
Synthesis of Non-blocking Controllers
for Linear Temporal Logic Tasks

under Partial Observations ⋆

Shuaiyi Li ∗ Shaoyuan Li ∗ Xiang Yin ∗

∗ Department of Automation, Shanghai Jiao Tong University, Shanghai
200240, China. (E-mail: lishuaiyi, yinxiang, syli@sjtu.edu.cn)

Abstract: In this paper, we investigate the formal synthesis of discrete controllers for linear
temporal logic tasks under partial information. Existing works on this topic mainly focus on find
sure winning or almost sure winning control strategies under some assumptions regarding the
system’s atomic propositions. In this work, we consider non-blockingness as the metric as the
achievement of the task. Specifically, we require that at each instant, the controller maintains
the possibility to achieve the LTL task under some environment’s behavior. We first present an
offline algorithm for the computation of the winning region over the belief state space. Then
we present an online control algorithm that effective solves the control synthesis problem. The
proposed control algorithm is also illustrated by a case study of robot task planning.

Keywords: Formal Methods, Linear Temporal Logic, Task Planning, Partial Observation.

1. INTRODUCTION

Task planning and decision-making are the central prob-
lems in the field of autonomous robots. Recently, there
has been a growing interest in task planning for robots for
high-level specifications described by, e.g., linear temporal
logic (LTL). In this setting, the robot needs to accomplish
a complex task in a dynamic environment, such as go to
some region before doing something or first do something
and then visit some region infinitely. There have been
considerable recent works on temporal logic based task
planning; see, e.g., Kantaros et al. (2019); Yu et al. (2022).
Many existing works on temporal logic based task planning
are based on the assumption that the controller can access
the complete state information of the system. In practice,
however, only partial information of the system might be
available. Therefore, there has been growing interest in
task planning problem under imperfect information. Such
control synthesis problem under partial observations can
be modeled by partially observable Markov decision pro-
cesses, or by two player games with imperfect information
see, e.g., Belta et al. (2017); Raskin et al. (2007); Chatter-
jee et al. (2016); Fu and Topcu (2016); Ramasubramanian
et al. (2020); Sakakibara and Ushio (2020).
For games with partial observation, it was shown that the
standard sure winning condition in Raskin et al. (2007) is
difficult to achieve under the general setting. Therefore,
researchers seek for synthesizing sure winning controllers
and almost sure winning controllers under the assumption
that all observational equivalent states have the same
atomic proposition. In the context of supervisory control
of discrete event system, there are also many results on
synthesis of supervisors under partial observation Cai et al.
⋆ This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61833012).

(2014); Ru et al. (2014); Yin and Lafortune (2016b);
Ma and Cai (2021); Ji et al. (2021). In particularly, Yin
and Lafortune (2016a) solves the problem of synthesizing
maximally permissive non-blocking supervisors, where the
system always has the possibility to reach a desired state.
In this paper, we consider the problem of synthesizing con-
trollers for (non-deterministic) labeled transition systems
under partial observation in the general setting. Specifi-
cally, we consider a fragment of LTL formulae, which can
be accepted by deterministic Büchi automata, as the con-
trol objectives. Then we solve a new non-blocking control
problem for this setting. Specifically, our contributions are
as follows. First, we present an approach for the offline
computation of the winning region in the belief structure
for such a problem. Then, based on the offline computed
winning region, we design an online control algorithm
solving the non-blocking control problem. Our result is
different from the almost sure winning controller synthesis
and Raskin et al. (2007) since no assumptions on the
environment’s strategy and observation equivalence are
considered. Our online control scheme is also different
from the non-blocking supervisory control algorithm Yin
and Lafortune (2016a) where the supervisor is computed
fully offline. Furthermore, we provide a sufficient condition
under which the proposed non-blocking controller is also
sure winning.

2. PRELIMINARY

2.1 System Model

We consider a system modeled as a label transition system
(LTS), which is a tuple

T = (X,Act,∆, X0,AP , L),
where X is a finite set of states representing, e.g., the
physical locations or the status of the systems; Act is a

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

©2023 the authors. Accepted by IFAC for publication
under a Creative Commons Licence CC-BY-NC-ND

12184



finite set of actions or control inputs; ∆ : X × Act → 2X

is the non-deterministic transition function, where x′ ∈
∆(x, a) means that at state x, the system may move
to state x′ by taking action a; X0 ⊆ X is the set of
possible initial states; AP is the set of atomic propositions
representing basic properties of our interest; L : X → 2AP

is the labeling function that assigns each state a set of
atomic propositions.
Let A be a set. We denote by Aω and A∗ the set of all
infinite sequences and finite sequences over A, respectively.
For states x, x′ ∈ X and action a ∈ Act, we also write
as x

a−→ x′ if x′ ∈ ∆(x, a) and as x → x′ if x
a−→ x′

for some a. Then a path generated by LTS T is an
infinite sequence of states τ = x0x1x2 · · · ∈ Xω such
that x0 ∈ X0 and xi → xi+1, ∀i ≥ 0. We denote by
Path(T ) and Path(T )∗ the set of all paths and finite
paths generated by T . The trace of path τ ∈ Path(T ) is
Trace(τ) = L(x0)L(x1)L(x2) · · · ∈ (2AP)ω and we denote
by Trace∗(T ) the set of all finite traces generated by T . Let
Ω ⊆ Σω be a set of infinite sequences. We denote the set
of finite prefixes of Ω as Ω = {ρ ∈ Σ∗ | ∃ω ∈ Σω, ρω ∈ Ω}.

2.2 Partial Observation Controller

The original behavior Trace(T ) may contain some unde-
sired traces. Therefore, a feedback controller is usually
imposed on the system such that the closed-loop under
control satisfies some requirement. In general, the con-
troller may not be able to access the full state information
of the system. Instead, it may have its partial observation
described by a mapping H : X → O, where O is a
finite set of observation symbols. Mapping H also classifies
the state space into equivalence classes {[x]o | o ∈ O},
where [x]o = {x ∈ X | H(x) = o}. For any finite
path τ = x0x1 · · · ∈ Path(T )∗, we denote by H(τ) =
H(x0)H(x1) · · · ∈ O∗ its finite observation sequence. Then
a controller is a function C : H(Path(T )∗) → Act that
determines the control input based on its observation.
We denote by TC the closed-loop system under con-
troller C. Then a finite path τ = x0x1 · · · ∈ Path(T )∗
is generated by TC if ∀i ≥ 0 : xi

ai−→ xi+1, where
ai = C(H(x0x1 · · ·xi)). We also denote by Path(TC)∗ and
Trace∗(TC) the sets of all finite paths and traces generated
by TC , respectively.

2.3 Linear Temporal Logic

The control objectives are described by Linear Temporal
Logic (LTL) formulae with the following syntax

ϕ ::= True | Σ | ¬ϕ | ϕ1 ∧ ϕ2 | ⃝ϕ | ϕ1 U ϕ2,

where Σ ∈ AP is an atomic proposition, ¬ and ∧ are
Boolean operators “negation” and “conjunction”, respec-
tively, and ⃝ and U are temporal operators “next” and
“until”, respectively. We can also define other temporal
operators such as “eventually” by ♢ϕ := True U ϕ and
“always” by 2ϕ := ¬♢¬ϕ. LTL formulae are evaluated on
infinite words (infinite sequences over 2AP). For an infinite
word σ ∈ (2AP)ω, we denote by σ ⊨ ϕ if it satisfies LTL
formula ϕ. The reader is referred to Baier and Katoen
(2008) for more details on LTL semantics. We denote by
Word(ϕ) the set of all infinite words satisfying ϕ.

Given an LTL formula ϕ, in general, Word(ϕ) can be
accepted by a non-deterministic Büchi automaton or a
deterministic Rabin automaton. In this work, we assume
that LTL formula ϕ can be accepted by a deterministic
Büchi automaton (DBA). This assumption is restrictive
since it does not hold for formulae such as ♢2. Formally,
a DBA is a 5-tuple A = (S,Σ, δ, s0, SF ), where S is a
finite set of states, Σ = 2AP is a finite alphabet, δ : S ×
Σ→ S is the transition function, s0 is the initial state, and
SF ⊆ S is the set of accepting states. For an infinite word
ρ = σ1σ2 · · · ∈ Σω, it visits a unique infinite sequence of
infinite states ρ = s0s1 · · · ∈ Sω, called a run, in A such
that si+1 = δ(si, σi+1). An infinite run π ∈ Sω is said to
be accepted by DBA A if inf(π) ∩ SF ̸= ∅, where inf(π)
is the set of states that occurs infinitely in ρ. An infinite
word ρ is said to be accepted if its run is accepted. We
denote by L(A) the set of all accepted words. Then for
any LTL formula ϕ, we denote by Aϕ the DBA such that
L(Aϕ) = Word(ϕ).

2.4 Problem Formulation

In the context of controller synthesis under partial ob-
servation, one problem is to synthesize a controller that
achieve the LTL task for sure, i.e., Trace(TC) ⊆ Word(ϕ).
However, as discussed in Raskin et al. (2007) that, sure
winning controllers are generally very restricted and dif-
ficult to synthesize for partially observed systems. And
almost sure winning controllers require assumptions on
environment behavior. To the end, one may seek for syn-
thesizing strategies that are less restrictive and do not
require assumptions.
In this work, motivated by the work of supervisory control
of discrete event systems, we adopt the notion of non-
blockingness as the winning condition, which is further
weaker than the almost sure winning condition. Specifi-
cally, we say a feedback controller is non-blocking w.r.t.
a LTL task, if for any possible instant, the system always
hold the possibility of generating infinite traces satisfying
the LTL tasks. Note that the satisfaction of the task may
need the cooperation of the environment. Therefore, a non-
blocking system means that, as long as the environment is
not fully adversarial or never making mistake, the system
will eventually achieve the temporal logic task. Formally, a
feedback controller C is said to be non-blocking for system
T w.r.t. ϕ if Trace∗(TC) ⊆ Word(ϕ). Our objective is to
synthesize such a controller.
Problem 1. Given system T , observation mapping H
and LTL formula ϕ, synthesize a control C : O∗ → Act

such that Trace∗(TC) ⊆Word(ϕ).

3. CONSTRUCTION OF WINNING REGION

3.1 Belief Transition Systems

In order to incorporate the completion status of the LTL
task ϕ into the system model, we first define the product
system.
Definition 1. (Product Systems). Given LTS T = (X,
Act,∆, X0, AP, L) and DBA Aϕ = (S,Σ, δ, s0, SF ), the
product system is a new LTS

T̃ = T × Aϕ = (X̃, Act, ∆̃, X̃0,AP , L),

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12185



where X̃ = X × S is the set of (product) states, Act is
the same set of control inputs, ∆̃ : X̃ × Act → 2X̃ is the
transition function defined by: for any x̃ = (x, s), x̃′ =

(x′, s′) ∈ X̃ and a ∈ Act,
x̃′ ∈ ∆̃(x̃, a) iff x′ ∈ ∆(x, a) ∧ δ(s, L(x′)) = s′

X̃0 = X0 × {s0} is the set of initial states, and L̃ is the
labeling function defined by for any x̃ = (x, s) ∈ X̃, we
have L̃(x̃) = L(x).

We denote by X̃F = {(x, s) ∈ X̃ | s ∈ SF } the set of
product states whose second components are accepting.
We also extend the observation function to H : X̃ → O by
for any x̃ = (x, s) ∈ X̃, we have H(x̃) = H(x).
Due to the partial observability of the system, the con-
troller does not know the exact (product) state of the
system. Instead, it only knows a set of its possible current
states, which is referred to as a belief state. By issuing a
control input and making a new observation, the controller
can update its belief state. This belief evolution is captured
by the following belief transition systems.
Definition 2. (Belief Transition Systems). Given product
system T̃ and observation mapping H, the belief transition
system is defined as a 5-tuple

B = (Q,Act,∆B , Q0),

where
• Q = {q ∈ 2X̃ | ∀x̃, x̃′ ∈ q,H(x̃) = H(x̃′)} is the set of

belief states;
• Act is the same set of actions;
• ∆B : Q×Act→ 2Q is the non-deterministic transition

function defined by: for any q, q′ ∈ Q and a ∈ Act, we
have q′ ∈ ∆B(q, a) if

q′ = (∪x̃∈q∆̃(x̃, a)) ∩ [x̃]o for some o ∈ O

• Q0 = {q0 ∈ 2X̃0 : q0 = X̃0 ∩ [x̃]o for some o ∈ O} is
the set of possible initial belief states.

Note that, given a belief state q ∈ Q, since all (product)
states in it has the same observation, we can also write
H(q) as the same observation for all states in it, and
we have q ⊆ [x̃]H(q). Clearly, we have H(Path(T )) =
H(Path(B)). Therefore, we can also design a controller
for B and apply back to T . It has been in Raskin et al.
(2007) that, under the assumption of all observational-
equivalent states having the same propositions, the sure
winning synthesis problem for T can be directly solved as
a Büchi game on B by considering those beliefs containing
some accepting state (in fact, all states in it are accepting)
as accepting beliefs. This also suggests that a belief-state-
based strategy is sufficient for the synthesis problem.
However, without the assumption on propositions, the
synthesis problem becomes much challenging as shown by
the following example.
Example 1. Given a LTS system T and a task described
by LTL ϕ, assume that the product transition system T̃ is
presented in Fig.1(a). The belief transition system B gener-
ated is in Fig.1(b). Clearly, there is no belief state in which
all states are accepting. However, if we consider beliefs
states, in which some states are accepting, as accepting
beliefs, e.g., states {q1, q2, q3}, then we will have the fol-
lowing issues. According the solution of Büchi games, the

(a) (b)

Fig. 1. An example of belief transition system (a) Product
transition system T̃ (b) Belief transition system B

controller can either take action a1 at q0, following action
a1 at q1 and action a1 at q3 or action a2 at q1 returning
to q0; or take action a2 at q0 following action a1 at q2
and action a1 at q3 or action a2 at q2 returning to q0. All
these strategies do not consider history information and
can infinitely visit accepting beliefs {q1, q2, q3}. However,
if we investigate into system’s actual path induced by
the aforementioned strategies, it can be discovered that
some strategies cannot guarantee achieving the task. For
example, if action a1 is taken at belief q0, then no matter
what action the system takes at q1, the future potential
product path of (x̃3x̃7)

ω can be generated in practice,
which visits none of the accepting states.

The above example reveals that, for the general case, we
cannot simply characterizing belief states as accepting
and non-accepting, and reduce the partial observation
synthesis problem to the case of full observation. To tackle
the synthesis problem, we need to further investigate the
actual interconnection between states in belief states, and
belief-based-strategy may not be sufficient.

3.2 Computation of Preliminary Winning Regions

First of all, we define
QF = {q ∈ Q | q ∩ X̃F ̸= ∅}

as the set of accepting belief states. As we discussed
in Example 1, visiting accepting belief states is only a
necessary condition for achieving the task. We denote by
Win(QF ) ⊆ Q the set of belief states from which the
controller can ensure visiting QF infinitely often, i.e., the
winning region of Büchi game in B w.r.t. QF . Note that,
since staying in Win(QF ) is only necessary to achieve the
task, we refer Win(QF ) to as the preliminary winning
region, which can be computed by the standard Büchi
game techniques.
Formally, let ı ⊆ Q be a set of belief states in B one wants
to reach. We define the controlled predecessor of ı by

CPre(ı) = {q ∈ Q | ∃a ∈ Act s.t. ∆B(q, a) ⊆ ı}
The k-step attractor Attr(i)(ı) of ı is defined by

Attr(0)(ı) = ı

Attr(k+1)(ı) = Attr(k)(ı) ∪ CPre(Attr(k)(ı))

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12186



Then the attractor of ı is defined by
Attr(ı) =

⋃
k≥0

Attr(k)(ı).

Similarly, let ı ⊆ Q be a set of belief states in B one wants
to avoid. We define the adversarial predecessor of ı by

APre(ı) = {q ∈ Q | ∀a ∈ Act s.t. ∆B(q, a) ∩ ı ̸= ∅}
The k-step avoid-region Avoid(k)(ı) of ı is defined induc-
tively by

Avoid(0)(ı) = ı

Avoid(k+1)(ı) = Avoid(k)(ı) ∪ APre(Avoid(k)(ı))

Then the avoid-region of ı is defined by
Avoid(ı) =

⋃
k≥0

Avoid(k)(ı).

Note that not all accepting belief states in QF can be
visited infinitely often. For example, in order to visit QF

again, we should not start from a state in Avoid(Q \
Attr(QF )). Therefore, we shrink the set of accepting belief
states Q

(0)
F ⊇ Q

(1)
F ⊇ · · · inductively by

Q
(0)
F = QF

Q
(k+1)
F = Q

(k)
F \ Avoid(Q \ Attr(Q(k)

F ))

We define Rec(QF ) = limk→∞ Q
(k)
F as the set of recurrent

accepting belief states of QF . Then, we have
Win(QF ) = Attr(Rec(QF )).

3.3 Computation of Actual Winning Regions

The preliminary winning region Win(QF ) is very rough and
needs to be further pruned iteratively to get the actual
winning region denoted by Win+(QF ). Because the belief
transition system can only describe the relation between
groups of states and cannot represent the details of how
system’s states are actually connected with each other.
The adjustment process of preliminary winning region is
conducted iteratively. In each iteration, a zoomed transi-
tion system is constructed to zoom into the belief transi-
tion system to identify and delete unqualified belief states.
Then a new winning region is recomputed. The iteration
stops when an convergence of the final winning region is
reached. We will illustrate the details of winning region’s
adjustment as follows.
The adjustment of preliminary winning region is con-
ducted based on a product transition system called the
interconnected transition system.
Definition 3. (Interconnected Transition Systems). Given
a belief transition system B and a set of belief states
R ⊆ Q, which will be referred to as the reference region,
the interconnected transition system induced by reference
region R is a tuple

B̂(R) = (Q̂, Act, ∆̂, Q̂0),

where
• Q̂ = {(x̃, q) | q ∈ R, x̃ ∈ q} is the set of all pairs of

belief states in R and augmented states in each belief
states;

• Act is the same set of actions;

• ∆̂ : Q̂×Act→ 2Q̂ is the non-deterministic transition
function defined by: for any q̂ = (x̃, q), q̂′ = (x̃′, q′)

and a ∈ Act, we have q̂′ ∈ ∆̂(q̂, a) if
· x̃′ ∈ ∆̃(x̃, a); and
· q′ ∈ ∆B(q, a) ⊆ R.

• Q̂0 = {(x̃, q) | q ∈ R ∩ Q0, x̃ ∈ q} is the set of initial
states.

We define the set of accepting pairs in B̂(R) by
Q̂F,R = {(x̃, q) ∈ X̃ ×Q | x̃ ∈ X̃F ∧ x̃ ∈ q} ⊆ Q̂

Then let R ⊆ Q be a reference region. We denote by
ŴinR(·) the Büchi winning region operators in intercon-
nected transition system B̂(R), respectively.
Now, let us assume that initially the reference region R is
Win(QF ). Then constructing its interconnected transition
system B̂(R), one may find that some state in it may not
actually be able to reach an accepting state, e.g.,

(x̃, q) /∈ ŴinR(Q̂F,R).

In this case, we should remove state (x̃, q) from B̂(R). In
fact, since the controller cannot distinguish states inside of
belief state q, all state of (·, q) should be remove from B̂(R).
This suffices to remove belief state q from the reference
region R.
Therefore, we iteratively shrink the reference regions R0 ⊇
R1 ⊇ · · · as follows:

R0 = Win(QF ) (1)
Ri,unq = {q ∈ Ri | ∃(x̃, q) ∈ Q̂\ŴinRi

(Q̂F,Ri
)} (2)

Ri,rem = Avoid(Ri,unq ∪ (Q\Ri)) ∩Ri (3)
Ri+1 = Win(QF ∩ (Ri\Ri,rem)) (4)

We define Qwin = limk→∞ R(k) ⊆ Q be the limit of the
above reference region sequence, which is also referred to as
the actual winning region. Qwin induces a interconnected
transition system B̂(Qwin). We denote the set of all pairs
and accepting pairs appear in B̂(Qwin) as Q̂win and Q̂acc,
and the set of all states and accepting states appear in
Qwin as X̃win and X̃acc.
The following result formally shows that, the above com-
puted winning region is indeed necessary for the purpose
of non-blocking controller synthesis. In fact, the sufficiency
will be clear once our synthesis algorithm is presented.
Proposition 1. Given an arbitrary controller C, the in-
duced closed-loop system TC , its constructed belief tran-
sition system BC and LTL formula ϕ, if ∃τ ∈ Path(BC)
satisfies τ /∈ (Qwin)

ω, then Trace(TC) ⊈ Word(ϕ).

4. ONLINE CONTROLLER ALGORITHM

4.1 Overview of the Algorithm

The main idea of our online control strategy is as follows.
Initially, we have an initial belief and we do not know
the previous state of the system. Therefore, we need to
alternatively assign each possible initial state a chance to
reach accepting state. Specifically, our strategy is to al-
ternately transfer initial belief state’s inner states towards
accepting states until all of them have reached accepting

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12187



states, which means that only one initial inner state will
be focused at each time until all of its potential paths
have reached accepting states. Extra memories are needed
to assemble history information and record the implicit
relations between current inner states and their origination
from initial states. So we introduce augmented state and
action generation state to record the history information
and make current step control decision. The non-blocking
control strategy C for controller is constructed by online
information update and offline decision generation, shown
in Algorithm.1 and Algorithm.2. Firstly, the existence of
non-blocking control strategy will be determined. If the
initial state is outside the winning region computed above,
then there do not exist non-blocking control strategy.
Given an initial observation and corresponding belief state,
its augmented state, and current action generation state
will be firstly initialized. Then a decision will be made by
offline decision generation function Action based on cur-
rent action generation state, and the system will take this
action. After that, the system receives a new observation
representing another belief state, its corresponding aug-
mented state will be constructed. This alternating process
ends when the system reaches a special augmented state
marking that all the possible product states originated
from initial belief state are either impossible to happen
according to the information along the path or have al-
ready reached an accepting state. Then a new iteration
will start initialized by the current belief state.

Algorithm 1: Online Control Algorithm
1 receive the initial observation o

2 q ← X̃0 ∩ [x̃]o, qaug ← {(x, x, 0) | x ∈ q}
3 xact ← randomly pick a state from q

4 make control decision a← Action(xact, q, B̂)
5 while receive new observation o ∈ O do
6 q ← ∆obs

B (q, a, o), qaug ← ∆aug
B (qaug, a, o)

7 if ∀(xint, xcur, b) ∈ qaug : b = 1 then
8 qaug ← {(x, x, 0) | x ∈ q}
9 xact ← randomly pick a state from q

10 if (∆(xact, a) ∩ [x]o)\X̃acc ̸= ∅ then
11 randomly pick a state

x′
cur ∈ (∆(xact, a) ∩ [x]o)\X̃acc and set

xact ← x′
cur

12 else
13 if ∃(xint, x

′
cur, 0) ∈ qaug then

14 randomly pick an augmented state
(xint, x

′
cur, 0) ∈ qcur and set xact ← x′

cur
15 else
16 randomly pick an augmented state

(x′
int, x

′
cur, 0) ∈ qcur and set xact ← x′

cur

17 make control decision a← Action(xact, q, B̂)

4.2 Non-blocking Control Algorithm

Given an arbitrary belief state q ∈ Qwin, we want to
ensure all the inside product states which are not accepting
can reach accepting states in future. When the system
transfers to a belief state q′, we want to track which
inner states of q′ can be originated from which non-
accepting initial inner state of q. So augmented state

qaug ∈ 2X̃×X̃×{0,1} is designed, and each element of it
is constructed by three parts: (xint, xcur, b) ∈ X̃ × X̃ ×
{0, 1}. Current inner state xcur ∈ q′ is an inner state of
current belief state q′. Initial inner state xint ∈ q\X̃acc is
the potential origination of current inner state. Boolean
variable b records whether this path originate from xint
have already reached accepting states. Apart from the
relationship between initial inner states and current inner
states, the algorithm also needs to determine which current
inner state will be used to generate action decision. At each
step only action generation state xact ∈ q′ is considered
and transferred towards accepting states.
When the system is initialized at belief state q according to
initial observation, augmented state qaug is concomitantly
initialized in line 1-2. Current action generation state xact
is initialized by randomly picking from q. Control decision
is made and conducted by offline function Action in line
3-4. After receiving a new observation, the system will
update its belief state and augmented state as follows. Let
qaug ∈ 2X̃×X̃×{0,1}. For a ∈ Act, o ∈ O, we define the
update functions as follows.

∆aug
B (qaug, a, o) =(xint, x

′
cur, b

′) |
∃(xint, xcur, b) ∈ qaug s.t.

[x′
cur ∈ ∆̃(xcur, a) ∩ [x]o] and

[b′ = 1 iff b = 1 ∨ x′
cur ∈ X̃F ]

 (5)

∆obs
B (q, a, o) = {q′ ∈ ∆B(q, a) | H(q′) = o} (6)

Function ∆aug
B updates the augmented state. This function

means that if product state x′
cur originated from xcur

and xint is proven to be impossible according to received
observation after taking action a, then its successors will
be excluded from future augmented states. Also, if such
product state x′

cur reaches an accepting state, it will be
marked by setting Boolean variable b′ = 1. Function ∆obs

B
updates the belief state according to the observation.
After the update of belief state and augmented state, ac-
tion generation state xact is picked in line 7-15, considering
both current qaug and last step’s xact. If all states have
reached accepting states, then qaug and xact are initialized
for a new iteration in line 7-9. If there exist successors
of last step’s xact under current observation that have not
reached accepting states, then randomly pick one successor
to update xact in line 10-11. Otherwise, the update prin-
ciple of action generation state in line 13-16 means that
if there no longer exist current inner state xact’s direct
successors, then in the next step, current inner product
states originated from other initial inner states x′

int will
still not be resolved when there still exists unfinished
current inner states originated from xint.
The control decision is generated by an offline function
Action, based on the interconnected transition system of
the winning region computed in Subsection 3. Given an
action generation state xact, arbitrary belief state q and in-
terconnected transition system B̂, if (xact, q) is in system’s
(i+1)-step attractor, we enforce its visit to i-step attractor
to approach accepting states. Note that this computation
is conducted in interconnected transition system, reflecting
the system’s dynamic in reality. We assume the system’s
actual state to be xact and ignore all other potential inner
states of current belief state. Such an assumption is rea-

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12188



sonable because all the other unconsidered inner states will
not be neglected permanently but considered alternately
in the future.

Algorithm 2: Action
1 given xact, q, B̂
2 compute Q̂win, Q̂acc out of B̂
3 find i such that
4 (xact, q) ∈ Attr(i+1)(Q̂acc)\Attr(i)(Q̂acc)
5 randomly pick an action a such that
6 ∆̂((xact, q), a) ⊆ Attr(i)(Q̂acc)

4.3 Properties of Problem Solution

In the proposed algorithm, for an arbitrary belief state in-
side winning region, whether a product state inside it have
visited accepting states is described by Boolean variable b
in augmented state. And arriving at an augmented state
with all the Boolean variable b = 1 means that the system
must have visited accepting states during its past tran-
sitions regardless of its uncertainty of the environment,
which is illustrated in Proposition 2.
Proposition 2. Given a belief transition system B, an
arbitrary initial belief state q ∈ Qwin and a non-
blocking controller C, if the system visits a state q′ with
∀(xint, xcur, b) ∈ qaug, b = 1 then all finite paths from q to
q′ have reached accepting states.

The algorithm maintains the belief states transition inside
winning region to always avoiding the system from possible
permanent failure, which is proved by Proposition 1. Also,
Proposition 2 shows that the algorithm infinitely guides
all the system’s potential states towards accepting. Based
on the above properties, the proposed algorithm generates
a non-blocking controller providing the future satisfaction
of given task, which is presented in Proposition 1.
Proposition 3. Given a belief transition system B with
an arbitrary belief state qinit ∈ Qwin and a LTL spec-
ification ϕ, under C the closed-loop system TC satisfies
Trace∗(TC) ⊆Word(ϕ).

We now discuss the conditions when our proposed non-
blocking controller can deterministically satisfy LTL task
by surely winning the game. Given system T , observation
mapping H and LTL formula ϕ, controller C : O∗ → Act is
a sure winning controller if it induces a closed-loop system
TC such that Trace(TC) ⊆Word(ϕ).
It can be obviously concluded that the non-blocking con-
trol algorithm becomes a sure winning control algorithm
when reaching an convergence, which provides a sufficient
condition for sure winning problem solution, shown in
Proposition 4.
Proposition 4. Given a belief transition system B under
a non-blocking controller C, if ∀q ∈ Qwin, the system will
always visits states satisfying ∀(xint, xcur, b) ∈ qaug, b = 1
in finite steps then C is a sure winning controller.

We also provide two sufficient conditions of non-blocking
control strategy’s convergence, which are common and
reasonable in practice.

Proposition 5. We define Actions(xcur, q, B̂) ⊆ Act as
the set of all actions possibly generated by function
Action(xcur, q, B̂). Given a belief transition system B un-
der a non-blocking controller C, if ∀q ∈ Qwin, ∀xcur, x

′
cur ∈

q satisfy Actions(xcur, q, B̂) = Actions(x′
cur, q, B̂) then C

is a sure winning controller.
Proposition 6. Given a belief transition system B under
a non-blocking controller C, C is a sure winning controller
if the following condition is satisfied: ∀q0 ∈ Qwin, and
∀τB ∈ Path(BC)∗ with initial state of q, if ∃τ ∈ Path(BC)∗
with H(τ) = H(τB), such that τ has not visited accepting
states, then there does not exist a belief state that appears
more than once in τ .

5. CASE STUDY

In this section, our strategy design method is applied to
control a robot in a pick-delivery scenario. The robot’s
mission is to pick up cargo and deliver them to receiv-
ing spot while avoiding moving and stationary obstacles.
After finishing a delivery mission, a new pair of pick-
up and delivery spots will be randomly allocated. The
workspace of robot is simplified to a gridworld of 5 × 5
shown in Fig.2(a). Red regions of (3,1) and (5,1) are pick-
up spots of cargo, green regions of (1,3) and (1,5) are
delivery destination, black regions of (5,4), (5,5), (4,5) and
(3,4) are dangerous regions that the robot must avoid.
Blue circle at (1,1) represents robot’s charging station.
There exists a moving obstacle, whose movement cannot
be controlled by robot. The moving obstacle’s movement
pattern follows a determined trajectory simplified by black
dash arrow while randomly waiting at waiting point at
(4,4). There exist slopes around pick-up spots, which may
affect robot’s movement, denoted by grey dash arrows in
regions around red regions. Robot’s movement opposite
to the direction of slope will not be changed, otherwise
the environment may force the moving result towards
arrow direction. The robot has a limited knowledge of the
environment. The robot will not know where the cargo is
coming out until it reaches a pick-up spot, so does the
case of delivery at entrance doors. Also, the robot has
a limited sensing ability so that it will only be alerted of
moving obstacle’s existence within ambient 8 grids without
the precise location. The robot’s available actions contain
moving one step in four directions and waiting, denoted by
Act = {↑, ↓,→,←,−}. The transition function describes
the dynamic of system, and as the robot moves, the envi-
ronment changes as well. The system state is initialized
to be x0 = (xA0, (xp0, xd0, xw0)) ∈ X0, where xA0 =
(1, 1), xp0 ∈ {(3, 1), (5, 1)}, xd0 ∈ {(1, 3), (1, 5)}, xw0 =
(4, 4). The robot’s mission is described by LTL specifi-
cation ϕ = 2¬danger ∧2♢(pick ∧♢deliver) ∧2♢charge
and can be described by a DBA B.
Robot’s potential decisions at each position under our
strategy are shown in Fig.2(b), according to Proposition
6, the algorithm reaches an convergence and becomes sure
winning. The robot will firstly move towards the nearest
pick-up spot at (3,1). After reaching (3,1), the robot will
update its belief of environment and if the cargo is picked
up here, it will then directly move towards the nearest
potential delivery destination at (1,3). If the cargo is not
picked, the robot will make decision based on its obser-

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12189



1

2

3

4

5

1 2 3 4 5

(a)

1

2

3

4

5

1 2 3 4 5

(b)

Fig. 2. (a) Workspace simplification for robot in a delivery
scenario. (b) Robot’s potential action under non-
blocking control strategy.

A B

E

C D

(a) (b) (c)

Fig. 3. (a) Gridworld of the experiment (b) Snapshot at
initial time point (c) Snapshot during the experiment

vation of the moving obstacle’s location. If the moving
obstacle is detected nearby, the robot will wait for it to
leave, otherwise, the robot will move towards pick-up spot
at (5,1). In this case, if the moving obstacle is sensed after
arriving at (5,1), the robot will also wait before moving
towards the nearest delivery destination. After reaching
the delivery destination at (1,3), if the cargo is take away,
the robot will return to charging station, otherwise, it
will move towards the other destination at (1,5) before
its return. Under our proposed strategy, the robot will
always complete its mission under any combination of
target region while avoiding moving obstacles.
We conduct a simplified real-world experiment of the de-
livery scenario that only involves random task assignment
and moving obstacle avoidance. The workspace is simpli-
fied to a gridworld of 5×5 shown in Fig.3(a). The red and
blue regions represent pick-up and deliver spots. The mov-
ing obstacle is represented by a robot, and its movement is
restricted to gray regions represented by dash arrows. The
maximum continuous waiting time for robot and moving
obstacle are both restricted for better presentation. The
initial starting spot is shown in Fig.3(b). The pick-up and
delivery spots are initially set to be A and D and changed
to C and B. The complete experiment video is available in
https://github.com/LiShuaiyi/ifac2023.

6. CONCLUSION

In this paper, we formulated and solved a non-blocking
control synthesis problem for a fragment LTL tasks un-
der partial observation without assumptions on observa-
tions and atomic propositions. Compared with existing
works, which focus on (almost) sure winning strategies,
we adopted the notion of non-blockingness as the metric
to evaluate the winning condition of the controller. We first

presented an offline algorithm for computing the winning
region of the synthesis problem. Then we presented an
online control algorithm for generating control actions on-
the-fly. In the future, we aim to identify necessary and suf-
ficient condition under which the non-blocking controller
is also sure winning.

REFERENCES
Baier, C. and Katoen, J.P. (2008). Principles of model

checking. MIT press.
Belta, C., Yordanov, B., and Aydin Gol, E. (2017). Finite

temporal logic control. In Formal Methods for Discrete-
Time Dynamical Systems, 81–108. Springer.

Cai, K., Zhang, R., and Wonham, W.M. (2014). Relative
observability of discrete-event systems and its supremal
sublanguages. IEEE Trans. Automatic Control, 60(3),
659–670.

Chatterjee, K., Chmelik, M., Gupta, R., and Kanodia,
A. (2016). Optimal cost almost-sure reachability in
POMDPs. Artificial Intelligence, 234, 26–48.

Fu, J. and Topcu, U. (2016). Synthesis of joint control
and active sensing strategies under temporal logic con-
straints. IEEE Trans. Automatic Control, 61(11), 3464–
3476.

Ji, Y., Yin, X., and Lafortune, S. (2021). Optimal super-
visory control with mean payoff objectives and under
partial observation. Automatica, 123, 109359.

Kantaros, Y., Guo, M., and Zavlanos, M.M. (2019). Tem-
poral logic task planning and intermittent connectivity
control of mobile robot networks. IEEE Trans. Auto-
matic Control, 64(10), 4105–4120.

Ma, Z. and Cai, K. (2021). Optimal secret protections in
discrete-event systems. IEEE Trans. Automatic Control,
67(6), 2816–2828.

Ramasubramanian, B., Niu, L., Clark, A., Bushnell, L.,
and Poovendran, R. (2020). Secure control in partially
observable environments to satisfy ltl specifications.
IEEE Trans. Automatic Control, 66(12), 5665–5679.

Raskin, J.F., Henzinger, T.A., Doyen, L., and Chatterjee,
K. (2007). Algorithms for omega-regular games with
imperfect information. Logical Methods in Computer
Science, 3.

Ru, Y., Cabasino, M.P., Giua, A., and Hadjicostis, C.N.
(2014). Supervisor synthesis for discrete event systems
under partial observation and arbitrary forbidden state
specifications. Discrete Event Dynamic Systems, 24(3),
275–307.

Sakakibara, A. and Ushio, T. (2020). On-line permissive
supervisory control of discrete event systems for scltl
specifications. IEEE Control Systems Letters, 4(3), 530–
535.

Yin, X. and Lafortune, S. (2016a). Synthesis of maximally
permissive supervisors for partially-observed discrete-
event systems. IEEE Trans. Automatic Control, 61(5),
1239–1254.

Yin, X. and Lafortune, S. (2016b). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Trans. Automatic Control, 61(8), 2140–2154.

Yu, X., Yin, X., Li, S., and Li, Z. (2022). Security-
preserving multi-agent coordination for complex tem-
poral logic tasks. Control Engineering Practice, 123,
105130.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

12190


