
4710 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

A Unified Framework for Verification of Observational Properties for
Partially-Observed Discrete-Event Systems

Jianing Zhao , Student Member, IEEE, Shaoyuan Li , Senior Member, IEEE,
and Xiang Yin , Member, IEEE

Abstract—In this article, we investigate property verification
problems in partially-observed discrete-event systems (DES). Par-
ticularly, we are interested in verifying observational properties
that are related to the information-flow of the system. Obser-
vational properties considered here include diagnosability, pre-
dictability, detectability, and opacity, which have drawn consider-
able attentions in the literature. However, in contrast to existing
results, where different verification procedures are developed for
different properties case by case, in this work, we provide a unified
framework for verifying all these properties by reducing each of
them as an instance of HyperLTL model checking. Our approach is
based on the construction of a Kripke structure that effectively cap-
tures the issue of unobservability as well as the finite string seman-
tics in partially-observed DES so that HyperLTL model checking
techniques can be suitably applied. Then for each observational
property considered, we explicitly provide the HyperLTL formula to
be checked over the Kripke structure for the purpose of verifica-
tion. Our approach is uniform in the sense that all different prop-
erties can be verified with the same model checking engine and
also brings new insights for classifying observational properties
in terms of their verification complexity. Numerical experiments
are conducted, which show that our framework is computationally
more efficient for verifying properties involving quantifier alterna-
tions, such as opacity, compared with the standard subset-based
approaches.

Index Terms—Discrete-event systems (DES), HyperLTL, partial
observation, property verification.

I. INTRODUCTION

Discrete-Event systems (DES) is an important class of complex
engineering systems with discrete state spaces and event-triggering
dynamics [6]. It is widely used in the modeling and analysis of the
high-level logic behaviors of complex automated systems, such as
manufacturing systems, softwares, and autonomous robots. Given a
DES, one of the most fundamental problems is to determine whether
or not the designed system satisfies some desired specifications of our
interest by formal and algorithmic procedures. This is also referred to
as the property verification problem, which is critical to ensure safety
and security of DES [18].

Manuscript received 20 June 2023; revised 10 December 2023; ac-
cepted 6 January 2024. Date of publication 18 January 2024; date of
current version 28 June 2024. This work was supported by the National
Natural Science Foundation of China under Grant 62061136004, Grant
62173226, and Grant 61803259. Recommended by Associate Editor
Cristian Mahulea. (Corresponding author: Xiang Yin.)

The authors are with the Department of Automation, Shanghai Jiao
Tong University, Shanghai 200240, China, and also with the Key Labo-
ratory of System Control and Information Processing, the Ministry of Ed-
ucation of China, Shanghai 200240, China (e-mail: jnzhao@sjtu.edu.cn;
syli@sjtu.edu.cn; yinxiang@sjtu.edu.cn).

Digital Object Identifier 10.1109/TAC.2024.3355378

In many scenarios, DES are partially-observed either from the
system-user’s point of view due to the limited sensing capabilities,
or from the outsider’s point of view due to the partial information
release [11]. In this context, one may need to determine whether or
not the observer has sufficient knowledge about the system based
on both the DES model and the partial observations. Such proper-
ties related to the information-flow of the partially-observed DES are
referred to as the observational properties. In this article, we are
concerned with the verifications of observational properties for partially
observed DES.

Property verification of partially-observed DES dates back to the
early investigations of supervisory control of partially-observed DES,
where the notion of observability was investigated [17]. In this setting,
it is usually assumed that the behaviors of the systems can only be
observed partially via a natural projection or an observation mask, and
one needs to determine whether or not the imperfect information is
sufficient to realize a supervisor. Later on, verification of partially-
observed DES has been investigated more thoroughly in the contexts of
fault diagnosis, fault predication, state detection, and security analysis.
See the recent textbook [11] and tutorial paper [29] for more details on
this topic.

Here, we briefly review some important observational properties that
are considered in this work as follows. The notion of diagnosability is
one of the most widely investigated observational properties in DES
literature [22], which characterizes the ability that one can always
determine the occurrences of fault events within a finite delay. As the
dual of the fault diagnosis problem, the property of prognosability or
predictability was proposed in [10] and [13] for the fault prognosis
problem, which provides the necessary and sufficient condition un-
der which the fault can always be predicted with no false-alarm or
miss-alarm. In the context of state estimation of partially-observed
DES, Shu and Lin [23], [24], [25] proposed several different notions
of detectability to characterize whether or not the system state can be
determined unambiguously. More recently, motivated by the security
and privacy considerations in cyber-physical systems, the notion of
opacity has drawn many attentions, where it is assumed that there exists
a passive intruder (eavesdropper) that can access the information-flow
of the system and the system has some “secret” that does not want to
be revealed to the intruder [5]. Depending on different security require-
ments, different notions of opacity have been studied including, e.g.,
initial-state opacity [21], current-state opacity [16], and infinite-step
opacity [20].

While there is a wide literature on the verification of observa-
tional properties for partially-observed DES, several problems still
remain. In particular, the existing approaches for the verification of
partially-observed DES are mainly based on the observer structure
and its variants [6]. For some properties, such as diagnosability, pre-
dictability, and strong detectability, researchers have further proposed
polynomial-time algorithms [13], [14], [30]. However, the existing
verification techniques are mainly developed for different properties
case by case. The following questions arise naturally.
1) Can we provide a unified methodology for verifying the existing

notions of observational properties in literature without investigat-
ing each of them case by case?

1558-2523 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1579-0522
https://orcid.org/0000-0003-3427-2912
https://orcid.org/0000-0003-1944-1570
mailto:jnzhao@sjtu.edu.cn
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024 4711

2) Can we find a suitable way to classify different notions of observa-
tional properties in literature in terms of their similarities and the
verification complexity?

In this article, we aim to answer the above two questions by pro-
viding a unified approach for verifying partially-observed DES. Our
approach relies on the recently developed new temporal logic called
HyperLTL [7]. HyperLTL generalizes the standard linear-time temporal
logic (LTL), which is evaluated over only a single trace, by adding
quantifiers among different traces. HyperLTL has been shown as a very
suitable tool for expressing information-flow properties (also called
hyperproperties [8]) in the context of formal verification. Specifically,
our uniform framework consists of two steps. First, for a DES plant
model, we construct the corresponding (modified) Kripke structure that
tracks both the state information and the observation information in
the system. The issue of unobservability is effectively handled by the
proposed structure. Next, we show that most of the observational prop-
erties in DES literature can be captured by explicit HyperLTL formulas
over the constructed Kripke structure. These properties include, but
not restricted to, diagnosability, predictability, (strong/weak/I-/delayed)
detectability, and (initial-state/current-state/infinite-step) opacity.

Although verification algorithms already exist for these observa-
tional properties in literature, our unified approach is still of significance
in threefold as follows.
1) First, our approach is uniform in the sense that all properties are

expressed using the same logic over the same Kripke structure.
As a consequence, one does not need to develop a customized
verification algorithm for each property case by case any more.

2) Second, by expressing observational properties of DES in terms of
HyperLTL, the proposed unified framework provides the access to
HyperLTL model checking algorithms for the property verification,
based on which one can leverage many highly optimized efficient
tools, such as MCHyper [9], HyperQube [12], and AutoHy-
per [3]. Particularly, we show by numerical experiments that our
unified approach is more efficient than the standard DES algorithms
for the properties involving quantifier alternations, such as weak
detectability and opacity.

3) Finally, by writing down each observational property explicitly
in HyperLTL, our framework naturally provides a complexity
hierarchy for different properties in terms of the alternation depth
of the quantifiers.

We would like to remark that, although HyperLTL itself is a tool for
specifying information-flow properties, it cannot be directly applied
to check observational properties in DES due to the following two dis-
crepancies. The first technical challenge is the presence of unobservable
events. Specifically, observational properties are evaluated over the ob-
servation sequence to which an unobservable event does not contribute.
This is different from the standard HyperLTL model checking where
the time-indexes of the internal trace and its information-flow are the
same. Second, the semantics of HyperLTL are defined over infinite
traces while observational properties in DES are usually concerned
with finite strings. For example, although initial-state opacity has been
expressed using HyperLTL (not for DES models and without unobserv-
able events) [1], [28], it has been pointed out by [18] that expressing
current-state opacity or infinite-step opacity in terms of HyperLTL is
technically challenging due to the fact that the quantification acts at the
beginning of trajectories rather than every instant of trajectories. All
these technical challenges in applying HyperLTL to DES have been
addressed in our results.

Finally, we note that model checking techniques have already been
used in literature for the verification of partially-observed DES. For
example, model checking for diagnosability of DES is studied in [4],
[19], and [27]. However, these works still use model checking over
single trace, such as LTL model checking. In order to capture the
system-wide requirements in observational properties, existing works
need to build the information structure for the underlying specific
property, such as twin-plant for diagnosability. However, here we use

HyperLTL directly, which does not need to construct an information-
synchronization structure for each specific property.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events (or alphabets). A finite (respectively,
infinite) string s=σ1 · · ·σn(· · ·), σi∈Σ is a finite (respectively, infi-
nite) sequence of events. We denote by Σ∗ and Σω the sets of all finite
and infinite strings over Σ, respectively. The empty string ε is included
in Σ∗. The length of a finite string s∈Σ∗ is denoted by |s| and|ε|=0.
A ∗-language (respectively, ω-language) is a set of finite (respectively,
infinite) strings. Given a language L ⊆ Σ∗ ∪ Σω , the prefix closure
of language L, denoted by L, is defined as the set of all its finite
prefixes, i.e., L={s ∈ Σ∗ :∃w∈Σ∗ ∪Σω s.t. sw∈L}. A ∗-language
L ⊆ Σ∗ is said to be prefix closed if L=L. Given any string s∈L, the
postlanguage of s in L is defined as L/s={w ∈ Σ∗ ∪ Σω :sw∈L}.

We consider a DES modeled by a finite-state automaton (FSA)

G = (X,Σ, δ,X0),

whereX is a finite set of states;Σ is a finite set of events; δ :X × Σ→X
is a partial transition function such that: for any x, x′ ∈X and σ∈Σ,
x′=δ(x, σ) means that there exists a transition from state x to state x′

with event labelσ; andX0 ⊆ X is the set of all possible initial states. We
also extend the transition function to δ :X × Σ∗→X recursively by: 1)
δ(x, ε)=x; and 2) for anyx∈X , s∈Σ∗, andσ∈Σ, we have δ(x, sσ)=
δ(δ(x, s), σ). We define L(G,x)={s ∈ Σ∗ : δ(x, s)!} as the set of
finite strings that can be generated by system G from state x∈X .
For simplicity, we define L(G)=∪x0∈X0

L(G,x0) as the ∗-language
generated by system G. Similarly, we define Lω(G,x) = {s ∈ Σω :

∀t ∈ {s} s.t. δ(x, t)!} as the infinite strings generated by system G
starting from x ∈ X and we also define Lω(G) = ∪x0∈X0

Lω(G,x0).
In a partially-observed DES, not all events can be observed perfectly.

To this end, we consider an observation mask function

M : Σ → O ∪ {ε}

where O is the set of observation symbols. An event σ∈Σ is said to be
unobservable ifM(σ)=ε; otherwise, it is observable. We denote byΣo

and Σuo the sets of observable and unobservable events, respectively.
Moreover, events σ, σ′ ∈Σ are said to be indistinguishable if M(σ)=
M(σ′). The mask function is also extended toM :Σ∗ ∪ Σω→O∗ ∪ Oω

such that, for any s ∈ L(G), we have 1) M(ε)=ε; and 2) for any
s∈Σ∗, σ∈Σ, we have M(sσ)=M(s)M(σ). We also extend mask
to M :2Σ

∗∪Σω →2O
∗∪Oω

by: for any L ⊆ Σ∗ ∪Σω :M(L)={M(s) :
s∈L}. Therefore, M(L(G)) and M(Lω(G)) are the observed ∗- and
ω-languages generated by system G, respectively.

For simplicity, we make the following standard assumptions in the
analysis of partially-observed DES.
A1 System G is live, i.e., ∀x ∈ X, ∃σ ∈ Σ : δ(x, σ)!.
A2 System G does not contain an unobservable cycle, i.e., ∀x ∈

X, ∀s ∈ Σ∗ \ {ε} : x = δ(x, s) ⇒M(s) �= ε.
Since the system is partially-observed, the system-user needs to

determine the state of the system based on the observation string, which
is referred to as the state estimation problem. In this article, we will
consider the following three types of state estimates. All properties
of partially-observed DES in this article will be defined using state
estimates [29].

Definition 1 (State Estimates): Let α∈M(L(G)) be an observation
string. Then
1) the initial-state estimate upon observation α is the set of initial

states the system could start from initially, i.e.,

X̂G,0(α)={x0∈X0 : ∃s∈L(G,x0) s.t. M(s)=α} (1)

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

4712 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

2) the current-state estimate upon observation α is the set of states
the system could be in currently, i.e.,

X̂G(α)=

{
δ(x0, s)∈X :

∃x0∈X0, s∈L(G,x0)
s.t. M(s)=α

}
. (2)

Furthermore, let αβ ∈M(L(G)) be an observation string, where α
is a prefix of the entire observation αβ. Then
1) the delayed-state estimate for the instant ofα upon observationαβ

is the set of states the system could be in |β| steps ago when αβ is
observed, i.e.,

X̂G(α | αβ)=
{
δ(x0, s)∈X:

∃x0∈X0, sw∈L(G,x0) s.t.
M(s)=α ∧M(sw)=αβ

}
. (3)

B. LTL and HyperLTL

Let AP be a set of atomic propositions representing some basic
properties of interest. A trace π = π0π1 · · · ∈ (2AP)ω is an infinite
sequence over 2AP . We denote by π[i] = πi the ith element in the trace
and by π[i,∞] = πiπi+1 · · · ∈ (2AP)ω its suffix starting from the ith
instant. LTL is a widely used approach for evaluating whether or not a
trace π satisfies some desired property. The syntax of LTL formulas is
as follows:

ψ ::= a | ¬ψ | ψ ∨ ψ | ©ψ | ψUψ,

where a∈AP is an atomic proposition; ¬ and ∨ are Boolean operators
“negation” and “disjunction,” respectively, and © and U are temporal
operators “next” and “until,” respectively. We can induce Boolean oper-
ators, such as “implication” byψ1→ψ2≡¬ψ1 ∨ ψ2 and “conjunction”
by ψ1 ∧ ψ2≡¬(¬ψ1 ∨ ¬ψ2). Furthermore, we can induce temporal
operators “eventually” by ♦ψ ≡ �Uψ and “always” by�ψ ≡ ¬♦¬ψ.
The semantics of LTL can be found in [2]. We denote by π |=ϕ that
trace π satisfies LTL formula ϕ.

Note that LTL can only evaluate a single trace. In many applications,
the desired property is system-wide and can only be evaluated among
multiple traces. For example, in diagnosability analysis, we need to
check the existence of two strings with the same observation: one is
fault but the other is normal. HyperLTL generalizes LTL by further
supporting trace quantifiers. Let V={π1, π2, . . .} be the set of trace
variables, where each πi represents an individual trace. The syntax of
HyperLTL formulas is as follows [7]:

φ ::= ∃π. φ | ∀π. φ | ψ,
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ©ψ | ψUψ

where ∃ and ∀ are the universal and the existential trace quantifiers,
representing “for some trace” and “for all traces,” respectively. Formula
ψ is just an LTL formula except that the atomic propositions can refer
to distinct trace variables. Particularly, since HyperLTL formulas can
refer to multiple traces, we denote by aπ an atomic proposition a ∈ AP
that should be checked on trace π.

The semantics of HyperLTL are defined over a set of traces T ⊆
(2AP)ω and a partial mapping (called trace assignment) Π:V→
(2AP)ω . In particular, we denote by Π∅ the empty assignment whose
domain is the empty set ∅. We denote by Π[π �→ ξ] the same trace
assignment as Π expect that π is mapped to ξ. The trace assignment
suffix Π[i,∞] denotes the trace assignment Π′(π) = Π(π)[i,∞] for all
π. Then we denote by (T,Π) |= φ that HyperLTL φ is satisfied over
a set of traces T ⊆ (2AP)ω and trace assignment Π : V → (2AP)ω ,

which is defined as follows:

(T,Π) |= ∃π.φ iff ∃ξ ∈ T : (T,Π[π �→ ξ]) |= φ
(T,Π) |= ∀π.φ iff ∀ξ ∈ T : (T,Π[π �→ ξ]) |= φ
(T,Π) |= aπ iff a ∈ Π(π)[0]
(T,Π) |= ¬ψ iff (T,Π) � ψ
(T,Π) |= ψ1 ∨ ψ2 iff (T,Π) |= ψ1 or (T,Π) |= ψ2

(T,Π) |= ©ψ iff (T,Π[1,∞]) |= ψ
(T,Π) |= ψ1Uψ2 iff (∃i ≥ 0 : (T,Π[i,∞]) |= ψ2)∧

(∀0 ≤ j < i : (T,Π[j,∞]) |= ψ1) .

We say a set of traces T ⊆ (2AP)ω satisfy a HyperLTL formula φ,
denoted by T |= φ, if (T,Π∅) |= φ.

C. Kripke Structure

In model checking of HyperLTL, the set of traces T ⊆ (2AP)ω are
usually generated by a Kripke structure. Formally, a Kripke structure is
a tuple K=(Q,Q0,Δ,AP, L), where Q is the set of states, Q0 ⊆ Q
is the set of initial states, Δ ⊆ Q×Q is the transition relation, AP is
the set of atomic propositions and L :Q→2AP is the labeling function.

We say ρ=ρ0ρ1 . . .∈Qω is a run in K if ρ0∈Q0 and 〈ρi, ρi+1〉∈
Δ, ∀i≥0. We say π=π0π1 . . .∈(2AP)ω is a trace in K if there exists
a run ρ=ρ0ρ1 . . .∈Qω such that πi=L(ρi), ∀i≥0. We denote by
Run(K) and Trace(K) the sets of all runs and traces generated byK,
respectively. Then we say that a Kripke structureK satisfies HyperLTL
formula φ, denoted by K |=φ, if Trace(K) |=φ.

III. PARTIALLY-OBSERVED DES IN KRIPKE STRUCTURE

The main objective of this article is to use HyperLTL model checking
techniques to solve the observational property verification problems
for partially-observed DES. To this end, we need to transform the
FSA model for DES into a Kripke structure for the purpose of model
checking.

In HyperLTL model checking, atomic propositions are usually as-
signed to each state or transition in the system model. However, in
the setting of partially-observed DES, we note that, for any internal
string s=σ1σ2 · · ·∈Σω , its observation string is M(α)=o1o2 · · ·∈
Oω , where for each i≥1, oi is not necessarily the observation of event
σi, since there may exist unobservable strings in between. Therefore,
the time-indexes of the internal string and its information-flow may
be mismatched. We also cannot assign the empty proposition to those
unobservable transitions since it means “no property of interest,” which
is different from the empty observation.

To address unobservability, let x, x′ ∈X be two states in G and
o∈Δ ∪ {ε} be an observation symbol including the empty observation
ε. We denote by x�o x′ if x can reach x′ via some string whose
observation is o, i.e., ∃s∈L(G,x) such that δ(x, s)=x′ andM(s)=o.
Without unobservable event, the above string s must be a single event
when o∈Δ, and be ε when o=ε. However, for the general case, s can
be a string with more than one event even when o=ε.

Now, we present how to construct the Kripke structure associated
with a DES for the purpose of verification of observational properties.

Definition 2 (Kripke Structure for DES): Given partially-observed
DES G with mask M : Σ → O ∪ {ε}, its associated Kripke structure
is defined by

KG = (Q,Q0,Δ,AP, L)
where
1) Q ⊆ X × (O ∪ {ε}) is the set of states;
2) Q0 = {(x, ε) ∈ X × {ε} : ∃x0 ∈ X0 s.t. x0�ε x} is the set of

initial states;
3) Δ ⊆ Q×Q is the transition function defined by: for any two states
q = (x, o), q′ = (x′, o′) ∈ Q, we have

〈(x, o), (x′, o′)〉 ∈ Δ iffx
o′�x′ ∧ o′ ∈ O

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024 4713

Fig. 1. Example for a partially-observed DES and its Kripke structure.
(a) System G. (b) Kripke structure KG.

4) AP = X ∪ O is the set of atomic propositions;
5) L : Q→ 2AP is the labeling function defined by: for each q =

(x, o) ∈ Q, we have

L(q) =

{{x}, if q ∈ Q0

{x, o}, if q /∈ Q0.
(4)

Intuitively, for each state (x, o) inKG, the first componentx captures
the current state of G and the second component o captures the latest
observation symbol happened in G. At each state (x, o), when a
feasible string s ∈ L(G,x) such that M(s)=o′ occurs, the Kripke
structure moves to new state (δ(x, s), o′), where the first component is
determined by the transition function in G and the second component
simply records the observed symbol. Note that the above string s may
be in the form of s=w1σw2, wherew1, w2∈Σ∗

uo andM(σ)=o. Since
there is no event observed initially, the initial state is of form (x, ε). The
labeling function assigns the state symbolx and the observation symbol
o as the atomic propositions hold at each (x, o). Therefore, the trace
information inKG already contains both the state sequence information
and the observation sequence information, which are sufficient for the
purpose of verifying observational properties of G. An example of the
construction of KG for G is given in Fig. 1 for the illustration.

To formally see the connection betweenG andKG, let us consider an
arbitrary infinite string s ∈ Lω(G,x0) in G. Note that, we can always
write s in the form of

s = w0σ1w1σ2w2 · · · ∈ Σω

where eachwi ∈ Σ∗
uo is an unobservable string and each σi ∈ Σo is an

observable event with M(σi) = oi. Let

x00 · · ·x|w0 |
0︸ ︷︷ ︸

visited along w0

x01 · · ·x|w1 |
1︸ ︷︷ ︸

visited along σ1w1

x02 · · ·x|w2 |
2︸ ︷︷ ︸

visited along σ2w2

· · · ∈ Xω (5)

be the infinite sequence of states visited along s from x0, where x00=
x0. Note that, in the construction of KG, upon each observation, we
will “jump” directly to a state without considering the states visited
by unobservable strings in between. Therefore, we know that, for any
of the indexes k0, k1, . . . , where ki ∈ {0, . . . , |wi|}, the following run
exists in KG:

ρ = (xk0
0 , ε)(xk1

1 , o1)(x
k2
2 , o2) · · · ∈ Run(KG).

We call such a run compatible with string s from initial state x0. Since
the choices of the indexes k0, k1, . . . are not unique, we denote by
Run(s, x0) ⊆ Run(KG) the set of all runs that are compatible with s
and x0. Note that when s ∈ L(G,x0) is a finite string, there also exists
a finite run that is compatible with s and x0. With a slight abuse of
notation, we still denote this by ρ ∈ Run(s, x0).

On the other hand, for any run

ρ = (x0, ε)(x1, o1)(x2, o2) · · · ∈ Run(KG)

by construction, we have xi�oi+1 xi+1. Therefore, we can always
find an initial state x̂0 ∈ X0 and an infinite string s ∈ Lω(G, x̂0) such
that M(s) = o1o2 · · · and each xi is reached by a prefix of s whose
observation is o1o2 · · · oi. That is, ρ ∈ Run(s, x̂0).

We illustrate the construction of Kripke structure KG from DES G
by the following example.

Example 1: Let us consider system G shown in Fig. 1(a),
whereX={0, 1, 2, 3, 4, 5},Σo={a, b, c, d},Σuo={u1, u2, f},O =
{o1, o2, o3} and the observation mask M : Σ → O is defined by:
M(a)=M(b)=o1,M(c)=o3,M(d)=o2, and M(u1)=M(u2)=
M(f)=ε. The initial states of KG are (0, ε) and (3, ε) since the
system may reach state 3 from the initial state 0 via unobserv-
able string u1. From state (0, ε), by observing symbol o1, one
may reach states 1,2,4, and 5. Therefore, transitions from (0, ε)
to states (1, o1), (2, o1), (4, o1), and (5, o1) are all defined in KG.
The labeling function can be encoded directly from the state, e.g.,
L((0, ε))={0} and L((1, o1))={1, o1}. For example, let us consider
initial-state x0 = 0 and infinite string s=u1bu2f(d)

ω∈Lω(G) with
M(s)=o1(o2)

ω . Then a run in KG compatible with s and x0 can
be, e.g., (0, ε)(4, o1)(2, o2)ω∈Run(s, x0) or (3, ε)(1, o1)(2, o2)

ω∈
Run(s, x0).

IV. MAIN RESULTS

In this section, we consider the verification of all observational
properties including diagnosability, predictability, detectability, and
opacity in a unified manner using HyperLTL on the constructed Kripke
structure for DES.

A. Diagnosability and Predictability in HyperLTL

For the fault diagnosis/prognosis problem, it is generally assumed
that systemGmay contain some faults modeled as a set of fault events
ΣF ⊆ Σ. With a slight abuse of notation, for any string s ∈ Σ ∪ Σω , we
denote by ΣF ∈ s if string s contains a fault event in ΣF. For simplicity,
we assume that the state-space of G is partitioned as X = XN∪̇XF,
where XN is the set of normal states and XF is the set of fault states
such that

∀x0 ∈ X0 ∀s ∈ L(G,x0) : ΣF ∈ s⇔ δ(x0, s) ∈ XF. (6)

Note that this assumption is without loss of generality, since we can
always refine the state-space of G such that the partition holds.

Diagnosability then characterizes whether or not we can always
detect the occurrence of a fault event within a finite number of steps.
To this end, we define

ΨF = {s ∈ L(G) : ΣF ∈ s ∧ (∀t ∈ {s} \ {s} : ΣF /∈ t)}
as the set of strings in which fault event occurs for the first time. The
notion of diagnosability is reviewed as follows [22].

Definition 3 (Diagnosability): Given system G, observation mask
M : Δ → O ∪ {ε} and fault events ΣF ⊆ Σ, we say system G is
diagnosable if any occurrence of fault can always be determined within
a finite number of delays, i.e.,

(∃n ∈ N)(∀s ∈ ΨF)(∀t ∈ L(G)/s)

[|M(t)| ≥ n⇒ X̂G(M(st)) ⊆ XF]. (7)

When it refers to fault prediction, the objective is to predict the
occurrences of fault events in advance such that

i) there is no miss-alarm in the sense that any fault can be alarmed
before it occurs;

ii) there is no false-alarm in the sense that, once a fault alarm is issued,
fault events will occur inevitably.

To define the notion of predictability, it is convenient to define
1) the set of boundary states ∂(G), which is the set of normal states

from which a fault event can occur in the next step, i.e.,

∂(G) = {x ∈ XN : ∃σ ∈ ΣF s.t. δ(x, σ)!}
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

4714 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

2) the set of indicator states I(G), which is the set of normal states
from which the system will enter fault states inevitably within a
finite number of steps, i.e,

I(G) =

{
x ∈ XN :

∃n ∈ N ∀s ∈ L(G,x)
s.t. |s| ≥ n⇒ δ(x, s) ∈ XF

}
.

Using the notions of boundary states and indicator states, we recall
the definition of predictability as follows [10].

Definition 4 (Predictability): Given system G, observation mask
M : Δ → O ∪ {ε}, and fault events ΣF ⊆ Σ, we say system G is
predictable if the occurrence of fault can always be alarmed before
it happens, i.e.,

(∀x0 ∈ X0)(∀s ∈ L(G,x0) : δ(x0, s) ∈ ∂(G))

(∃t ∈ {s})[X̂G(M(t)) ⊆ I(G)]. (8)

Before expressing diagnosability in HyperLTL, we introduce some
notation simplifications. For any trace variable π, we define Fπ as the
proposition that the trace is at a fault state, i.e., Fπ ≡ ∨

x∈XF
xπ . Also,

let π1 and π2 be two trace variables. Then we define

oπ1 = oπ2 iff
∧
o∈O

oπ1 ↔ oπ2

which is the proposition that π1 and π2 are observational-equivalent at
the initial instant. As such, formula �(oπ1 =oπ2) represents that two
infinite traces π1, π2 are observational-equivalent at any instants.

Now, we present the following theorem, stating how to formulate
diagnosability of G using HyperLTL for Kripke structure KG. Due to
space constraints, all proofs are omitted in this article. All proofs as
well as more illustrative examples can be found in [31].

Theorem 1 (HyperLTL for Diagnosability): System G is diag-
nosable if and only if KG |= φdia, where

φdia = ∀π1.∀π2. [♦Fπ1 ∧�(oπ1 = oπ2) → ♦Fπ2] . (9)

Intuitively, the above theorem says that, to make the system di-
agnosable, for any two infinite strings having the same observation,
if one string contains a fault event, i.e., ♦Fπ1 , then the other string
should also contain a fault event, i.e., ♦Fπ2 . Otherwise, if �¬Fπ2 ,
since �(oπ1 =oπ2), then the fault in the former string can never be
determined within any finite number of steps.

We show the verification of diagnosability by an example.
Example 2: Let us still consider system G shown in Fig. 1(a) with

Kripke structure KG in Fig. 1(b). Here, we further assume ΣF ={f},
i.e., XF={2}. One can observe that G is diagnosable since one can
claim the occurrence of fault immediately after observing symbol o2.
Now, we show how this is captured by Theorem 1 using our framework.
Taking the negation of φdia, we have

¬φdia = ∃π1.∃π2. [♦Fπ1 ∧�(oπ1 = oπ2) ∧�¬Fπ2] .

To satisfy Fπ1 , trace π1 must be of form π1 = · · · {2, o2}ω , while to
satisfy�¬Fπ2 = ¬♦Fπ2 , trace π2 must be of form π2 = · · · {5, o3}ω .
However, this implies that �(oπ1 = oπ2) cannot be further satisfied.
Therefore, we have KG |= φdia.

For the case of predictability, we observe that, a system is not
predictable if for some string that goes to a boundary state x1 ∈ ∂(G),
there exists another string that goes to a normal but nonindicator state
x2 ∈ XN \ I(G) such that they have the same observation. This is
because, from the former state x1, a fault event can occur immediately,
while from the latter state x2, some nonfault string can still execute
infinitely. In the context of traces in Kripke structure KG, the former
string can be captured by a trace π1 such that ♦Fπ1 , while the second
string can be captured by a trace π2 such that ¬♦Fπ2 . Furthermore,
the observation equivalence condition is only applied before the first

occurrence of fault in π1. Therefore, ♦Fπ1 and the truncated observa-
tion equivalence can be captured together by (oπ1 =oπ2)UFπ1 . This
suggests that G is not predictable if

∃π1.∃π2. [(o
π1 = oπ2)UFπ1 ∧ ¬♦Fπ2] .

Then by taking the negation of the existence of such two traces, we
obtain the following main theorem for predictability.

Theorem 2 (HyperLTL for Predictability): System G is pre-
dictable if and only if KG |= φpre, where

φpre = ∀π1.∀π2. [(o
π1 = oπ2)UFπ1 → ♦Fπ2] . (10)

B. Detectability in HyperLTL

Detectability is a property characterizing whether or not the precise
state of the system can be determined unambiguously under imperfect
observations. Depending on the specific detection requirements, various
notions of detectability have been proposed in literature. In this section,
we consider variants of detectability including I-detectability, strong
detectability, weak detectability, and delayed detectability, and show
how each of them can be formulated in terms of the HyperLTL formula.

First, we review some existing notions of detectability.
Definition 5 (Detectability): Given systemG and observation mask

M : Σ → O ∪ {ε}, we say system G is
1) I-detectable [23] if the initial-state of the system can always be

determined after a finite number of observations, i.e.,

(∃n ∈ N)(∀α ∈M(L(G)) : |α| ≥ n)[|X̂G,0(α)| = 1].

2) Strongly detectable [25] if the current-state of the system can
always be determined after a finite number of observations, i.e.,

(∃n ∈ N)(∀α ∈M(L(G)) : |α| ≥ n)[|X̂G(α)| = 1].

3) Weakly detectable [25] if the current-state and the subsequent
states of the system can be determined after a finite number of
observations for some trajectory of the system, i.e.,

(∃n ∈ N)(∃α ∈M(Lω(G)))

(∀β ∈ {α} : |β| ≥ n)[|X̂G(β)| = 1].

4) Delayed-detectable [24] if the precise state of the system at any
instant can be determined after some observation delays, i.e.,

(∃n∈N)(∀αβ∈M(L(G)) : |β|≥n)[|X̂G(α | αβ)|=1].

Now, we formulate the above variants of detectability using Hyper-
LTL. Based on different types of state-estimates, we present our result
in three parts in what follows.

Still, before expressing detectability in HyperLTL, we define some
notation simplifications for HyperLTL formulas. For any trace variable
π, we define Xπ

0 as the proposition that the trace starts from an initial
state in G, i.e., Xπ

0 ≡ ∨
x∈X0

xπ . Furthermore, for trace variables π1

and π2, we define xπ1 = xπ2 as the proposition that the states of π1

and π2 at the initial instant are equivalent, i.e.,

xπ1 = xπ2 iff
∧
x∈X

xπ1 ↔ xπ2

We denote by xπ1 �=xπ2 if ¬(xπ1 =xπ2), which means that π1[0] and
π2[0] are not state-equivalent.

The following theorem states how to formulate I-detectability of G
using HyperLTL for Kripke structure KG.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024 4715

Theorem 3 (HyperLTL for I-Detectability): System G is
I-detectable if and only if KG |= φid, where

φid = ∀π1.∀π2.

[
[Xπ1

0 ∧Xπ2
0 ∧�(oπ1 = oπ2)]

→ (xπ1 = xπ2)

]
. (11)

Intuitively, the above theorem says that, for any two infinite traces in
KG that are initiated from actual initial-states inG, if they always have
the same observation proposition, then they must have the same state
proposition initially. Otherwise, there exist two infinite traces starting
from two distinct initial-states but having the same observation, which
violates the requirement of I-detectability.

Next, we consider the cases of strong detectability and weak de-
tectability. Compared with I-detectability, where two infinite traces
need to have the same state proposition initially, strong detectability
requires that two infinite traces need to converge to the same state
proposition. Such a convergence requirement can be captured by the
combination of temporal operators “always eventually”♦�. Recall that,
in LTL, π |=♦�ϕ, if there exists i≥0 such that for any j≥ i, we have
π[j,∞] |=ϕ.

Now we present the following theorem stating how to formulate
strong detectability using HyperLTL.

Theorem 4 (HyperLTL for Strong Detectability): System G is
strongly detectable if and only if KG |= φsd, where

φsd=∀π1.∀π2. [�(oπ1 = oπ2) → ♦�(xπ1 = xπ2)] . (12)

The case of weak detectability is similar to the strong counterpart.
The main difference is that, for strong detectability, we require that
for all traces, we can eventually determine its state, while weak de-
tectability only requires the existence of such a trace. Therefore, the
HyperLTL condition φwd for weak detectability simply replaces the
first universal quantifier ∀ in φsd by an existential quantifier ∃. Note
that, although Theorem 5 seems to be similar to Theorem 4, there
is significant difference here: ∀.∀. in φsd does not require quantifier
alternation, while ∃.∀. in φwd has one time of quantifier alternation.

Theorem 5 (HyperLTL for Weak Detectability): System G is
weakly detectable if and only if KG |= φwd, where

φwd=∃π1.∀π2. [�(oπ1 = oπ2) → ♦�(xπ1 = xπ2)] . (13)

Finally, we consider the case of delayed detectability, which seems
to be more complicated since delayed-state estimate X̂G(α | αβ) is
involved. However, we show that it can still be captured by HyperLTL
quite elegantly in a similar fashion as the cases of other notions of
detectability. To this end, we observe that, system G is not delayed-
detectable if there exists an observation α such that |X̂G(α | αβ)| ≥ 2
no matter how long the future observation β is. Then by extending
observation β to the infinite instant, we can obtain two infinite strings
in G such that 1) they have the same observation; and 2) they reach
different states at instant |α|. This key observation leads to the following
theorem.

Theorem 6 (HyperLTL for Delayed Detectability): System G is
delayed-detectable if and only if KG |= φdd, where

φdd = ∀π1.∀π2. [�(oπ1 = oπ2) → �(xπ1 = xπ2)] . (14)

C. Opacity in HyperLTL

Opacity is another important information-flow property describing
the privacy and security requirements of the system. In this context,
it is assumed that there exists an intruder (passive observer) that can
also observe the occurrences of events through the observation mask.
Furthermore, it is assumed that the system has some “secret”. Then
opacity captures the confidentiality that the secret can be revealed to
the intruder via the information-flow. In the context of DES, the secret
of the system is usually modeled as a set of secret statesXS ⊆ X . This
naturally partitions the state space as X = XS∪̇XNS, where XNS =
X\XS is the set of nonsecret states. According to what kind of secrets
the system wants to protect, variants of opacity have been proposed in
literature. In this section, we consider the initial-state opacity, infinite-
step opacity, and current-state opacity, and formulate all of them in
HyperLTL.

Definition 6 (Opacity): Given system G, observation mask M :
Δ → O ∪ {ε}, and secret states XS ⊆ X , we say system G is
1) initial-state opaque [21], if the intruder can never know for sure

that the system was initially from a secret state, i.e.,

(∀α ∈M(L(G)))[X̂G,0(α) � XS]

2) current-state opaque [16], if the intruder can never know for sure
that the system is currently at a secret state, i.e.,

(∀α ∈M(L(G)))[X̂G(α) � XS]

3) infinite-step opaque [20], if the intruder can never know for sure
that the system was at a secret state for any specific instant, i.e.,

(∀αβ ∈M(L(G)))[X̂G,0(α | αβ) � XS].

For simplicity, we denote by Sπ and NSπ the propositions that
the trace is at a secret state and a nonsecret state, respectively, i.e.,
Sπ ≡ ∨

x∈XS
xπ and NSπ ≡ ∨

x∈XNS
xπ . Now, we show how these

three variants of opacity can be formulated in terms of HyperLTL.
Essentially, initial-state opacity requires that, for any string, if it

is initiated from a secret state, then there must exist another string
such that 1) it is initiated from a nonsecret state; and 2) the two
strings have the same observation. This requirement can be captured
easily by HyperLTL formula based on the Kripke structure KG as
follows.

Theorem 7 (HyperLTL for Initial-State Opacity): System G is
initial-state opaque if and only if KG |= φiso, where

φiso = ∀π1.∃π2.

[
[Xπ1

0 ∧ Sπ1] →
[Xπ2

0 ∧�(oπ1 = oπ2) ∧ NSπ2]

]
. (15)

When it refers to current-state opacity, however, the following diffi-
culty arises if we want to write down HyperLTL formula that is checked
on Kripke structureKG. Specifically, current-state opacity requires that
for any finite string that ends up with a secret state, there exists another
finite string ending up with a nonsecret state such that they have the
same observation. However, the semantics of HyperLTL are defined
over infinite traces. To capture this using HyperLTL, we need some
mechanism to indicate that two infinite traces are at secret and nonsecret
states, respectively, at the same instant. Furthermore, the observation
equivalence requirement should be only applied up to that indicator
instant, not for the entire infinite horizon.

In order to bridge the gap between the finite requirement in current-
state opacity and the infinite semantics of HyperLTL, we modifiesKG

by allowing the process to stop at any finite instant.
Definition 7 (Modified Kripke Structure): Given Kripke structure

KG=(Q,Q0,Δ,AP, L), we defined the modified Kripke structure

K̃G = (Q̃, Q̃0, Δ̃, ÃP, L̃)
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

4716 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024

where
1) Q̃ = Q ∪Qc is the set of states, where Qc = {(xc, oc) : (x, o) ∈
Q} is simply a copy of the original state set Q;

2) Q̃0 = Q0 is the set of initial states;
3) Δ̃ ⊆ Q̃× Q̃ is the transition function defined as follows:

a) for any q, q′ ∈ Q : 〈q, q′〉 ∈ Δ̃, we have 〈q, q′〉 ∈ Δ̃;
b) for any q = (x, o) ∈ Q, we have

〈(x, o), (xc, oc)〉, 〈(xc, oc), (x, o)〉 ∈ Δ̃. (16)

4) ÃP = X ∪ O ∪ {τ} is the set of atomic propositions, where τ is
a new symbol;

5) L̃ : Q̃→ 2
˜AP is the labeling function defined by

a) for any q ∈ Q, we have L̃(q) = L(q);
b) for any qc = (xc, oc) ∈ Qc, we have L̃(qc) = {x, τ}.

Specifically, we simply add a new copy state (xc, oc) for each state
(x, o) in KG. In addition to the original transitions in KG, each state
(x, o) and its copy state (xc, oc) form a loop. Furthermore, for each
copy state, we assign it a new atomic proposition τ . Intuitively, τ will
be used as an indicator to locate the specific instant of our interest for
checking secret status.

To formally see this, consider an arbitrary run in KG

ρ = (x0, ε)(x1, o1) · · · ∈ Run(KG).

Then for any instant k ≥ 0, based on the construction of K̃G, there
exists the following run in K̃G:

ρ̃=(x0, ε)(x1, o1)· · ·(xk, ok)(xck, ock)(xk, ok)︸ ︷︷ ︸
loop to copy state at instant k

(xk+1, ok+1)· · ·

whose trace is given by

L̃(ρ̃)={x0}{x1, o1}· · ·{xk, ok}{xk, τ}{xk, ok}· · ·
As such, with the help of atomic proposition τ , we can easily locate xk
for which we what to check whether or not xk ∈ XS, and truncate the
infinite sequence after τ .

Note that, in the above infinite trace, we only want to loop at the
copy state once at the specific instant of interest. However, temporal
operator ♦τ is not sufficient to express this since τ may occur multiple
times. To this end, we define operator♦1 as “eventually and only once”
as follows:

♦1τ ≡ ♦τ ∧�(τ → ©�¬τ) (17)

i.e., τ will eventually occur and once it occurs, it will never occur in the
future. Illustrative example for the construction of the modified Kripke
structure can also be found in [31].

We formulate current-state opacity as a HyperLTL formula on K̃G.

Theorem 8 (HyperLTL for Current-State Opacity): SystemG is
current-state opaque if and only if K̃G |= φcso, where

φcso =

∀π1.∃π2.

[
[♦1τπ1 ∧�(τπ1 →Sπ1)] →
[(oπ1 =oπ2)Uτπ1 ∧�(τπ1 →(τπ2∧NSπ2))]

]
.

(18)

Formula φcso above is explained as follows. For trace π1, which is
quantified by the universal quantifier, we require that it visits a copy state
only once, i.e., ♦1τπ1 , and the copy state it visits is a secret state, i.e.,
�(τπ1 →Sπ1). Then, for such an arbitrary π1, we require the existence
of trace π2 such that 1) it has the same observation with π1 until the
stopping instant, i.e., (oπ1 =oπ2)Uτπ1 ; and 2) when it stops, it is at a
nonsecret copy state, i.e., �(τπ1 →(τπ2∧NSπ2)).

The case of infinite-step opacity is similar to the case of current-state
opacity. Specifically, it also requires that, for any string ending up with
a secret state, there exists another string ending up with a nonsecret
state such that they have the same observation. However, in addition,
we need to further ensure that, for any string starting from the above
secret, there exists another string starting from the above nonsecret state
such that they have the same observation. Otherwise, the intruder may
realize that the system was at a secret state after some steps. To capture
this difference, one can simply replace the “truncated” observation
equivalence condition (oπ1 =oπ2)Uτπ1 in (18) by an infinite horizon
version of observation equivalence condition�(oπ1 =oπ2). This leads
to the following theorem.

Theorem 9 (HyperLTL for Infinite-Step Opacity): System G is
infinite-step opaque if and only if K̃G |= φifo, where

φifo =

∀π1.∃π2.

[
[♦1τπ1 ∧�(τπ1 →Sπ1)] →
[�(oπ1 = oπ2) ∧�(τπ1 → (τπ2 ∧NSπ2))]

]
. (19)

V. DISCUSSIONS AND NUMERICAL EXPERIMENTS

Now, let us go back to the second question in the introduction that
why some properties are similar while some are more different. This, in
fact, can be easily explained by the theory of HyperLTL. In HyperLTL,
the alternation depth is referred to as the number of times the quantifiers
alter from existential to universal, or vice versa. It is known that the
verification complexity of HyperLTL will increase an exponential level
when the formula has one more quantifier alternation [7]. For example,
the alternation depth of “∀.∃.” is one, while the alternation depth of
“∀.∀.” is zero. The former corresponds to the case of opacity and
weak detectability, while the latter corresponds to other notions, such as
diagnosability. Therefore, expressing observational properties in terms
of HyperLTL also suggests a natural way to classify existing notions
of observational properties in partially-observed DES: the larger alter-
nation depth the property has, the higher verification complexity it will
require.

Here, we present numerical experiments to compare the efficiency
of the proposed HyperLTL-based framework with the customized DES
algorithms for verifying diagnosability (DIAG), predictability (PRED),
I-detectability (ID), strong/weak detectability (SD/WD), delayed de-
tectability (DD), initial/current-state opacity (ISO/CSO), and infinite-
step opacity (IFO). Specifically, we implement the DES algorithms
as well as the as transformation algorithm from automata to Kripke
structures in Python3. For DIAG, PRED, ID, SD, and DD, we adopt
the twin-plant-based polynomial-time algorithms [29], and for WD,
ISO, CSO, and IFO, we adopt the observer-based algorithms since they
are inherently PSPACE-hard [29]. For the HyperLTL verification, we
employ the newly developed model checker AutoHyper [3]. The ex-
periments are conducted on a MacBook (8 G/256 G, Apple M1). Specif-
ically, for each property with a fixed number of states, we randomly
generate 50 systems and verify the property by both the customized
DES algorithm and the HyperLTL-based algorithm; and we increase
the state number from 15 to 80 states. Table I shows the average running
times (in seconds) for each property with different sizes. All codes are
available in the project website https://github.com/jnzhaooo/jtudes.

In the conducted experiments, we note that the first five properties
involve no quantifier alternation, and they all have polynomial DES
algorithms. For these properties, the HyperLTL-based approach does
not seem to have computational advantage. For the last four properties,
they all have one degree of quantifier alternation, and their DES algo-
rithms are generally based on the subset construction, which requires
exponential complexity. For these properties, however, the average run-
ning time of HyperLTL-based framework is considerably smaller. The
main reason for the performance discrepancy is that HyperLTL model

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

https://github.com/jnzhaooo/jtudes

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 7, JULY 2024 4717

TABLE I
STATISTIC RESULTS FOR NUMERICAL EXPERIMENTS ON RANDOMLY GENERATED SYSTEMS

checkers, such as AutoHyper, handle quantifier alternations more
efficiently. Specifically, for the last four properties, where quantifier
alternations are involved, the HyperLTL model checker reduces the
verification problem to a language inclusion problem over an unfolded
automaton and the specification automaton without explicitly searching
the entire state space, which yield less complexity than the exponential-
time worst-case. In summary, the experimental results show that the
proposed framework not only provides a unified method but also is
more efficient for properties that previously need to be checked using
subset construction.

VI. CONCLUSION

In this article, we revisited the problems of verifying observational
properties for partially-observed DES, which have been studied very
actively and extensively in the past two decades in the context of
DES. We showed that the recent developed new temporal logic called
HyperLTL can be used as a suitable tool for unifying many of the
important observational properties in literature. Our framework does
not provide new decidability results since for all properties considered
here, verification algorithms have already been developed. However,
we believe that our unified view in terms of HyperLTL provides new
insights for those properties that were previously investigated sepa-
rately. Furthermore, our unified framework is of practical value since
it provides the access to many of the efficient model checking tools for
the purpose of verifying all these observational properties instead of
developing a customized algorithm for each case.

We would like to remark that, although we have shown that many of
the important properties in partially-observed DES can be formulated in
terms of HyperLTL, there still exist properties that cannot be captured
by the existing proposed framework. Examples of such properties are
A-diagnosability [26] and A-detectability [15]. Similarly, for nonob-
servational properties, nonblockingness also cannot be expressed by
HyperLTL. Essentially, these properties requiring the existence of a path
from a state satisfying some condition is essentially a branching-time
property which is beyond the semantics of HyperLTL. To address
this issue and to further generalize our framework, a possible future
direction is to use more expressive temporal logic, such as HyperCTL∗

[7] that supports both linear-time and branching-time properties over
multiple traces.

REFERENCES

[1] M. Anand, V. Murali, A. Trivedi, and M. Zamani, “Formal verification of
hyperproperties for control systems,” in Proc. Workshop Comput.-Aware
Algorithmic Des. Cyber-Physical Syst., 2021, pp. 29–30.

[2] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[3] R. Beutner and B. Finkbeiner, “AutoHyper: Explicit-state model checking
for HyperLTL,” in Proc. Int. Conf. Tools Algorithms Construct Anal. Syst.,
2023, pp. 145–163.

[4] A. Boussif and M. Ghazel, “Diagnosability analysis of input/output
discrete-event systems using model-checking,” IFAC-PapersOnLine,
vol. 48, no. 7, pp. 71–78, 2015.

[5] J. W. Bryans, M. Koutny, L. Mazaré, and Y. A. Ryan, “Opacity generalised
to transition systems,” Int. J. Inf. Secur., vol. 7, no. 6, pp. 421–435, 2008.

[6] C. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
vol. 3. Berlin, Germany: Springer, 2021.

[7] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe,
and C. Sánchez, “Temporal logics for hyperproperties,” in Proc. Int. Conf.
Princ. Secur. Trust, 2014, pp. 265–284.

[8] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” J. Comput. Secur,
vol. 18, no. 6, pp. 1157–1210, 2010.

[9] B. Finkbeiner, M. N. Rabe, and C. Sánchez, “Algorithms for model
checking HyperLTL and HyperCTL∗,” in Proc. Int. Conf. Comput. Aided
Verification, 2015, pp. 30–48.

[10] S. Genc and S. Lafortune, “Predictability of event occurrences in partially-
observed discrete-event systems,” Automatica, vol. 45, no. 2, pp. 301–311,
2009.

[11] C. N. Hadjicostis. Estimation and Inference in Discrete Event Systems.
Berlin, Germany: Springer, 2020.

[12] T.-H. Hsu, C. Sánchez, and B. Bonakdarpour, “Bounded model checking
for hyperproperties,” in Proc. Int. Conf. Tools Algorithms Construction
Anal. Syst., 2021, pp. 94–112.

[13] T. Jéron, H. Marchand, S. Genc, and S. Lafortune, “Predictability of
sequence patterns in discrete event systems,” IFAC Proc., vol. 41, no. 2,
pp. 537–543, 2008.

[14] S. Jiang, Z. Huang, V. Chandra, and R. Kumar, “A polynomial algorithm
for testing diagnosability of discrete-event systems,” IEEE Trans. Autom.
Control, vol. 46, no. 8, pp. 1318–1321, Aug. 2001.

[15] C. Keroglou and C. N. Hadjicostis, “Detectability in stochastic
discrete event systems,” Syst. Control Lett., vol. 84, pp. 21–26,
2015.

[16] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[17] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Inf. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[18] S. Liu, A. Trivedi, X. Yin, and M. Zamani, “Secure-by-construction syn-
thesis of cyber-physical systems,” Annu. Rev. Control, vol. 53, pp. 30–50,
2022.

[19] Y. Pencolé and A. Subias, “Diagnosability of event patterns in safe labeled
time petri nets: A model-checking approach,” IEEE Trans. Autom. Sci.
Eng., vol. 19, no. 2, pp. 1151–1162, Apr. 2022.

[20] A. Saboori and C. N. Hadjicostis, “Verification of infinite-step opacity and
complexity considerations,” IEEE Trans. Autom. Control, vol. 57, no. 5,
pp. 1265–1269, May 2012.

[21] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,” Inf. Sci., vol. 246,
pp. 115–132, 2013.

[22] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans. Au-
tom. Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[23] S. Shu and F. Lin, “I-detectability of discrete-event systems,” IEEE Trans.
Autom. Sci. Eng., vol. 10, no. 1, pp. 187–196, Jan. 2013.

[24] S. Shu and F. Lin, “Delayed detectability of discrete event systems,” IEEE
Trans. Autom. Control, vol. 58, no. 4, pp. 862–875, Apr. 2013.

[25] S. Shu, F. Lin, and H. Ying, “Detectability of discrete event sys-
tems,” IEEE Trans. Autom. Control, vol. 52, no. 12, pp. 2356–2359,
Dec. 2007.

[26] D. Thorsley and D. Teneketzis, “Diagnosability of stochastic discrete-
event systems,” IEEE Trans. Autom. Control, vol. 50, no. 4, pp. 476–492,
Apr. 2005.

[27] T. M. Tuxi, L. K. Carvalho, E. V. L. Nunes, and A. E. C. da Cunha,
“Diagnosability verification using LTL model checking,” Discrete Event
Dyn. Syst., vol. 32, no. 3, pp. 399–433, 2022.

[28] Y. Wang, S. Nalluri, and M. Pajic, “Hyperproperties for robotics: Plan-
ning via HyperLTL,” in Proc. IEEE Int. Conf. Robot. Autom., 2020,
pp. 8462–8468.

[29] X. Yin, “Estimation and verification of partially-observed discrete-event
systems,” in Wiley Encyclopedia of Electrical and Electronics Engineer-
ing, Hoboken, NJ, USA: Wiley, 2019.

[30] T.-S. Yoo and S. Lafortune, “Polynomial-time verification of diagnos-
ability of partially-observed discrete-event systems,” IEEE Trans. Autom.
Control, vol. 47, no. 9, pp. 1491–1495, Sep. 2002.

[31] J. Zhao, S. Li, and X. Yin, “Complete version of ‘A unified framework
for verification of observational properties for partially-observed discrete-
event systems’,” 2022, arXiv:2205.01392.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:54:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

