ2 χ2 o2 χ2 o2 χ2

can be captured by a transducer T shown in Figure 1(b)
(the formal definition will be presented in the next sec-
tion). Intuitively, states with “N” and “F” denote, respec-
tively, normal and failure statuses of thematerial processing
machine. Furthermore, under the failure status, by using
the unqualified material and taking action a2 to assemble
Product 2, the resulting product may be at three possible
unqualified levels non-deterministically.

We assume that the failure status of the material processing
machine cannot be measured directly. On the other hand,
we can infer its status by testing the products assembled
by the assembly machine. To this end, we assume that there
are two test machines (T1/T2) available in the production
configuration to test properties of the products. We assume
that the test results are available to the user, and for
qualified products and unqualified products at different
levels, the test results at different test machines are shown
in Table 1, where “o” and “χ” denote test results “pass”
and “fail”, respectively.

Now, we consider a simple production task as follows:
(i) keep producing products indefinitely; and (ii) once
failure occurs in the material processing machine, it can
be diagnosed within at most K steps. Such a problem is
referred to as the diagnostic planning problem in this work.
Furthermore, we assume that making Product 2 is more
costly than making Product 1. Therefore, the user tends
to produce as many Product 1 as possible.

Clearly, if one only uses production line L1, then the
diagnostic condition cannot be satisfied no matter how
test machines T1/T2 are used. This is because both the
qualified Product 1 (N1) and the non-qualified Product 1
(F1) have the same test results. On the other hand, one can
combine production line L2 together with two successive
tests at two different test machines for Product 2, denoted
by

L2′ :
(

S
m
−→ M

a0−→ A
a2−→ P2

m
−→ T2

m
−→ T1

a-1−−→ S
)ω

This plan is actually self-diagnostic due to the fact that
once the failure occurs in the material processing machine

(i.e., N
a0−→ F in T ), no matter what level of unqualified

Product 2 the assembly machine produces (F 1
2 , F

2
2 or F 3

2 ),
they can be distinguished by test machines T1 and T2
based on their different test results.

Furthermore, we note that the total cost incurred in
production line L2′ is larger than that of L1. To reduce the
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total cost while maintaining the capability in diagnosing
failures, the very optimal plan is actually to execute L1 as
much as possible within K−5 steps, and then to execute
L2′ once to detect the possible failure, and repeat them
infinitely often.

In what follows, we will formulate such a scenario using
the notion of optimal diagnostic planning problem. First,
we will provide a modeling framework to describe the
execution of the system, the internal (possible failure)
dynamic of the system, as well as the observation mapping.
Then we will provide a formal solution to such a problem.

3. MODELING FRAMEWORK AND PROBLEM
FORMULATION

3.1 Weighted Transition Systems

The environment, describing the mobility of the agent, is
modeled as a weighted transition system

G = (X,x0, Act,∆,AP , L, w)

where

• X is the set of states representing different regions of
the workspace;

• x0 ∈ X is the initial state representing the starting
region of the agent;

• Act is the set of actions available in the environment;
• ∆ : X×Act→ X is the transition function such that a

transition x′ = ∆(x, a) means that the agent, starting
from region x ∈ X, can move to region x′ ∈ X directly
by taking action a ∈ Act;

• AP is the set of atomic propositions representing
some basic properties of our interest;

• L : X → 2AP is a labeling function that assigns each
state a set of atomic propositions;

• w : Act → R≥0 is a cost function evaluating the cost
incurred when the agent takes different actions.

For such map geometry, the planning problem is referred
to designing a sequence of actions, τ = a1a2 · · · ∈ Actω,
called a plan, which determines a unique sequence of states
X(τ) := x0x1x2 · · · ∈ Xω such that xi+1 = ∆(xi, ai), i ≥ 0
and we call such X(τ) a path. The trace of an infinite
path X(τ) is an infinite sequence over 2AP denoted by
L(X(τ)) =L(x0)L(x1)L(x2) · · · . With slight abuse of the
notation, we denote by Act(x)={a∈Act :∆(x, a)!} the set
of actions available at x ∈X. For convenience, we define
the set of all plans available in G as Planω(G); we also
denote by Plan∗(G) the set of finite plans available in G
analogously. Given a finite plan τ=a1a2 · · · an∈Plan

∗(G),
we define its cost by J(τ)=

∑n
i=1 w(ai).

3.2 Transducers and Self-Diagnostic Plans

As shown in the motivating example in Section 2, in
many practical scenarios, taking different action will not
only bring the agent from one region to another in the
environment, but will also trigger internal status changes
of its own. Particularly, we are interested in those statuses
representing some internal failures of the agent. In general,
the observation of the agent is determined together by the
actual region in the environment as well as the internal
state of the agent. For example, at normal or failure

statuses and at different test machines, the agent will
observe different result.

In order to capture such internal status change of the agent
as well as the associated observation mapping, we use a
transducer structure defined as follows:

T = (S, s0,Σ, ξ, O,X,H)

where

• S = SN ∪̇SF is the set of the agent’s internal states,
where SN and SF are the sets of normal states and
failure states,

• s0 ∈ SN is the initial internal state;
• Σ is the alphabet, in particular, we have Σ = Act;
• ξ : S ×Σ → 2S is the non-deterministic transition
function defined by:
· for s ∈ SN , we have ξ : SN × Σ→ 2S ;
· for s ∈ SF , we have ξ : SF × Σ→ 2SF ;

• O is the set of observation symbols;
• H : S×X→O is the observation mapping.

For convenience, we denote by Lω(T ) := {σ ∈ Σω : ∀σ′ ∈

{σ} s.t. ξ(s0, σ
′)!} the language generated by T . Here we

assume Planω(G) ⊆ Lω(T ), which is without of generality
since it simply says that any plan available in G is well
defined in the transducer T . In fact, words in Lω(T ) \
Planω(G) are not of our interest due to the fact they are
impossible to be executed in the environment G.

Since the internal states cannot be observed by the agent’s
own directly, when executing plan τ in environment G,
the agent has to infer whether or not some failure has
actually occurred based on the observation at regions of
the environment. When the answer is “yes for sure” for
any possible failures, we call such τ a diagnostic plan.

Before formally defining a diagnostic plan, we introduce
some notations. Given a plan τ = a1a2 · · · ∈Plan

ω(G), we
define all its compatible runs in T by

Runω(τ) = {s0s1 · · ·∈S
ω : si+1∈ξ(si, ai+1), i = 0, 1, . . . } .

(1)
Given Runω(τ), we denote by Run∗(τ) its prefix closure,
i.e., the set of all compatible finite runs of τ in T . Given
a plan τ ∈Planω(G) with X(τ)=x0x1x2 · · · being its path
in environment G, for each compatible run ρ=s0s1s2 · · ·∈
Runω(τ) in T , we denote by

Obs(ρ)=H(s0, x0)H(s1, x1)H(s2, x2) · · · ∈ Oω

the observation of ρ in G. Analogously, we define Run∗(τ)
and the observation of each finite run in Run∗(τ). Given
each Run∗(τ), we have the partition

Run∗(τ) = Run∗N (τ)∪̇Run∗F (τ)

where Run∗N (τ) is the set of all normal runs such that
all states visited by each ρ ∈ Run∗N (τ) are normal states
and Run∗F (τ) is the set of faulty runs such that each run
ρ∈Run∗F (τ) visited some fault states.

Now, we present the notion of diagnostic plan as follows.

Definition 1. (Self-Diagnostic Plan). Given WTS G and
transducer T and a parameter K ∈ N, we say a plan
τ ∈ Planω(G) is self-diagnostic w.r.t. T and K if any
occurrence of fault can always be determined based on
its observation in G within at most K-steps, i.e.,

(∀ρ∈Run∗F (τ))(∀w∈Run
∗
F (τ)/ρ : |w| ≥ K)

(∀ρ′∈Run∗(τ))[Obs(ρw)=Obs(ρ′)⇒ ρ′∈Run∗F (τ)] (2)
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3.3 Linear Temporal Logic Specifications

The task of the agent is described by linear temporal logic
(LTL) formulae. The syntax of general LTL formula is
given as follows

φ = ⊤ | a | ¬φ | φ1 ∧ φ2 | ©φ | φ1Uφ2,

where ⊤ stands for the “true” predicate; a ∈ AP is an
atomic proposition; ¬ and ∧ are Boolean operators “nega-
tion” and “conjunction”, respectively; © and U denote
temporal operators “next” and “until”, respectively. One
can also derive other temporal operators such as “eventu-
ally” by ♦φ = ⊤Uφ and “always” by �φ = ¬♦¬φ. LTL
formulae are evaluated over infinite words; the readers are
referred to Baier and Katoen (2008) for the semantics of
LTL. Specifically, for an infinite word w ∈ (2AP)ω over
2AP , we write w |=φ if w satisfies LTL formula φ.

For any LTL formula φ, it is well known that any infinite
word satisfying φ can be accepted by a nondeterministic
Büchi automaton (NBA). Formally, a NBA is a 5-tuple
A=(QB , QB,0, 2

AP , δB , FB), where QB is the set of states;
QB,0 ⊆ QB is the set of initial states; 2AP is the alphabet;
δB : QB × 2AP → 2QB is the transition function; and
FB ⊆ QB is the set of accepting states. Given an infinite
word w=w1w2 · · · ∈ (2AP)ω, an infinite run of A induced
by w is an infinite sequence π= q0q1q2 · · · ∈Q

ω
B such that

q0 ∈ QB,0 and qi+1 ∈ δB(qi, wi), ∀i ≥ 1. An infinite run π
is said to be accepted by A if Inf(π) ∩ FB 6= ∅, where
we denote by Inf(π) the set of states that appear infinite
number of times in π. An infinite word w is said to be
accepted by A if it induces an infinite run accepted by
A. Furthermore, given any LTL formula φ, there always
exists an NBA over 2AP that accepts exactly all the infinite
words satisfying φ (Vardi and Wolper, 1986).

3.4 Diagnosic Planning Problem

In the standard LTL task planning problem, it is required
to find a plan τ ∈ Planω(G) such that L(X(τ)) |= φ. Due to
the structure of the accepting condition in NBA, it suffices
for us to find an plan in the following form of preffix-suffix
structure Smith et al. (2011)

τ = a1 · · · ak (ak+1 · · · ak+m)
ω ∈ Planω(G)

with its path being

X(τ) = x0x1 · · ·xk (xk+1 · · ·xk+m)
ω

such that L(X(τ)) |= φ. Intuitively, xk+1 · · ·xk+m is the
suffix that forms a cycle such that the agent should execute
infinitely often, while x0x1 · · ·xk is the prefix representing
the transient path that leads to the cyclic path.

In our work, given such an infinite plan τ of prefix-suffix
structure, we consider the weighted sum cost of its prefix
and suffix, i.e.,

Ĵ(τ) = αJ(a1 · · · ak) + (1− α)J(ak+1 · · · ak+m) (3)

where α∈ [0, 1] is a parameter to adjust the weights of the
prefix and the suffix.

With the above preliminaries, we present the optimal self-
diagnostic task planning problem formulation as follows.

Problem 1. (Optimal Self-Diagnostic Planning). Given en-
vironment of the agent modeled asG, the internal behavior
of the agent captured by transducer T , and a task de-
scribed by an LTL formula φ, design a plan τ ∈Planω(G)

such that i) L(X(τ)) |= φ; ii) τ is self-diagnostic; iii) for
any other plan τ ′ ∈ Planω(G) satisfying the above two

requirements, we have Ĵ(τ ′) ≥ Ĵ(τ).

4. SELF-DIAGNOSTIC PLANNING ALGORITHM

4.1 Maximally Diagnosable WTS

Given two WTSs G= (X,x0, Act,∆,AP , L, w) and G′ =
(X ′, x′

0, Act
′,∆′,AP ′, L′, w′), we say G′ is is finer than G,

denoted by G′ ⊑ G, if the followings hold:

i) X ′=X,x′
0=x0,Act

′=Act,AP ′=AP,L′=L,w′=w;
ii) for any x′ = ∆′(x, a), we have x′ = ∆(x, a).

It directly follows that Planω(G′) ⊆ Planω(G). Specifically,
we are interested in a particular WTS G′ ⊑ G satisfying
the following two conditions

C1 each plan τ ∈ Planω(G′) is self-diagnostic w.r.t. T ;
C2 for any G′′ satisfying C1, we have G′′ ⊑ G′.

We say a WTS G′ ⊑ G is diagnosable w.r.t. T if it satisfies
C1 and maximally diagnosable w.r.t. T if it satisfies both
C1 and C2.

Next, we present a sufficient and necessary condition to
determine the diagnosability of a WTS. Since K is given
as a design parameter in the definitions of self-diagnostic
plan as well as the diagnosability of a WTS, we make
some refinement on T by “counting” when failure occurs
as follows.

Given a transducer T = (S, s0,Σ, ξ, O,H), we define a new

transducer T̃ = (S̃, s̃0,Σ, ξ̃, O, H̃), where

• S̃ ⊆ S × {−1, 0, 1, . . . ,K} is the set of states;

• s̃0 = (s0,−1) ∈ S̃ is the initial state;

• ξ̃ : S̃×Σ→ 2S̃ is the partial transition function such
that for any s̃=(s, n), s̃′=(s′, n′)∈ S̃, a∈Σ, we have

s̃′ ∈ ξ̃(s̃, a) if the followings hold:
i) s′ ∈ ξ(s, a);
ii)

n′ =















−1, if n = −1 ∧ s′ ∈ SN

n+ 1, if
0 ≤ n < K or

n = −1 ∧ s′ ∈ SF

K, if n = K

(4)

• O is the set of observation symbols;
• H̃ : S̃×X→O is the observation map defined by: for
any (s, n)∈ S̃, we have H̃((s, n), x)=H(s, x), ∀x∈X.

For convenience, for each s̃ = (s, n) ∈ S̃, we denote by [s̃]n
the second component of s̃.

Definition 2. (Information State). Given a WTS G and
a finite plan τ ∈ Plan∗(G), for an observation α=Obs(ρ)
for some ρ∈Run∗(τ), the Information State (IS) of τ and

α w.r.t. T̃ is defined as

IS(τ, α)=

{

s∈ S̃ :
s∈ ξ̃(s̃0, τ)∧

∃ρ′∈Run∗(τ) s.t. Obs(ρ′)=α

}

(5)

We describe the dynamic of all ISs w.r.t. WTS G and
transducer T̃ as the following structure of IS Transducer.
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Definition 3. (IS Transducer). Given WTS G and trans-
ducer T , its IS transducer is a deterministic finite-state
automaton

TIS = (YIS , yIS ,0,ΣIS , δIS )

where

• YIS =X×2S̃ is the set of states;
• yIS ,0=(x0, {s̃0})∈YIS is the initial state;
• ΣIS =Act×O is the alphabet;
• δIS : QIS × Act → YIS is the transition function
defined by: for any y = (x, u), y′ = (x′, u′) ∈ YIS and
(a, o)∈ΣIS , we have y′=δIS (y, (a, o)) if
i) x′ = ∆(x, a); and

ii) u′={s′∈ S̃ :∃s′∈u s.t. s′∈ ξ̃(s, a) ∧ H̃(s′, x′)=o}

For convenience, for each y = (x, u) ∈ QIS , we denote by
[y]IS = u the second component of y. By the construction
of TIS , we have the following result.

Proposition 1. Given any finite plan τ ∈ Plan∗(G) and
an observation α=o0α

′=Obs(ρ) for some ρ∈Run∗(τ), we
have IS (τ, α) = [δIS (yIS ,0, (τ, α

′))]IS .

Then we introduce a new structure based on which we
present the sufficient and necessary condition.

Definition 4. (Diagnostic Structure). Given a WTS G,

the modified transducer T̃ and the IS transducer TIS ,
the diagnostic structure (DS) is a deterministic finite-state
automaton

D = (QD, qD,0, Act, δD)

where

• QD ⊆ X×2S̃×22
S̃

is the set of states which satisfies:
for any (x, u, v) ∈ QD, we have
i) v is a partition of u, i.e., u= ∪̇z∈vz;

ii) for any z∈v, s, s′∈z, we have H̃(s, x)=H̃(s′, x);
• qD,0 = (x0, {s̃0}, {{s̃0}}) is the initial state;
• Act is the alphabet;
• δD : QD×Act→ QD is the transition function defined
by: for any q = (x, u, v), q′ = (x′, u′, v′) ∈ QD and any
a ∈ Act, we have q′ = δD(q, a) if the followings hold:
i) x′=∆(x, a);

ii) u′=
⋃

s∈u ξ̃(s, a);

iii) v′=
{

y∈2S̃ :∃z∈v, o∈O s.t. y=[δIS (z, (a, o))]IS

}

.

Note that, although the domain of the third component

of the state-space of D is 22
S̃

, the size of D is still
single exponential in T̃ . This is because, for each state
(x, u, v) ∈ QD, the third component v is simply a partition
of the second component u.

Now, we present the sufficient and necessary condition to
determine the diagnosability of a WTS G as follows.

Proposition 2. A WTS G= (X,x0, Act,∆,AP , L, w) is
diagnosable if and only if its diagnostic structure D =
(QD, qD,0, Act, δD) satisfies: for ∀(x, u, v) ∈ QD, we have

(∀z ∈ v)(∀s, s′ ∈ z) [[s]n = K ⇒ [s′]n 6= −1] (6)

Now, based on the result of Proposition 2, we present the
following algorithm to obtain the maximally diagnosable
WTS G ⊑ G from the given WTS G and transducer T .

Algorithm 1: Construct Maxi. Diagnos. WTS

Input: WTS G=(X,x0, Act,∆,AP , L, w) and
Transducer T =(S, s0,Σ, ξ, O,H);

Output: Maximally diagnosable WTS G∗;
Construct T̃ from T ;
Construct TIS from T̃ and G;
Construct DS D from G, T̃ and TIS ;
Construct a new WTS Ĝ=(X̂, x̂0, Âct, ∆̂, ÂP , L̂, ŵ)

where (X̂, x̂0, Âct, ÂP , L̂, ŵ)←(X,x0, Act,AP , L, w)

and ξ̂←∅;
CreateTransition(G,D, Ĝ);

Prune(Ĝ);

G∗ ←Accessible(Ĝ);
return G∗;

procedure CreateTransition(G,D, Ĝ)
for (x, u, v)∈SD do

for a∈Act do
if δD((x, u, v), a)=(x

′, u′, v′) satisfies (6) then

∆̂← ∆̂ ∪ {(x, a, x′)};

procedure Prune(Ĝ)

while ∃x ∈ X̂ s.t. 6 ∃a ∈ Act : ξ̂(x, a)! do

Delete all such x in Ĝ;

Theorem 1. The WTS G obtained from Algorithm 1 is
the maximally diagnosable WTS, i.e., G satisfies conditions
C1 and C2.

4.2 Optimal Self-Diagnostic Planning Algorithm

Now we tackle the diagnostic planning problem tak-
ing both the task satisfication requirement and the self-
diagnostic requirement into account. Based on the result
of Theorem 1, to solve Problem 1, it suffices for us to find
a plan τ ∈Planω(G) such that L(X(τ)) |= φ. Naturally, we
build the following product system.

Definition 5. (Product System). Given the maximally
diagnosable WTS G=(XG , x0, Act,∆G ,AP , L, w) and the
NBA Aφ = (QB , QB,0, δB , FB), the product system is de-
fined as

P = G ⊗ Aφ = (QP , QP,0, Act,∆P , FP , wP )

where

• QP = X ×QB is the set of states;
• QP,0 = {x0} ×QB is the set of initial states;
• Act is the set of actions available in environment G;
• ∆P :QP×Act→QP is the transition function which is
defined by: for any p = (x, q), p′ = (x′, q′) ∈ QP and
any a ∈ Act, we have p′=∆P (p, a) if
i) x′ = ∆G(x, a); and
ii) q′ ∈ δB(q, L(x));

• FP = X × FB is the set of accepting states;
• wP : Act → R≥0 is the cost function defined by: for
any ∀a ∈ Act, we have wP (a) = w(a).

Similar to WTS G, we denote by Planω(P ) the set of all
available plans in P . Based on the construction of the
product system, to solve Problem 1, it suffices for us to
find a plan τ ∈ Planω(P ) such that the corresponding path
QP (τ) visits the accepting states FP infinitely often.
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Before presenting the final self-diagnostic planning algo-
rithm, we introduce some necessary notations as follows.

Given the product system P and a set of states Q ⊆ QP ,
we denote by Reach(Q) the set of states reachable from
Q. Given P , we say a state q ∈ QP is in a cycle of
P if there exists a sequence q1q2 · · · qk ∈ Q∗

P such that
q1 = qk = q and qi+1 ∈ ∆(qi, ai) for some ai ∈ Act and
all i ≥ 1. We denote by Cycle(P ) the set of all states
that are in some cycles of P . Furthermore, based on the
accepting condition of NBA, we define the set of goal
states as Goal(P ) = FP ∩ Cycle(P ). Given two states
q, q′ ∈QP , we denote by Plan(q, q′) = {a1 · · · an ∈ Act∗ :
∃q0q1 · · · qn ∈ Q∗

P s.t. q = q0, q
′ = qn, qi+1 ∈ ∆P (qi, ai)}

the set of all partial plans from q to q′. In particular, we
denote by ShortestPlan(q, q′) = argminτ∈Plan(q,q′) J(τ)
the shortest partial plan from q to q′, which, as a matter
of fact, can be directly computed via a Dijkstra’s algorithm
(Bernhard and Vygen, 2008).

Algorithm 2: Optimal Self-Diagnostic LTL Planning

Input: Maxi. Diagnos. WTS G, LTL task φ;
Output: Optimal plan τ ∈ Planω(G);
Convert φ to NBA Aφ;
Construct Product System P = G ⊗ Aφ;
if Reach(QP,0) ∩ Goal(P ) = ∅ then

return “no feasible plan”;
else

for qI ∈ QP,0 do
for qG ∈ Reach(QP,0) ∩ Goal(P ) do

τ qI ,qG = ShortestPlan(qI , qG);
τ qG,qG = ShortestPlan(qG, qG);

(q∗I , q
∗
G) = argmin(qI ,qG) Ĵ(τ

qI ,qG [τ qG,qG ]ω);

return optimal plan τ = τ q
∗

I
,q∗

G [τ q
∗

G
,q∗

G ]ω;

Now, the optimal self-diagnostic LTL planning algorithm
is given by Algorithm 2, showing the technique of searching
the optimal self-diagnostic plan, based on the maximally
diagnosable WTS G obtained from Algorithm 1.

Theorem 2. For any environment described by a WTS
G, the plan obtained from Algorithm 2 correctly solves
the failure-aware self-diagnostic planning problem defined
in Problem 2.

5. CASE STUDY

Let us go back to the motivating example in Section 2
to illustrate the proposed planning algorithm. The en-
tire production processes can be described by a WTS
G = (X,x0, Act,∆,AP , L, w) in Figure 1(a), where X =
{S,M,A,P1,P2,T1,T2}, Act = {m, a0, a1, a2, a-1}, AP =
{stock, product}, and specifically, we have L(S) = stock,
L(P1) = L(P2) = product. The transducer T and the
observation map H are exactly as given in Figure 1(b)
and Table 1 and for any (s, x) ∈ S × X that are not
defined in Table 1, we set their observation byH(s, x) = λ.
Therefore, a desired production line is exactly a cyclic path
in G that satisfies the following LTL formula

φ = ♦�stock ∧ ♦�product

Therefore, to select a failure-aware production line, it
suffices to solve the self-diagnostic LTL planning problem

defined in Problem 2. Without loss of generality, here we
set the failure detection K = 5 due to the consideration of
the space constraint.

To solve the self-diagnostic planning problem, we construct
the diagnostic structure D and compute the maximally
diagnosable WTS by applying Algorithm 1. Systems D
and G are presented in Figures 2 and 3, respectively. Note
that there is only one plan available in G as

τ,X(τ) :
(

S
m
−→ M

a0−→ A
a2−→ P2

m
−→ T2

m
−→ T1

a-1−−→ S
)ω

The NBA translated from LTL φ is given in Figure 4. One
could easily observe that the trace of the plan L(X(τ))
is accepted by NBA Aφ, and thus we omit the figure of
the product system P = G ⊗ Aφ here. In words, the ef-
fectiveness of our planning algorithm has been illustrated.
Note that, the result here looks simple in this example
because we choose K = 5 for the purpose of illustration.
In practice, the value K can be larger and this will lead to
more feasible choices in G for the purpose of optimization,
e.g., the plan combining L1 and L2′ as we discussed in
Section 2.

6. CONCLUSION

In this paper, we formulated and solved a new failure-
aware task planning problem under LTL specifications.
We provided a framework for modeling internal failures
in addition to the external dynamic of the system in
the environment. An effective algorithm was developed to
synthesize an optimal plan that is both task satisfying and
self-diagnostic. The proposed framework was illustrated
by a case study of production lines. There are several
potential future directions of our framework. First, in this
work, the upper bound of the failure detection time is given
as a designed parameter. In the future, we plan to further
investigate the trade-off between the optimality of the plan
and the failure detection time.
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