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Abstract: We consider the problem of synthesizing optimal policies for Markov decision
processes (MDP) for both utility objective and security constraint. Specifically, our goal is
to maximize the entropy rate of the MDP while achieving a surveillance task in the sense
that a given region of interest is visited infinitely often with probability one (w.p.1). Such a
policy is of our interest since it guarantees both the completion of tasks and maximizes the
unpredictability of limit behavior of the system. Existing works either focus on the total entropy
or do not consider the surveillance tasks which are not suitable for surveillance tasks with
infinite horizon. We provide a complete solution to this problem. Specifically, we present an
algorithm for synthesizing entropy rate maximizing policies for communicating MDPs. Then
based on a new state classification method, we show the entropy rate maximization problem
under surveillance task can be effectively solved in polynomial-time. We illustrate the proposed
algorithm based on a case study of robot planning scenario.
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1. INTRODUCTION

Markov decision processes are one of the most widely
used mathematical frameworks for decision making with
uncertainty. In the classical setting, an MDP usually aims
to minimize a cost (or maximize a reward) for finite or
infinite horizons Puterman (1994). Recently, motivated
by the growing interest in decision-making for complex
tasks in autonomous systems, the optimal control for
MDPs with temporal logic tasks has also been drawn
consideration attention in the literature Ding et al. (2014);
Xie et al. (2021).
Our work is motivated by the surveillance tasks in robotic
applications Duan and Bullo (2021). In this setting, the
robot needs to persistently visit some regions of interest,
for example to search for enemies or to collect/upload
data. Therefore, the robot needs to ensure that some
surveillance tasks can be achieved infinitely often w.p.1.
This problem has drawn considerable attention recently in
the context of formal synthesis, e.g., Smith et al. (2011);
Yu et al. (2022).
When there is no non-determinism in the system model, a
direct way to achieve a surveillance task is to follow a pre-
design cyclic path along which desired regions are visited
infinitely often for sure. However, such a plan is completely
predictable and has several disadvantages in an adversarial
environment. Therefore, for the purpose of security, the
surveillance strategies are desired to be as unpredictable
as possible Li et al. (2020); Zheng et al. (2022); Yang and
Yin (2022); Liu et al. (2022); Chen et al. (2023).

⋆ This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61833012).

Among different notions of unpredictability of the system’s
behavior, entropy is a widely used and very fundamental
information-theoretic measure for quantifying how uncer-
tain a stochastic process is. Recently, in Savas et al. (2019),
the authors consider the problem of finding a policy for an
MDP in order to maximize the entropy while satisfying
a linear temporal logic constraint. However, unless the
behavior of the system eventually becomes deterministic,
the entropy of a stochastic process may diverge when the
time horizon goes to infinite. Therefore, for surveillance
tasks with infinite horizons, a more meaningful way is to
consider the entropy rate of the system; see, e.g., Chen
and Han (2014); George et al. (2018). However, existing
methods for entropy rate maximization already assume
that MDP induces an irreducible Markov chain under all
policies.
In this paper, we formulate and solve entropy rate maxi-
mization problem of MDP for surveillance tasks. Specifi-
cally, the robot is required to visit a given region of interest
infinitely often w.p.1, while at the same time, maximize
its entropy rate as much as possible. Our contributions
are as follows. First, we provide a direct approach for
synthesizing policies that maximize entropy rates for com-
municating MDPs without considering the surveillance
task. Our approach is based on a new structural property
of maxentropic policies and a convex nonlinear program.
Second, we provide a polynomial-time algorithm for syn-
thesizing policies that both satisfy the surveillance tasks
and maximize the entropy rate, for general MDPs without
structural assumptions. By classifying states in MDP into
different levels, we solve the synthesis problem inductively
via a set of expected reward optimization problems. The
constructed policy is stationary. Finally, we illustrate the
proposed method by a case study of robot surveillance.
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Notations: We denote by R and N the set of real numbers
and the set of nature numbers, respectively. For any set
A, 2A and |A| denote its power-set and its cardinality,
respectively. For a matrix P ∈ Rn×n, Pk and Pi,j denote its
k-th power and the (i, j)-th component of P, respectively.
All logarithms in this work are considered with base 2.

2. PRELIMINARY

2.1 Markov Decision Processes

A (finite) Markov decision process (MDP) is a 3-tuple
M = (S,A, P ),

where S = {1, . . . , n} is a finite set of states, A is
finite set of actions and P : S × A × S → [0, 1] is a
transition function such that for any s ∈ S, a ∈ A, we
have

∑
s′∈S P (s′ | s, a) ∈ {0, 1}. We also write P (s′ | s, a)

as Ps,a,s′ . We denote by succ(s, a) = {s′ | Ps,a,s′ > 0} the
set of successor states of s under action a. For each state
s ∈ S, we denote by A(s) = {a ∈ A : succ(s, a) ̸= ∅}
as the set of available actions at s. We assume there
always exists at least one available action at each state, i.e.,
∀s ∈ S : A(s) ̸= ∅. An MDP also induces an underlying
directed graph (digraph), where each vertex is a state and
edge ⟨s, s′⟩ is defined if Ps,a,s′ > 0 for some a ∈ A. An
MDP is usually assigned with an initial distribution of
states π0 : S → [0, 1] such that

∑
s∈S π0(s) = 1.

A Markov chain (MC) C is an MDP such that |A(s)| = 1
for all s ∈ S. The transition matrix of MC is denoted by
P, i.e., Ps,s′ = Ps,a,s′ , where a ∈ A(s) is the unique action
at state s ∈ S. Therefore, we can omit actions in MC
and write it as C = (S,P). The limit transition matrix is
defined by P∗ = limn→∞

1
n

∑n
k=0 Pk. Note that the limit

matrix always exists for finite MC.
A policy for an MDP M is a sequence µ = (µ0, µ1, ...)
where µk : S × A → [0, 1] is a function such that
∀s ∈ S, k ≥ 0 :

∑
a∈A(s) µk(s, a) = 1. A policy is said

to be stationary if µi = µj for all i, j and we write a
stationary policy by µ = (µ, µ, . . . ) for simplicity. Given an
MDP M, the sets of all policies and all stationary policies
are denoted by ΠM and ΠS

M, respectively. Given an MDP
M, a stationary policy µ ∈ ΠS

M induces an MC denoted
by Mµ = (S,Pµ), where Pµ

i,j =
∑

a∈A(s) µ(i, a)Pi,a,j . We
denote by reach(s) the set of states reachable from state
s ∈ S, i.e.,
reach(s) = {s′ ∈ S | ∃µ ∈ ΠM, ∃n ∈ N s.t. (Pµ)ns,s′ > 0}.

Let M = (S,A, P ) be an MDP with initial distribu-
tion π0 and µ = (µ0, µ1, ...) be a policy. An infinite
sequence ρ = s0s1 · · · of states is said to be a path
in M under µ if (i) π0(s0) > 0; and (ii) ∀k ≥ 0 :∑

a∈A(sk)
µk(sk, a)Psk,a,sk+1

> 0. We denote by Pathµ(M)

the set of all paths in M under µ. We use the standard
probability measure in Baier and Katoen (2008) and de-
note it by PrµM : 2S

ω → [0, 1].
Given MDP M = (S,A, P ), let (S,A) be a tuple, where
S ⊆ S is a non-empty set of states and A : S → 2A \ ∅
is a function such that (i) ∀s ∈ S : A(s) ⊆ A(s); and (ii)
∀s ∈ S, a ∈ A(s) : succ(s, a) ⊆ S. Essentially, state-action
pair (S,A) induces a new MDP called the sub-MDP of M,

denoted by M(S,A) (or (S,A)), by restricting the state
space to S and available actions to A(s) for each s ∈ S.
Definition 1. (Maximal End Components). Let (S,A) be
a sub-MDP of M = (S,A, P ). We say (S,A) is an end
component if its underlying digraph is strongly connected.
Furthermore, we say (S,A) is an maximal end compo-
nent if it is an end component and there is no other
end component (S ′,A′) such that (i) S ⊆ S ′; and (ii)
∀s ∈ S : A(s) ⊆ A′(s). We denote by MEC(M) the set
of all MECs in M.

2.2 Entropy Rate of Stochastic Processes

Let X be a discrete random variable with support X and
probability mass function p(x) := Pr(X = x), x ∈ X . The
entropy of random variable X is defined as:

H(X) := −
∑
x∈X

p(x) log p(x). (1)

We define 0 log(0) = 0. For two random variables X0 and
X1 with joint probability mass function p(x0, x1), the joint
entropy of X0 and X1 is defined by

H(X0, X1) := −
∑
x0∈X

∑
x1∈X

p(x0, x1) log p(x0, x1). (2)

The joint entropy can also be directly extended to a dis-
crete time stochastic process {Xk}. Intuitively, it provides
a measure for how unpredictable the process is. However,
joint entropy H(X0, X1, . . . , Xn) usually diverge when n
goes to infinitely. Therefore, for infinite processes, one
usually use the entropy rate instead of the joint entropy.
Definition 2. (Entropy Rate). The entropy rate of a
stochastic process {Xk} is defined as

∇H({Xk}) := lim
k→∞

1

k
H(X0, . . . , Xk). (3)

Given an MC C = (S,P) with initial distribution π0, it also
induces a discrete stochastic process {Xk ∈ S : k ∈ N}
where Xk is a random variable over state space S. We
denote by ∇H(C) the entropy rate of MC C, which is the
entropy rate of its induced process. It has been shown in
Chen and Han (2014) that this entropy rate is:

∇H(C) =
∑
s∈S

π(s)L(s), (4)

where π(s) = π0P∗ is the limit distribution and L(s) is
local entropy defined by L(s) =

∑
s′∈S −Ps,s′ logPs,s′ . For

an MDP M, we define ∇H(M) := supµ∈ΠM
∇H(Mµ) as

its entropy rate.

3. PROBLEM FORMULATION

Formally, let M be an MDP, µ ∈ ΠM be a policy and
B ⊆ S be a set of target states representing states that
need to be visited infinitely. For any path τ ∈ Pathµ(M),
we denote by inf(τ) the set of states that occur infinite
number of times in τ . Then we define

PrµM(23B) = PrµM({τ ∈ Pathµ(M) | inf(τ) ∩B ̸= ∅})
as the probability of visiting B infinitely often in M under
µ. We denote by ΠB

M the set of all policies under which B
is visited infinitely often w.p.1, i.e.,

ΠB
M = {µ ∈ ΠM | PrµM(23B) = 1}.

Then we formulate the problem in this paper.
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Problem 1. (Entropy Rate Maximization for Surveil-
lance Tasks). Given MDP M = (S,A, P ) with initial
distribution π0, find a policy µ⋆ ∈ ΠB

M such that

∀µ ∈ ΠB
M : ∇H(Mµ⋆

) ≥ ∇H(Mµ).

In order to fulfill the surveillance task, the MDP needs
to eventually stay in an MEC in which there exists at
least one target state in B. We say (S,A) ∈ MEC(M) is
accepting if S ∩ B ̸= ∅. We denote by AMEC(M) set of
accepting MECs.

4. ENTROPY RATE MAXIMIZATION FOR
COMMUNICATING MDP

Before solving Problem 1, we first consider an uncon-
strained case without requiring that B is visited infinitely
often. This problem has been considered in Chen and Han
(2014), where it shows that ∇H(M) can be effectively
computed and can be achieved by a stationary policy, i.e.,

∇H(M) = sup
µ∈ΠS

M

∇H(Mµ) = sup
µ∈ΠM

∇H(Mµ) (5)

The approach of Chen and Han (2014) is based on a
nonlinear program to determine maximum entropy rate
to the MDP, which does not directly yield a policy to
achieve this value. Here, we consider a special case of
MDP, where all states can be visited from one to another
under some policy. We show that, under this assumption,
the stationary policy achieving entropy maximization rate
can be synthesized directly based on a different nonlinear
program.
Formally, an MDP M is said to be communicating if

∀s, s′ ∈ S, ∃µ ∈ ΠM, ∃n ≥ 0 : (Pµ)ns,s′ > 0.

In fact, if M is communicating, then the above condition
can be achieved by a stationary policy µ ∈ ΠS

M. Therefore,
the resulting MC Pµ is irreducible, i.e., each pair of states
can be visited from one to the other via some path.
The following result shows that, for a communicating
MDP, if a stationary policy maximizes the entropy rate,
then its induced MC must be irreducible.
Lemma 1. Let M be a communicating MDP and µ ∈
ΠS

M be a stationary policy such that ∇H(Mµ) =
∇H(M). Then the induced MC Mµ is irreducible.

With the above structural property and Equation (4), for
the case of communicating MDP, we can transform the
policy synthesis problem for entropy rate maximization to
a steady-state parameter synthesis problem described by
the following nonlinear program.
The intuition of the nonlinear program is as follows. The
decision variables are γ(s, a) for state-action pair s ∈ S
and a ∈ A(s). They are used to represent the probability of
occupying state s and choosing action a when the system
goes to steady state, i.e.,

∑
a∈A(s) γ(s, a) = π(s) where

π is limit distribution of induced MC. Variables q(s, t)
and λ(s) in Equations (7) and (8) are functions of γ(s, a),
representing the probability of going from states s to t and
the probability of occupying state s, respectively. Finally,
the objective function is computation of entropy rate of an
MC given in Equation (4).

Nonlinear Program for Communicating MDP

max
γ(s,a)

∑
s∈S

∑
t∈S

−q(s, t) log

(
q(s, t)

λ(s)

)
(6)

s.t. q(s, t) =
∑

a∈A(s)

γ(s, a)P (t | s, a), ∀s, t ∈ S (7)

λ(s) =
∑

a∈A(s)

γ(s, a), ∀s ∈ S (8)

λ(t) =
∑
s∈S

q(s, t), ∀t ∈ S (9)∑
s∈S

λ(s) = 1 (10)

γ(s, a) ≥ 0, ∀s ∈ S, ∀a ∈ A(s) (11)

The following result shows that, in fact, the proposed
nonlinear program is convex. Hence, it can be computed
by efficient algorithms.
Proposition 1. The nonlinear program in Equations (6)-
(11) is convex and can be solved in polynomial-time.

Given a communicating MDP M, suppose γ⋆(s, a) is the
solution to Equations (6)-(11). Then we can define a
stationary policy by

µ⋆(s, a) =
γ⋆(s, a)∑

a∈A(s) γ
⋆(s, a)

. (12)

The following result shows that this policy is indeed a
maximum entropy rate policy.
Theorem 1. Let M be a communicating MDP. Then
for policy µ⋆ ∈ ΠS

M defined in Equation (12), we have
∇H(Mµ⋆

) = ∇H(M).

5. STATE LEVEL CLASSIFICATIONS

Clearly, if the MDP is communicating, then the resulting
maximum entropy rate policy for the unconstrained case
also solves Problem 1. This is because the resulting MC
under the optimal policy is ensured to be irreducible, i.e.,
all states can be visited infinitely often w.p.1. However,
for the non-communicating case, the problem is more
challenging. To resolve this issue, we propose an approach
to classify MECs into different “levels” in terms of their
connectivities.
Let MEC(M) = {(S1,A1), . . . , (Sn,An)} be the set of all
MECs. Note that MEC(M) can be effectively computed;
see, e.g., Algorithm 47 in Baier and Katoen (2008). Clearly,
each state in an MDP can belong to at most one MEC.
Furthermore, for two different MECs (Si,Ai) and (Sj ,Aj),
if Si is reachable from Sj , then Sj is not reachable from
Si; otherwise (Si ∪ Sj ,Ai ∪Aj) will be a larger MEC. We
denote by SM = ∪n

i=1Si the set of all states in some MEC
(called MEC states) and by T = S \ SM the set of states
not in any MEC (called transtient states). Therefore, we
have the following partition of the state space

S = S1∪̇S2∪̇ . . . ∪̇Sn∪̇T .

For each state s ∈ SM , we denote by S(s) ⊆ S, the
corresponding set of states of the unique MEC it belongs
to, i.e.,

(Si,Ai) ∈ MEC(M) ∧ s ∈ Si ⇒ S(s) = Si.
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Fig. 1. In the figure, each transition has a non-zero
probability and the specific value is omitted. For
MDP M, we have L0 = {2}, T0 = {1}, L1 = {3},
T1 = ∅, L2 = {4, 5} and T2 = ∅. Therefore, We have
level(M) = 2.

Now we classify MECs into different “levels” as follows.
We observe that there must exist states that cannot leave
their MECs and we consider those states as the “lowest”
level. Then an MEC state is said to be with level k if it
can only reach MECs with lower levels or itself. This leads
to the following definition.
Definition 3. (State Levels for MEC States). Let M be
an MDP and SM be the set of MECs states. Then for
each k ≥ 0, the set of k-level MEC states, denoted by Lk,
is defined inductively as follows:
L0={s∈SM | reach(s)∩SM = S(s)} (13)
Lk={s∈SM | reach(s)∩SM ⊆

∪
m<k

Lm∪S(s)} \
∪
m<k

Lm.

We define level(M) = max{k | Lk ̸= ∅} as the highest
level of MECs in MDP M.

Similarly, for transient states T = S \ SM , we also define
the set of k-level states as those states who can only reach
MECs with levels smaller than or equal to k.
Definition 4. (State Levels for Transient States). Let M
be an MDP and T = S \SM be the set of transient states.
Then for each k ≥ 0, the set of k-level transient states,
denoted by Tk, is defined by:

Tk = {s ∈ T | reach(s) ∩ SM ⊆
∪
m≤k

Lm} \
∪
m<k

Tm. (14)

Clearly, sets L0, L1, . . . , Llevel(M) forms a partition of SM ;
similarly, we also have ∪̇level(M)

k=1 Tk = T . An example of
the state classification is provided in Fig. 1.
The above state classes can be computed as follows. First,
we compute all MECs MEC(M) = {(S1,A1), . . . , (Sn,An)}
and T = S \ (

∪n
k=1 Sk) by Algorithm 47 in Baier and

Katoen (2008). Then we aggregate each MECs as a single
state and obtain an abstracted MDP M̃; see, e.g., De Al-
faro (1998). We denote by G̃(M) = (Ṽ , Ẽ) the underlying
digraph of the abstracted MDP M̃. We can classify state
levels by following steps:

• L0 are those states only have self-loops;
• For each k = 1, . . . , level(M):

· Ti−1 is set of transient states such that they
cannot reach MEC states whose level have not
yet been determined;

· Li is set of MEC states that can only reach itself
or states whose level have been determined;

• Those states left are in Tlevel(M).

6. MAXIMIZATION OF ENTROPY RATE FOR
SURVEILLANCE TASKS

Now, we tackle the entropy rate maximization problem
for the constrained case, where the surveillance task also
needs to be fulfilled. Specifically, we define

∇HB(M) = sup
µ∈ΠB

M

∇H(Mµ)

as the maximum entropy rate that can be achieved by a
policy satisfying the surveillance task.
To handle non-communicating MDP M, we define

Rk =

k∪
m=0

(Lm ∪ Tm)

as the set of all MEC states and transient states with levels
smaller than or equal to k. We also define

R̂k = Rk \ Tk

as the set of all MEC states with levels smaller than or
equal to k and transient states with levels strictly smaller
than k. We define Ak = ∪s∈Rk

A(s) and Âk = ∪s∈R̂k
A(s)

the sets of all available actions in Rk and R̂k, respectively.
Now we make the following observations for the above
defined Rk and R̂k. First, we observe that, for any k =
0, 1, . . . , level(M), (Rk, Ak) and (R̂k, Âk) are both sub-
MDPs. This is because, by the definition of state levels,
states with level k can only go to states with lower levels.
Second, for sub-MDPs (R̂k, Âk) and (R̂m, Âm), where
k < m, suppose that µ and µ̂ are policies that solves
Problem 1 for (R̂k, Âk) and (R̂m, Âm), respectively. Then
by modifying µ̂ to µ̂′ such that (i) for all s ∈ R̂k, µ̂(s)
is changed to µ(s) and (ii) unchanged otherwise, we know
that the modified µ̂′ also solves Problem 1 w.r.t. (R̂m, Âm).
The above observations suggest that we can find a solution
to Problem 1 in a backwards manner from states with the
lowest level as follows:
• Initially, we start from those AMECs (Si,Ai) with

level 0 and compute the maximum entropy rate we
can achieve for this sub-MDP. Since each MEC is
communicating, we can use the method in Section 4. For
those MECs that are not accepting, we directly define
its entropy rate as minus infinity since staying in such
MEC implies the violation of the task.

• Once all MECs in L0 have been processed, we move to
include transient states in T0. This essentially provides
an instance of Problem 1 w.r.t. sub-MDP (R0, A0). Since
states in T0 are transient no matter what action we take,
the only factor that determines the total entropy rate is
what MEC with level 0 they choose to go. Therefore, it
suffices to solve an expected total reward maximization
problem, where the reward of reaching each MEC with
level 0 is the computed maximum entropy rate.
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• Then we proceed to further consider MECs in L1 in
addition to (R0, A0), which gives an instance of Prob-
lem 1 w.r.t. sub-MDP (R̂1, Â1). Then for each (Si,Ai)
in L1, we still compute its maximum entropy rate if
it is accepting and set it as minus infinity otherwise.
Here we have two possible treatments for (Si,Ai): (i)
consider it as a transient part as the case of T0 by solving
an expected total reward maximization problem; or (ii)
choose to stay in the current MEC. Therefore, we need
to compare these two alternatives and choose the one
with larger reward (entropy rate).

• Once (R̂1, Â1) is processed, we further include T1 to
consider the instance of (R1, A1), and so forth, until the
instance of (Rlevel(M), Alevel(M)) = M is solved.

Now, we formalize the implementation details of the above
idea. In Section 4, we have shown how to compute the
maximum entropy rate for each MEC. Here, we consider
how to process transient states Ti and MEC states Li

together when we decide to move to MECs with lower
levels by a single linear program.
Specifically, given MDP M, at decision stage k =
0, . . . , level(M), suppose we have the following informa-
tion available:

• the set of states have been processed: R̂k ⊆ S;
• the solution µ̂k ∈ ΠS

M̂k
of Problem 1 w.r.t. current

sub-MDP M̂k = (R̂k, Âk);
• the maximum entropy rate one can achieve from each

state while satisfying the surveillance task, which is
specified by a function valk : R̂k → R ∪ {−∞}.

Note that, for k = 0 and each s ∈ R̂0, val0(s) = −∞
when s is not in any AMEC and otherwise val0(s) =
∇H((S,A)) where (S,A) ∈ AMEC(M) and s ∈ S. The
method to compute valk for k ≥ 1 will be presented later.
Then our objective is to find the optimal policy µ̂k+1 ∈
ΠS

M̂k+1
for a larger sub-MDP M̂k+1 = (R̂k+1, Âk+1),

where R̂k+1 = R̂k ∪ {Tk, Lk+1}. To this end, given
(M̂k+1, R̂k, valk) as an instance, let Q = Tk∪Lk+1 and α
be an arbitrary positive vector such that

∑
s∈Q α(s) = 1

and ∀s ∈ Q : α(s) > 0. We define the following linear
program (LP).

Linear Program for Each Level

max
γ(s,a)

∑
s∈Q

∑
t∈R̂k

val(t)λ(s, t) (15)

s.t. µ(s)−
∑
t∈Q

λ(t, s) ≤ α(s), ∀s ∈ Q (16)

µ(s) =
∑

a∈A(s)

γ(s, a), ∀s ∈ Q (17)

λ(s, t) =
∑

a∈A(s)

γ(s, a)Ps,a,t, ∀s∈Q, t∈R̂k (18)

γ(s, a) ≥ 0, ∀s ∈ Q, ∀a ∈ A(s) (19)

The LP comes follows the standard framework of solving
expected total reward problem as provided in Puterman
(1994). The decision variables are γ(s, a) in Equation
(19) for s ∈ Q and a ∈ A(s). Intuitively, γ(s, a) is
the expected number of visits to state s and choose
action a when initial distribution of MDP is α. The
requirement that α(s) > 0 is for technical consideration
to ensure that in LP all states are visited with non-zero
probability. Variables µ(s) and λ(s, t) in Equations (17)
and (18) are functions of γ(s, a) representing the expected
number of visits to state s and the expected number
of transitions from s to t, respectively. Equation (16) is
the constraint of the probability flow. Finally, objective
function in Equation (15) multiplies the probability of
reaching R̂k and the reward (maximum entropy rate) in
R̂k and sums over s ∈ Q.
Based on the solution of the linear program (15)-(19) for
(M̂k+1, R̂k, valk), we can decode a policy µ̂′

k+1 for sub-
MDP M̂k+1 = (R̂k+1, Âk+1) as follows:

µ̂′
k+1(s, a) =

γ(s, a)∑
a∈A(s) γ(s, a)

for s ∈ Q∗ (20)

µ̂′
k+1(s, a) = 1 for s ∈ Q \Q∗, arbitrary a ∈ A(s) (21)

where Q∗ = {s ∈ Q |
∑

a∈A(s) γ(s, a) > 0}.

We now compute the maximum total reward (entropy
rate) initial from each s ∈ Q on condition that s is
transient. Specifically, we denote by T ⊆ Q the set of all
transient states in MC M̂µ̂′

k+1

k+1 . We denote by Pµ̂′
k+1

T and
Pµ̂′

k+1

R̂k
the submatrix of Pµ̂′

k+1 restricted rows on T and
columns on T and R̂k, respectively. We denote by v ∈ R|T |

the solution of following equation

v = Pµ̂′
k+1

T v + Pµ̂′
k+1

R̂k
valk

Since I − Pµ̂′
k+1

T is invertible, above equation has unique
solution denoted by v′. Then we can define maximum total
reward by v′ as follows:

v′(s) =

{
v′(s) if s ∈ T
−∞ if s ∈ Q \ T (22)

Intuitively, Equation (22) computes the maximum entropy
rate assuming that the policy forces s ∈ Q to be transient
and the surveillance task is satisfied. If s ∈ Q is recurrent
in M̂µ̂′

k+1

k+1 , then the total reward initial from s is zero. It
means that under any policy such that s is transient, the
total reward initial from s is −∞, i.e., the surveillance task
cannot be achieved. Therefore, v′(s) = −∞ for s ∈ Q \ T .
Note that µ̂′

k+1 may not be the optimal policy for sub-
MDP M̂k+1 = (R̂k+1, Âk+1) since the linear program is
designed by assuming that each state in Lk+1 has to go
to MEC with lower levels. However, states in Lk+1 can
also choose to stay at level k + 1. To capture this issue,
for each MEC (Si,Ai) ∈ MEC(M) with level k + 1, i.e.,
Si ⊆ Lk+1, we denote µstay,i be the optimal (stationary)
policy maximizing the entropy rate for (Si,Ai). This policy
can be computed by the approach presented in Section 4.
Then for s ∈ (Si,Ai), we define the stay value of s as
the maximum entropy rate of sub-MDP (Si,Ai) if it is an
accepting MEC, and minus infinity otherwise, i.e.,
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stay(s) =
{
∇H((Si,Ai)) if (Si,Ai) ∈ AMEC(M)

−∞ if (Si,Ai) /∈ AMEC(M)
(23)

Note that, since all MECs are disjoint, we can use a single
policy, denoted by µstay, as the optimal staying policy for
each MEC.
Then we fuse policies µ̂′

k+1 and µstay, to obtain a new
stationary policy µ̂k+1 as follows: for each s ∈ R̂k+1, we
have

µ̂k+1(s) =


µ̂k+1(s) if s ∈ Tk or

s ∈ Lk+1 ∧ v′(s)>stay(s)
µstay(s) if s ∈ Lk+1 ∧ stay(s)≥v′(s)

µ̂k(s) if s ∈ R̂k

(24)

We can compute valk+1 by selecting larger value between
stay and v′. Formally. we have

valk+1(s) =


v′(s) if s ∈ Tk or

s ∈ Lk+1 ∧ v′(s)>stay(s)
stay(s) if s ∈ Lk+1 ∧ stay(s)≥v′(s)

valk(s) if s ∈ R̂k

(25)

The following result formally establishes that, the above
fused policy µ̂k+1 indeed solves Problems 1 for M̂k+1 =

(R̂k+1, Âk+1).
Proposition 2. Suppose that µ̂k is an optimal solution
to Problem 1 for instant sub-MDP M̂k = (R̂k, Âk). Then
policy µ̂k+1 as defined in Equation (24) is an optimal
solution to Problem 1 for instant sub-MDP M̂k+1 =

(R̂k+1, Âk+1).

Based on Proposition 2, now we can solve Problem 1 for
any MDP M by following steps:

• Find all MECs MEC(M) and AMECs AMEC(M);
• For each AMEC, compute the maximum entropy rate

policy by the method in Section 4;
• Classify states into L0, T0, . . . , Llevel(M), Tlevel(M);
• Synthesize policy µ̂0 by: for each state s ∈ L0, if s is in

some AMEC, then adopt the maximum entropy rate
policy; otherwise assign an arbitrary action. Compute
val0 = stay by Equation (23);

• For each k = 0, . . . level(M)− 1:

· Solve LP (M̂k+1, R̂k, valk) and obtain γ∗(s, a);

· Induce policy µ̂
′

k+1 by Equations (20) and (21);

· Compute v′ by Equation (22);
· Fuse policy µ̂k+1 by Equation (24) and compute

valk+1 by Equation (25).
• Then if vallevel(M)(s) = −∞ for some s ∈ S such

that π0(s) > 0, there exists no solution for Problem 1
w.r.t M. Otherwise µ̂level(M) solves Problem 1.

The correctness of the above procedure is summarized by
the following result.

1

2

3

4

5

Fig. 2. Workspace of the robot.

Theorem 2. Given MDP M = (S,A, P ), the procedure
above generates a solution of Problem 1 for M.

7. CASE STUDY

In this section we present a case study of surveillance robot
to illustrate the proposed method. We use the splitting
conic solver (SCS) Odonoghue et al. (2016) in CVXPY Di-
amond and Boyd (2016) to solve convex optimization
problems.
Let us consider a robot moving in a workspace shown in
Fig. 2. The entire workspace consists of five regions, where
Region 1 consists of 7 × 7 grids and each of Regions 2-
5 consists of 8 × 8 grids. The regions are connected by
some one-way path grids whose feasible directions are
depicted in the figure. The mobility of the robot is as
follows. Inside of each region, the robot has five actions,
left/right/up/down/stay. By choosing each action, the
robot will move to the target grid w.p.1. Furthermore,
if the robot choose an action but the target grid is a
wall (the boundary of the region), then it will stay in
the current grid. Between two regions, the robot can only
move through the one-way path grids following the given
direction. Therefore, the mobility of the robot can be
modeled as an MDP M (in fact, deterministic) with 310
states and 1379 edges. Clearly, there are four MECs in
M, where Regions 3 and 5 belongs to the same MEC. The
robot needs to visit some specific grid infinitely often to
get resource, while making its behavior as unpredictable
as possible.
Case 1 of Blue Tasks: In this case, we assume that blue
grids in the workspace represent the task region needed
to be visited infinitely often. For this case, there are two
AMECs in M: the Region 4, and the union of Regions 3
and 5. Our algorithm spends 143s and 626s to solve (6)-
(11) for the first and the second AMEC, respectively. We
denote by µ the solution of Problem 1 and by πµ the limit
distribution of Mµ. The value of πµ is shown in Fig. 3,
where the value of grid s is equal to 100 ·πµ(s). The robot
will eventually stay in Regions 3 and 5 w.p.1.
Case 2 of Green Tasks: Now we consider the case, where
the surveillance task is capture by the green grid in
Region 4. Clearly, Region 4 becomes the only AMEC in
M, and the robot will eventually stay in Region 4 forever.
We denote by µ′ the solution to Problem 1 for this case
and the limit distribution πµ′ is shown as Fig. 4(a); still,
it suffices to show Region 4 only.
One may think that the maximum entropy rate policy is
uniformly randomized, which is not the case. Specifically,
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Fig. 3. Limit distribution (multiplied by 100) of the opti-
mal policy Mµ for the case of blue tasks.

(a) Limit distribution multiplied
by 10.

(b) Largest difference of the
probabilities of picking two dif-
ferent actions at each state.

Fig. 4. The optimal policy Mµ for the case of green tasks.
for each state in Region 4, we compute the difference
between highest probability of an action and the lowest
probability of an action. This difference value is shown in
Fig. 4(b). Clearly, only when the robot is at the center
of the Region, it will follow a purely randomized strategy.
For the remaining states, the optimal policy maximizing
the entropy rate is not uniformly randomized.
In the context of information-theoretical foundation of se-
curity, a useful measure for quantifying the unpredictabil-
ity of an agent is to use the the weight of the Huffman tree
of the distribution; see, e.g., Paruchuri et al. (2006). If we
adopt the algorithm in Savas et al. (2019) to synthesize
a policy µ1 that maximizes the total entropy of MDP
and finish the task w.p.1, then the corresponding value is
Oµ1

a = 1 for both blue tasks and green tasks since µ1 will
choose a deterministic action in the steady state. However,
for our algorithm, we have Oµ

a = 2.56 for blue tasks and
Oµ′

a = 2.55 for green tasks. Therefore, method proposed
makes the limit behavior of agent more unpredictable.

8. CONCLUSION

In this paper, we solved a new entropy rate maximization
problem for MDPs under the requirement that some
specific region of interest needs to be visited infinitely
often. We showed that this problem can be effectively
solved by decomposing it as a finite set of sub-problems.
Our results extended the existing result in entropy rate
maximization by taking logic constraint into account.
Note that, although we only consider the case of visiting
state, our result is equivalent to achieve an omega-regular
objective accepted by Büchi conditions. We demonstrated
the proposed algorithm by a case study of robot task
planning. In the future, we plan to investigate the trade-off
between the entropy rate and the satisfaction probability
of the task.
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