
You Don’t Know When I Will Arrive:
Unpredictable Controller Synthesis for

Temporal Logic Tasks ⋆

Yu Chen ∗ Shuo Yang ∗∗ Rahul Mangharam ∗∗ Xiang Yin ∗

∗ Department of Automation, Shanghai Jiao Tong University,
Shanghai 200240, China. e-mail: {yuchen26,yinxiang}@sjtu.edu.cn)
∗∗ Department of Electrical and Systems Engineering, University of
Pennsylvania, Philadelphia, PA 19104, USA. (e-mail: {yangs1,

rahulm}@seas.upenn.edu)

Abstract: In this paper, we investigate the problem of synthesizing controllers for temporal
logic specifications under security constraint. We assume that there exists a passive intruder
(eavesdropper) that can partially observe the behavior of the system. For the purpose of security,
we require that the system’s behaviors are unpredictable in the sense that the intruder cannot
determine for sure that the system will exactly accomplish the task in K steps ahead. This
problem is particularly challenging since future information is involved in the synthesis process.
We propose a novel information structure that predicts the effect of control in the future. A
sound and complete algorithm is developed to synthesize a controller which ensures both task
completion and security guarantee. The proposed approach is illustrated by a case study of
robot task planning.

Keywords: Information-Flow Security, Robot Path Planning, Temporal Logic Tasks.

1. INTRODUCTION

With the development of information technologies, au-
tonomous systems are required to accomplish complex
tasks in dynamic environments. Temporal logics have
drawn considerable attention in the control community in
the recent years due to their high expressibility in describ-
ing complex tasks. Using automata-theoretic approaches,
controllers can be effectively synthesized to achieve com-
plex temporal logic tasks Kress-Gazit et al. (2018). When
executing tasks, the system usually need to communicate
with other components such as clouds or central stations to
exchange information. However, the communication pro-
cess may leak critical information to the outside world. In
addition to the correctness requirement, security issue has
also been becoming increasingly important consideration
in controller synthesis Liu et al. (2022).

Our Contributions: In this paper, we formulate and solve
a new security-aware controller synthesis problem for syn-
tactically co-safe linear temporal logic (scLTL) specifica-
tions. We model the system as a non-deterministic transi-
tion system. The correctness requirement of the controller
is to ensure the satisfaction of a given scLTL task. Further-
more, we assume that there is an eavesdropper/intruder
monitoring the system’s behaviors via an output function.
For the purpose of security, we further require that the
behaviors of system are unpredicable in the sense that
the intruder can never determine for sure that the system
will finish the task at some specific future instant, which

⋆ This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61833012). The first two
authors contribute equally.

is formally captured by K-step unpredictability proposed
in this work. We propose a novel approach by “borrow-
ing” information in the future and build an information
structure in which all predictions are correct in the sense
that they are consistent with what actually happens in the
future. A backtracking-based algorithm is then proposed
to synthesize a controller that achieves both the scLTL
task and the unpredictable requirement.

Related Work: There has been an increasing interest in
high-level controller synthesis for robotic specifications;
see, e.g., Smith et al. (2011); Cai et al. (2020); Shi et al.
(2022). However, these works only focus on the correctness
of system without considering the security requirement.
In the context of supervisory control of discrete event
systems, algorithms have been developed for enforcing the
notion of opacity Yin and Lafortune (2016); Tong et al.
(2018); Xie et al. (2022); Liu et al. (2022). In the context
of security-aware controller synthesis, our work is mostly
related to Wang et al. (2020); Yang et al. (2020); Xie et al.
(2021); Yu et al. (2022), where both LTL specifications and
security constraints are enforced. However, the security
constraints in these work require that the intruder can
never infer that the robot started from a secret location
either initially or at some specific instant. Such security
requirements are only related to the past behaviors of the
system, while we consider the unpredictability of the future
behavior of the system.

2. MOTIVATING EXAMPLE

Before we formulate the problem, we first consider a
motivating example. We consider a robot moving in a

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

©2023 the authors. Accepted by IFAC for publication
under a Creative Commons Licence CC-BY-NC-ND

3967



Fig. 1. Robot workspace. Fig. 2. Different paths.

workspace with six regions as shown in Fig. 1. The robot is
initialized at Region 1. Black arrows in the figure represent
the permitted moves of the robot from one region to
another. Note that, from Region 2, the robot cannot move
to Regions 4 or 5 for sure since two doors are too closed,
i.e., these two transitions are non-deterministic. Similar
situation happens when the robot tries to move from from
Region 4 to Region 5 or 6.

The objective of the robot is to first reach Region 2 to
collect a critical message and then move to Region 6 to
broadcast it. Assume that there exists an intruder knowing
the control policy and the current location of robot. The
intruder intends to hack into the broadcasting channel to
get the message. However, it only has one chance to hack
the channel. Therefore, the intruder needs to predict the
precise time instant when the robot will finish the task,
i.e., reaching Region 6 for the first time.

Consider the control policy generating an unique path
shown as the black dashed line in Fig. 2. Clearly, once
robot has started from Region 1, the intruder knows for
sure that the robot will be in Region 6 after 3 steps. Thus,
this control policy is not “secure”. However, the robot can
choose to go to Region 4 or 5 from Region 2, and then
go to Region 5 or 6 when in Region 4, and finally go to
Region 6 when in Region 5. Under this control policy, robot
will generate three possible paths which are shown as the
colored lines in Fig. 2. When the robot has started from
Region 1, after 3 steps, it can be in either Region 5 or
6. Therefore, the intruder cannot successfully predict that
the robot will reach Region 6 in 3 steps for the first time.

3. PRELIMINARY

3.1 System Model

Let A be a finite set of symbols. We denote by A∗ and
Aω the sets of all finite and infinite sequences over A,
respectively, and ϵ ∈ A∗ is the empty sequence. For any
finite sequence s=a1 . . . an∈A∗, we denote by |s|=n and
last(s)=an its length and its last element, respectively.

The mobility of the robot in a workspace is modelled as a
(non-deterministic) transition system

G = (X,x0, U,→,AP, L),
where X is the set of states representing the locations of
the robot; x0 ∈ X is the initial state of the robot; U is
the set of control inputs or actions taken by the robot at
each instant; →⊆ X × U × X is the transition relation,

where (x, u, x′) ∈→ (also denoted by x
u−→ x′) means that

the robot can possibly move from state x to state x′ under
action u; AP is the set of atomic propositions representing

some basic properties of our interest; and L : X → 2AP is
the labeling function assigning each state x a set of atomic
propositions that hold at state x.

Given an input sequence u1 . . . un ∈ U∗, it may induce a

finite state run x0
u1−→ x1

u2−→ · · · un−−→ xn such that xi
ui+1−−−→

xi+1,∀i = 0, . . . , n − 1; state sequence x0 . . . x1 ∈ X∗ is
called a finite path of system G. Note that the run or path
induced by an input sequence may not be unique when the
system is non-deterministic. We denote by Path(G) the set
of all finite paths generated by G starting from the initial
state x0. The trace of a path τ = x0 . . . xn ∈ Path(G) is
defined by trace(τ) = L(x0) . . . L(xn), and we denote by
Trace(G) = {trace(τ) : τ ∈ Path(G)} the set of all traces
in G. System G is called live if for any x ∈ X, there exist
u ∈ U and x′ ∈ X such that (x, u, x′) ∈→. We assume
that system G is live. For each state x ∈ X, we define

U(x) = {u ∈ U : ∃x′ ∈ X s.t. x
u−→ x′} as the set of active

inputs at x. For a set of states q ⊆ X and a control input
u ∈ U , we define the successor states of q under u by

NXu(q) = {x′ ∈ X : ∃x ∈ q s.t. x
u−→ x′}. (1)

3.2 Linear Temporal Logic Specifications

The task of the robot is described by a syntactically co-
safe Linear Temporal Logic (scLTL) formula φ over atomic
propositions AP. Formally, the syntax of scLTL is defined
as

φ ::= true | a | ¬a | φ1 ∧ φ2 | ⃝φ | φ1Uφ2,

where a ∈ AP is an atomic proposition; ¬ and ∧ are
Boolean operators “negation” and “conjunction”, respec-
tively; ⃝ and U are temporal operators “next” and “un-
til”, respectively.

In general, LTL formula are evaluated on infinite words
over 2AP . For any infinite word ρ ∈ (2AP)ω, we denote
by ρ |= φ if word ρ satisfies LTL formula φ. The reader
is referred to Baier and Katoen (2008) for details of the
semantics of LTL. However, for an scLTL formula, its
satisfaction can be determined in finite horizon. It is well-
known that, for any infinite word ρ = ρ0ρ1 · · · ∈ (2AP)ω

such that ρ |= φ, it has a finite good prefix ρpref =
ρ0ρ1 . . . ρn in the sense that ρprefρ

′ |= φ for any ρ′ ∈
(2AP)ω. We denote by Wordpref (φ) the set of all finite
good prefixes for scLTL formula φ, and for a finite word
ρ ∈ (2AP)∗, we also write ρ |= φ if ρ ∈ Wordpref (φ).
For system G, we denote by G |= φ if every infinite path
in G has a finite good prefix. A good prefix is said to
be minimal if it has no good prefix except itself, and we
denote by Wordmin

pref (φ) the set of minimal good prefixes.

Intuitively, Wordmin
pref (φ) represents all words that exactly

accomplishes the task φ for the first time. We denote by
σ |=1 φ if σ ∈ Wordmin

pref (φ), i.e., σ exactly accomplishes
the task for the first time. Therefore, σ ̸|=1 φ means either
the task is not yet satisfied or has been satisfied before.

The set of words satisfying an scLTL formula can be
accepted by a deterministic finite-state automata (DFA).
Formally, a DFA is a 5-tuple

A = (S, s0, ξ,Σ, F ),

where S is the set of states, s0 ∈ S is the initial state,
Σ is the alphabet, ξ : S × Σ → S is the deterministic
transition function, and F ⊆ S is the set of accepting

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3968



states. The transition function can be extended to ξ : S ×
Σ∗ → S recursively by: ∀x ∈ S, ρ ∈ Σ∗, σ ∈ Σ, ξ(x, ρσ) =
ξ(ξ(x, ρ), σ). We denote by L(A) the set of all finite words
accepted by A, i.e., L(A) = {ρ ∈ Σ∗ : ξ(s0, ρ) ∈ F}.
For any scLTL formula φ, there always exists a DFA
Aφ over Σ = 2AP that only accepts all good prefixes,
i.e., L(Aφ) = Wordpref (φ). To distinguish the exact
satisfaction of the task for the first time and after the first
satisfaction, we further modify DFA Aφ by the following
steps: (1) add a new accepting state sF with self-loops
for all labels in Σ = 2AP ; and (2) remove all output
transitions from the original accepting states F , and add
new transitions from F to sF with labels for all Σ = 2AP ;
and (3) add a new “bad” state sB , and for each state s, if
any σ ∈ 2AP is undefined, then we add a transition from s
to sB labeled by σ. Clearly, the modified DFA generates all
words (2AP)∗ and accepts exactly the same words as the
original DFA. Hereafter, we will use this modified version
and still denote it by Aφ.

3.3 Controller

Since not all traces in the system satisfy the scLTL for-
mula, a feedback controller (or policy) should be imposed.
We consider a partially-observed setting, i.e., the controller
cannot obtain the perfect state information of the system.
To this end, we consider an observation mapping

H : X → O,

where O is the set of observation symbols and for each
x ∈ X, H(x) represents the observation of the controller
at state x. Then for each path τ = x0 . . . xn, its cor-
responding observation is H(τ) = H(x0) . . . H(xn). We
define H(Path(G)) = {H(τ) ∈ O∗ : τ ∈ Path(G)} the set
of all observations. Then a controller for G is a function

C : H(Path(G))→ U,

which determines the control input based on the observa-
tion. The closed-loop system under controller C is denoted

by GC . Specifically, we say that a path τ = x0
u1−→

x1
u2−→ · · · un−−→ xn is feasible under C if τ ∈ Path(G) and

ui = C(H(x0 . . . xi−1)),∀i ∈ {1, . . . , n− 1}. We denote by
Path(GC) and trace(GC) the set of all feasible paths and
traces in G under controller C, respectively. For technical
purposes, we assume that for any two states having the
same observation, they have the same set of active control
inputs, i.e., ∀x, x′∈X : H(x)=H(x′)⇒ U(x)=U(x′).

4. INTENTION-AWARE SECURE SYNTHESIS
PROBLEM

4.1 Intruder Model

During the execution of the system, the information avail-
able to the controller may also be released to the outside.
In this work, we consider an attacker modelled as a passive
observer having the following capabilities: 1) It knows the
system model G, scLTL task φ, as well as the functionality
of the controller C; and 2) It can also access the observa-
tion of the controller.

Therefore, for each path τ = x0 . . . xn, the observation of
the intruder is also H(τ) = H(x0) . . . H(xn).

Remark 1. The above intruder model has been widely
considered in both computer science and control engi-
neering literature; see, e.g., Lafortune et al. (2018); Liu
et al. (2022). This model is motivated by the fact that
offline designed policies are usually public information,
while actual online trajectories are usually only partially
released to the outsider. Therefore, the intruder needs to
use this partial online information together with the offline
model information to infer the behavior of the system.

4.2 Unpredictable Security Requirement

Depending on what information the system wants to hide,
the security of the system can be defined differently. In
this work, we consider the following security requirement:

• the system does not want the intruder to infer too
early when it will accomplish the task.

In other words, the controlled behavior of the system
needs to be unpredictable in the sense that, by observing
external information-flow, the intruder is unable to infer
confidentially that the robot will finish task exactly after
a certain number of steps.

The above requirement was originally formulated by the
notion of K-step pre-opacity in Yang and Yin (2022),
where the completion of the task is modelled by reaching
a target state. We then formulate our unpredictable con-
troller synthesis problem by adopting this notion. First,
we introduce the notion of K-step unpredictability w.r.t.
an scLTL task.

Definition 1. (K-Step Unpredictability). Given system
G, scLTL task φ and controller C with output function
H, a finite path τ ∈ Path(GC) is said to be K-step
unpredictable w.r.t. H and φ if

(∀m ≥ K)(∃τ1τ2 ∈ Path(GC)) s.t. (2)

[|τ2| = m] ∧ [H(τ) = H(τ1)] ∧ [trace(τ1τ2) ̸|=1 φ].

We say that the controlled system GC is K-step unpre-
dictable if all paths in it are K-step unpredictable.

With this notion, we formulate the synthesis problem that
we solve in this paper.

Problem 1. (Unpredictable Control Synthesis Problem).
Given system G, scLTL task φ and output function H for
both intruder and controller, determine a controller C such
that (i) GC is live; and (ii) GC |= φ; and (iii) GC is K-step
unpredictable.

Remark 2. In the above problem formulation, we require
that the controlled system GC is live, i.e., it needs to work
indefinitely. In practice, since we consider scLTL task here,
the robot can stop once it knows for sure that the task has
been completed. However, this assumption is mainly for
the sake of simplification of analysis and is without loss of
generality. For example, one can add a virtual “stop” state
with self-loops to mimic liveness when the robot stops.

4.3 Product System and Problem Transformation

To incorporate the task information into the system model,
we construct the product of system and the task DFA.

Definition 2. (Product System). Given system G and
scLTL task φ, let Aφ = (S, s0, ξ,Σ, F ∪ {sF }) be the

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3969



(modified) DFA such that L(Aφ) = Wordpref (φ). The
product of G and Aφ is a new transition system

G̃ = (X̃, x̃0, U,→⊗,AP, L̃),
where X̃ ⊆ X × XF is the set of states; x̃0 =
(x0, ξ(s0, L(x0))) ∈ X̃ is the initial state; U is the set of

control inputs; →⊗⊆ X̃ × U × X̃ is transition relation

defined by: for any x̃1 = (x1, s1) ∈ X̃, x̃2 = (x2, s2) ∈ X̃

and u ∈ U , we have x̃1
u−→⊗ x̃2 if (i) x1

u−→ x2 and (ii)
s2 = ξ(s1, L(x2)); AP is the same set of atomic proposi-

tions; and L̃ : X̃ → 2AP is labeling function such that, for
any x̃ = (x, s), we have L̃(x̃) = L(x).

It is easy to know that any controller C designed for G̃ can
be applied to G, and vice versa. Hereafter, we will focus
on the product system G̃.

Note that, the information of the satisfaction of scLTL
task φ has also been encoded in the second component of
G̃. To see this more clearly, we define

X̃F ={(q, s) ∈ X̃ : s ∈ F},
X̃F∪{sF } ={(q, s) ∈ X̃ : s ∈ F ∪ {sF }}.

Then for any path τ ∈ Path(G̃), we have the followings:

trace(τ) |=1 φ⇔ last(τ) ∈ X̃F , (3)

trace(τ) |= φ⇔ last(τ) ∈ X̃F∪{sF }. (4)

We also call X̃F secret states since they represent those
states whose visits do not want to be predicted by the
intruder. In addition to replace trace(τ1τ2) ̸|=1 φ in

Definition 1 by last(τ2) /∈ X̃F , here, we provide a stronger
result showing that the requirement of “∀m ≥ K” can also
be simplified by only considering m = K.

Proposition 1. Given system G̃ and controller C, G̃C

is K-step unpredictable w.r.t. H and φ if and only if
for any finite path τ ∈ Path(G̃C) there exists a path

τ1τ2 ∈ Path(G̃C) s.t.

[|τ2| = K] ∧ [H̃(τ) = H̃(τ1)] ∧ [last(τ2) /∈ X̃F ].

Based on the product system G̃ and Proposition 1, we can
transform Problem 1 regarding system G and scLTL task
φ to a problem depending only on G̃. That is, our objective
beomces to synthesize a live controller C for G̃ such that all
traces in G̃C end up with X̃F are K-steps unpredictable as
characterized by Proposition 1. To simplify the notation, in
the rest of this paper, we denote system G̃ = (X̃, x̃0, U,→⊗
,AP, L̃) by G = (X,x0, U,→,AP, L) by understanding
how the product is constructed. We also denote states set
X̃F and X̃F∪{sF } by XF and XF∪{sF }, respectively.

5. PREDICTION SETS AND BIPARTITE
TRANSITION SYSTEMS

5.1 Prediction Sets

Compared with the existing security-aware controller syn-
thesis problems for current-state opacity, our K-step un-
predictable controller synthesis problem has the following
new challenge. In the synthesis for current-state opacity,
whether or not the secret of the system is revealed to the

intruder can be completely determined by the historical
information up to the current instant. However, in our
problem, whether or not the system is secure depends
on its behavior in the future. This is not a verification
problem for open-loop system since all future behaviors
are given and fixed. However, in the synthesis problem, the
future behaviors of the system are unknown and depend
on the control decisions in the future, which have not yet
been determined. This future dependency issue makes our
synthesis problem particularly challenging.

To resolve the future dependency issue, we propose a novel
approach by “borrowing” information in the future. The
general idea is as follows. At each instant, the system
makes a prediction regarding in how many number of
steps, the scLTL task will be accomplished, or equivalently,
secret states XF will be reached. In order to make the
prediction valid, the system should accomplish the task as
it predicted; otherwise, such a prediction will be considered
invalid and be truncated.

To formalize the above idea, we define a prediction as a
(K+1)-dimensional binary vector h = (h[0], h[1], · · · , h[K])
∈ {0, 1}K+1, where for each i = 0, 1, . . . ,K,

• h[i] = 0 means that the system may not reach secret
states XF in exactly i steps; and

• h[i] = 1 means that the system will reach secret states
XF for sure in exactly i steps.

We denote by H = {0, 1}K+1 the prediction set. We
augment the state space of G with prediction set and
denote by X̂ = X × H the augmented state space.
For each augmented state x̂ = (x, h) ∈ X̂, we define
state(x̂) = x and pred(x̂) = h as its state and prediction
components, respectively. Then, for a set of augmented
states ı = {(x1, h1), ..., (xn, hn)} ⊆ X̂, we define state(ı) =
{x1, ..., xn} and pred(ı) = {h1, ..., hn}. With some abuse of

notation, for (x, h) = x̂ ∈ X̂, we also write H(x̂) = H(x).

Now, we discuss what properties a “good” prediction
should have. First, in an augmented state x̂ = (x, h) ∈ X̂,
its prediction for the current instant, i.e., h[0], should be
consistent with the fact of the current state x. This is
captured by the following definition.

Definition 3. (Current Consistency). An augmented state

x̂ ∈ X̂ is called currently consistent if

pred(x̂)[0] = 1⇔ state(x̂) ∈ XF . (5)

We denote by X̂cons ⊆ X̂ the set of all currently consistent
augmented states.

Second, let x̂ ∈ X̂ be an augmented state, and ı ∈ 2X̂

be a set of augmented states representing all successor
states of x̂ in one step. Then the predictions of ı at the
next instant should be consistent with the predictions of
x̂ at the current instant. Formally, we have the following
definition.

Definition 4. (One-Step Consistency). Let h ∈ H be a
prediction and H ∈ 2H be a set of predictions. We say h
and H are one-step consistent if for each i = 1, . . . ,K,

h[i]=1 ⇒ ∀h′ ∈ H : h′[i− 1]=1,

h[i]=0 ⇒ ∃h′ ∈ H : h′[i− 1]=0. (6)

We denote by (h,H) ∈ ∆ if they are one-step consistent.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3970



Due to the partial observability, the system may not know
the precise state and the prediction. Instead, it may hold
a belief regarding the augmented state.

Definition 5. (Belief States). A belief state is a set of

currently consistent augmented states ı ∈ 2X̂cons such that

∀(x, h), (x′, h′) ∈ ı : x=x′ ⇒ h=h′.

We denote by B ⊆ 2X̂cons the set of all belief states.

If all states in a belief state has the same prediction, then
even if the belief state is not a singleton, we can still make a
conclusion regarding when the secret state will be reached.

Definition 6. (Secure Belief States). A belief state ı ∈ B
is said to be insecure if

∀x̂ ∈ ı : pred(x̂)[K] = 1.

Otherwise, ı is called secure. We denote by Bins and Bsec
the set of insecure and secure belief states, respectively.

5.2 Bipartite Transition Systems

In order to synthesize an unpredictable controller, our
approach is to enumerate all possible control actions over
the belief state space. Then, we solve a safety game to
avoid those insecure belief states at which the intention of
accomplishing the task in K steps is revealed.

Definition 7. (Bipartite Transition Systems) A bipartite
transition system (BTS) of G is a 7-tuple

T = (QY , QZ , δY Z , δZY , U,O, Y0),

where

• QY ⊆ Bsec ×O is the set of Y -states;
• QZ ⊆ Bsec × U is the set of Z-states;
• δY Z : QY ×U → 2QZ is a non-deterministic transition
function from Y -states to Z-states defined by: for
any y = (ı, o) ∈ QY , u ∈ U , and z = (ı′, u′) ∈
QZ , we have z ∈ δY Z(y, u) if (i) u = u′; and (ii)
state(ı′) = NXu(state(ı)); and (iii) for x̂ ∈ ı, we have
(pred(x̂), pred(ı′(x̂, u))) ∈ ∆, where

ı′(x̂, u) = {x̂′ ∈ ı′ : state(x̂′) ∈ NXu(state(x̂))}.
• δZY : QZ × O → QY is the deterministic transition
function from Z-states to Y -states defined by: for any
z = (ı, u) ∈ QZ , o ∈ O, and y = (ı′, o′) ∈ QY , we have
δZY (z, o)=y if (i) o′=o; and (ii) ı′={x̂∈ ı :H(x̂)=o}.

• U is the set of input;
• O is the output set;
• Y0 = {({(x0, h)}, H(x0)) : (x0, h) ∈ Bsec} is the set of

possible initial Y -states.

Note that for (ı, o) ∈ QY and (ı′, u) ∈ QZ , o and u are
redundant information since they are uniquely determined
by their input transitions, and we use them mainly to
distinguish between Y and Z-states. With some abuse of
notation, for q = (ı, b) ∈ QY ∪ QZ , we sometimes omit b
and also write state(q) = state(ı) and pred(q) = pred(ı).

For the purpose of control, we need to further require that,
in each Y -state, there exists a control input under which it
has successor and, in each Z-state all feasible observations
are defined. Formally, given a BTS T , we say

• a Y -state y = (ı, o) ∈ QY is complete if there exists
a control input defined at y in T , i.e., ∃u ∈ U :
δY Z(y, c) ̸= ∅;

• a Z-state z = (ı, u) ∈ QZ is complete if all feasible
observations are defined at z in T , i.e., ∀x̂ ∈ ı :
δZY (z,H(x̂))!.

Then BTS T is said to be complete if all Y -states and
Z-states in it are complete.

Note that a complete BTS T may contain multiple con-
trolled behaviors. In order to “decode” a controller from
T , we need to resolve the above nondeterminism.

Definition 8. (Deterministic BTS). A complete BTS T =
(QY , QZ , δY Z , δZY , U,O, Y0) is said to be deterministic if

(i) The initial Y -state is unique, i.e., Y0 = {y0}; and
(ii) For any Y -state, there exists a unique control input

defined, i.e., ∀y ∈ QY : |{u : δY Z(y, u)!}| = 1; and
(iii) For each Y -state and control input, the transition is

deterministic, i.e., ∀y ∈ QY , u ∈ U : |δY Z(y, u)| ≤ 1.

For a deterministic BTS T , we denote by UT (y) the unique
control input defined at Y -state y ∈ QY in T . Let T =
(QY , QZ , δY Z , δZY , U,O, y0) be a deterministic BTS and
π = o0u0o1u1 . . . on−1un−1on ∈ O(UO)∗ be an alternating
sequence of observations and control inputs. Then π visits
a unique sequence of states y0z0y1z1 . . . yn−1zn−1yn, where
y0 is the initial Y -state, and for each i ∈ {0, 1, . . . , n −
1}, we have zi = hZY (yi, ui) and yi+1 = hZY (zi, oi+1).
We denote YT (π) = yn as the last Y -state reached by
π. Note that, since T is deterministic, the above state
sequence is uniquely determined by its observation part
o = o0o1 . . . on. Therefore, we can also write YT (o) as the
unique Y -state reached by a sequence whose observation
part is o. Then for a deterministic BTS T , we can “decode”
a controller, denoted by CT , as follows: for any observation
o ∈ H(Path(G)), we have

CT (o) = UT (YT (o)), (7)

which is the unique control input defined at the unique
Y -state reached by o.

5.3 Properties of the BTS

Now we show that for a deterministic BTS, the prediction
of each state indeed corresponds to the information of
when it will reach a secret state XF , i.e., complete the
task, under the induced controller. To this end, for any
path τ ∈ Path(GC), we define

ReachiGC
(τ) = {last(ττ ′) ∈ X : ττ ′ ∈ Path(GC), |τ ′| = i}

as the set of states the controlled system GC can reach in
i steps following τ . Then, we have the following result.

Proposition 2. Let T be a deterministic BTS and CT

be its induced controller. For path τ ∈ Path(GC), let
(ı, o) = YT (H(τ)) be the Y -state reached in T along the
observation of τ . Then we have

(i) there exists a unique augmented state x̂ ∈ ı such that
state(x̂) = last(τ); and

(ii) for the unique augmented state x̂ ∈ ı, we have

∀i={0, . . . ,K} : pred(x̂)[i]=1⇔ ReachiGCT
(τ)⊆XF .

Proposition 2 leads to the following result.

Proposition 3. Let T be a deterministic BTS and CT be
its induced controller. Then the controlled system GCT

is
K-step unpredictable.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3971



6. CONTROLLER SYNTHESIS PROCEDURE

In the previous section, we have shown how to “decode”
an unpredictable controller from a deterministic BTS. In
this section, we discuss how to build such a deterministic
BTS.

First, we introduce the notion of all enforcement structure.

Definition 9. (All Enforcement Structure). Given system
G, its all enforcement structure AES(G) = (QAES

Y , QAES
Z ,

δAES
Y Z , δAES

ZY , U,O, Y AES
0 ) is defined as the largest complete

BTS. By “largest”, we mean that for any complete BTS T ,
we have that T ⊑ AES(G), where ⊑ denotes the standard
sub-system (graph) inclusion.

Next, we need to extract a deterministic BTS T from the
AES such that scLTL task is enforced. Since our purpose
is to reach states in XF∪{sF }, we define

Q
F (0)
Y ={y ∈ QAES

Y | state(y) ⊆ XF∪{sF }},
Q

F (0)
Z ={z ∈ QAES

Z | state(z) ⊆ XF∪{sF }},
as the sets of Y and Z states such that their state
estimate components are subsets of XF∪{sF }, respectively.
Therefore, our goal is to choose an initial Y -state from
the AES, and choose a control input and a prediction for

each Y -state, such that Q
F (0)
Y ∪QF (0)

Z is reached in a finite
number of steps. This is essentially a reachability game
on the AES by considering all Y -states as control nodes
and all Z-states as adversary nodes. To this end, we define

Q
F (k)
Y and Q

F (k)
Z as follows:

Q
F (k+1)
Y ={y∈QAES

Y : ∃u∈U s.t. δAES
Y Z (y, u)∩QF (k)

Z ̸=∅}
∪Q

F (k)
Y , (8)

Q
F (k+1)
Z ={z∈QAES

Z : ∀o∈O s.t. δAES
ZY (z, o)⊆Q

F (k)
Y }

∪Q
F (k)
Z . (9)

Define QF
Y =

⋃
k≥0 Q

F (k)
Y and QF

Z =
⋃

k≥0 Q
F (k)
Z . Intu-

itively, for each Y -state y, y ∈ Q
F (k)
Y \QF (k−1)

Y means that
the controller can ensure to reachXF∪{sF } in k steps. Then

we define a distance function dist : QAES
Y ∪ QAES

Z → N ∪
{∞} by: for each Y -state y ∈ QAES

Y ,

dist(y)=

{
k , if y ∈ Q

F (k)
Y \QF (k−1)

Y

∞ , if y /∈ QF
Y

, (10)

and the same for each Z-state z ∈ QAES
Z .

The complete synthesis algorithm is shown in Algorithm 1.
After constructing the AES and the distance function dist,
we extract a deterministic BTS from the AES by procedure
Extract(·). The complexity of the algorithm is exponential
in the size of the system. However, it is known that such
an exponential complexity is unavoidable for partially-
observed synthesis problem. The following theorem shows
the correctness of the proposed algorithm.

Theorem 1. Algorithm 1 is both sound and complete,
i.e., its output is a solution to Problem 1, and if it returns
“no solution”, then Problem 1 has no solution.

7. ILLUSTRATIVE CASE STUDY

We revisit the motivating example in Section 2. The mobil-
ity of the robot can be modeled as the non-deterministic

Algorithm 1: Unpredictable Controller Synthesis

Input: system G, scLTL formula φ
Output: controller CT

1 construct DFA Aφ for φ
2 construct product system of G and Aφ

3 construct the AES AES(G)
4 compute distance function dist by Equation (10)

5 if Y AES
0 ∩QF

Y = ∅ then
6 return no solution exists
7 else
8 T ← Extract(AES(G), dist)
9 return decoded controller CT from T

10 procedure Extract(AES(G), dist)

11 pick an initial y0 ∈ Y AES
0 ∩QF

Y and add y0 into T
12 while T is not complete do
13 for incomplete Y -state y in T do

14 find y
u−→ z in the AES s.t. dist(z) < dist(y)

15 add state z to QT
Z and transition y

u−→ z to

δTY Z

16 for incomplete Z-state z in T do
17 add all successor Y -states and the associated

transitions in the AES to T

transition system shown in Fig. 3(a). For instance, both
(2, c1, 4) and (2, c1, 5) are legal transitions, which means
that the robot can reach Region 4 or 5 from Region 2 under
the control action c1, but it cannot decide for sure which
region it will reach. We choose AP = {P1, P2} and the
labeling function is defined by L(2) = {P1}, L(6) = {P2},
and L(s) = ∅ otherwise.
The task of the robot is to reach Region 2 first and then
reach Region 6 eventually, which can be expressed by the
sc-LTL formula φ = 3(P1 ∧ 3P2). The (modified) DFA
satisfying L(Aφ) = Wordpref (φ) is shown in Fig. 3(b).
The product system is presented in Fig. 3(c), where XF =
{x6} and XF∪{sF } = {x6, x7}. Since both controller and
intruder have full state information of the robot, we have
H̃((x, s)) = H(x) = x, i.e., output function is an identity
map.

Let us consider parameter K = 3, which means that the
intruder should not predict the exact satisfication time of
the robot 3 steps ahead. The AES(G) is shown in Fig. 4,
where circle states represent Y -states and rectangular
states represent Z-states. We use qi to denote the aug-
mented state such that state(qi) = xi. Also, for different

j, qji represent different predictions for xi. For instance,
pred(q14) = (0, 0, 0, 0) and pred(q24) = (0, 0, 1, 0). The deter-
ministic BTS T in line 8 of Algorithm 1 is presented by the
part within the dashed line of Fig. 4. The controller C de-
coded from it works as follows: C(x1) = c1, C(x1x2) = c1,
C(x1x2x4) = c1, C(x1x2x5) = c2, C(x1x2x4x5) = c2,
C(τ) = c1 for any other τ ∈ Path(GC). Regarding predic-
tions, for example, we have h = pred(q14) = (0, 0, 0, 0), H =
pred({q25 , q6}) = {(0, 1, 0, 0), (1, 0, 0, 0)}, and (h,H) ∈ ∆.
The reasons are as followings: (i) h[0] = 0 since x4 /∈ XF ;
and (ii) h[1] = 0 since x4 has the successor x5; and (iii)
for i ∈ {2, 3}, h[i] = 0 since x4x6(x7)

∗ are paths starting
from x4 whose last elements are not in XF . Thus, this

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3972



1 2

3

4

5

6
c1

c2

c1

c1

c1c2

c1

c1

c1 c2

c1

(a) Transition system G

s1 s2

s3 sF

P1 ∧ ¬P2

P2

¬P2¬P1

1

1
P1 ∧ P2

(b) DFA Aφ

x1 x2

x3

x4

x5

x6 x7
c1

c2

c1

c1

c1c2

c1

c1

c1 c2

c1
c1

(c) Product system G̃

Fig. 3. For G̃, we have: x1 = (1, s1), x2 = (2, s2), x3 = (3, s2), x4 = (4, s2), x5 = (5, s2), x6 = (1, s3), x7 = (7, sF ).

q1

q2

q2

q14 , q
1
5

q24 , q
1
5

q14 , q
2
5

q24 , q
2
5

q15

q14

q24

q25

q14

q15 , q6

q25 , q6

q3

q6

q7

q7

q6

q3

c1
c1

c1

c1

c1

c1

c1

c1

c2

c2

c1

c1

c1

Fig. 4. AES(G). Circle states are Y -states, rectangular
states are Z-states. Predictions for each state are
h1 = (0, 0, 0, 0), h2 = (0, 0, 0, 0), h3 = (0, 0, 0, 0),
h1
4 = (0, 0, 0, 0), h2

4 = (0, 0, 1, 0), h1
5 = (0, 0, 0, 0),

h2
5 = (0, 1, 0, 0), h6 = (1, 0, 0, 0), h7 = (0, 0, 0, 0),

where hi denotes the prediction for qi and hj
i for qji .

controller may generate three possible paths shown as the
colored lines in Fig. 2. As we have discussed previously, all
these three paths are 3-step unpredictable.

8. CONCLUSION

In this paper, we formulated and solved a security-aware
controller synthesis problem. The synthesized controller
can ensure both a given scLTL task and the unpredictabil-
ity of the satisfaction time of the task. A novel informa-
tion structure incorporating the effect of control decisions
in the future was provided. We show that our synthesis
algorithm is both sound and complete to the problem. In
this work, we assume that the controller and the intruder
have the same observation. In the future, we plan to relax
this assumption by considering controllers and intruders
with incomparable observation.

REFERENCES

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT press.

Cai, M., Peng, H., Li, Z., and Kan, Z. (2020). Learning-
based probabilistic LTL motion planning with environ-
ment and motion uncertainties. IEEE Trans. Automatic
Control, 66(5), 2386–2392.

Kress-Gazit, H., Lahijanian, M., and Raman, V. (2018).
Synthesis for robots: Guarantees and feedback for robot
behavior. Annual Review of Control, Robotics, and
Autonomous Systems, 1, 211–236.

Lafortune, S., Lin, F., and Hadjicostis, C.N. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266.

Liu, S., Trivedi, A., Yin, X., and Zamani, M. (2022).
Secure-by-construction synthesis of cyber-physical sys-
tems. Annual Reviews in Control.

Shi, W., He, Z., Tang, W., Liu, W., and Ma, Z. (2022).
Path planning of multi-robot systems with boolean
specifications based on simulated annealing. IEEE
Robotics and Automation Letters, 7(3), 6091–6098.

Smith, S.L., Tůmová, J., Belta, C., and Rus, D. (2011).
Optimal path planning for surveillance with temporal-
logic constraints. The Int. J. Robotics Research, 30(14),
1695–1708.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2018). Current-
state opacity enforcement in discrete event systems un-
der incomparable observations. Discrete Event Dynamic
Systems, 28(2), 161–182.

Wang, Y., Nalluri, S., and Pajic, M. (2020). Hyperprop-
erties for robotics: Planning via hyperltl. In IEEE Int.
Conf. Robotics and Automation, 8462–8468.

Xie, Y., Yin, X., and Li, S. (2022). Opacity enforcing
supervisory control using nondeterministic supervisors.
IEEE Transactions on Automatic Control, 67(12), 6567–
6582.

Xie, Y., Yin, X., Li, S., and Zamani, M. (2021). Secure-by-
construction controller synthesis for stochastic systems
under linear temporal logic specifications. In IEEE
Conf. Decision and Control, 7015–7021. IEEE.

Yang, S. and Yin, X. (2022). Secure your intention: On
notions of pre-opacity in discrete-event systems. IEEE
Trans. Automatic Control.

Yang, S., Yin, X., Li, S., and Zamani, M. (2020). Secure-
by-construction optimal path planning for linear tem-
poral logic tasks. In IEEE Conf. Decision and Control,
4460–4466.

Yin, X. and Lafortune, S. (2016). A uniform ap-
proach for synthesizing property-enforcing supervisors
for partially-observed discrete-event systems. IEEE
Trans. Automatic Control, 61(8), 2140–2154.

Yu, X., Yin, X., Li, S., and Li, Z. (2022). Security-
preserving multi-agent coordination for complex tem-
poral logic tasks. Control Eng. Practice, 123, 105130.

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

3973


