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Abstract—In this paper, we investigate property verification problems
in partially-observed discrete-event systems (DES). Particularly, we are
interested in verifying observational properties that are related to the
information-flow of the system. Observational properties considered here
include diagnosability, predictability, detectability and opacity, which
have drawn considerable attentions in the literature. However, in contrast
to existing results, where different verification procedures are developed
for different properties case-by-case, in this work, we provide a unified
framework for verifying all these properties by reducing each of them as
an instance of HyperLTL model checking. Our approach is based on the
construction of a Kripke structure that effectively captures the issue
of unobservability as well as the finite string semantics in partially-
observed DES so that HyperLTL model checking techniques can be
suitably applied. Then for each observational property considered, we
explicitly provide the HyperLTL formula to be checked over the Kripke
structure for the purpose of verification. Our approach is uniform in the
sense that all different properties can be verified with the same model
checking engine and also brings new insights for classifying observational
properties in terms of their verification complexity. Numerical experi-
ments are conducted, which show that our framework is computationally
more efficient for verifying properties involving quantifier alternations,
such as opacity, compared with the standard subset-based approaches.

Index Terms—Discrete-Event Systems, Partial Observation, Property
Verification, HyperLTL.

I. INTRODUCTION

DSCRETE-EVENT Systems (DES) is an important class of
complex engineering systems with discrete state-spaces and

event-triggering dynamics [6]. It is widely used in the modeling
and analysis of the high-level logic behaviors of complex automated
systems such that manufacturing systems, softwares and autonomous
robots. Given a DES, one of the most fundamental problems is to
determine whether or not the designed system satisfies some desired
specifications of our interest by formal and algorithmic procedures.
This is also referred to as the property verification problem, which
is critical to ensure safety and security of DES [18].

In many scenarios, DES are partially-observed either from the
system-user’s point of view due to the limited sensing capabilities, or
from the outsider’s point of view due to the partial information release
[11]. In this context, one may need to determine whether or not the
observer has sufficient knowledge about the system based on both the
DES model and the partial observations. Such properties related to
the information-flow of the partially-observed DES are referred to as
the observational properties. In this paper, we are concerned with the
verifications of observational properties for partially-observed DES.

Property verification of partially-observed DES dates back to the
early investigations of supervisory control of partially-observed DES,
where the notion of observability was investigated [17]. In this setting,
it is usually assumed that the behaviors of the systems can only be
observed partially via a natural projection or an observation mask,
and one needs to determine whether or not the imperfect information
is sufficient to realize a supervisor. Later on, verification of partially-
observed DES has been investigated more thoroughly in the contexts
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of fault diagnosis, fault predication, state detection and security
analysis. The reader is referred to the recent textbook [11] and tutorial
paper [29] for more details on this topic.

Here we briefly review some important observational properties
that are considered in this work as follows. The notion of diagnos-
ability is one of the most widely investigated observational properties
in the DES literature [22], which characterizes the ability that one
can always determine the occurrences of fault events within a finite
delay. As the dual of the fault diagnosis problem, the property of
prognosability or predictability was proposed in [10], [13] for the
fault prognosis problem, which provides the necessary and sufficient
condition under which fault can always be predicted with no false-
alarm or miss-alarm. In the context of state estimation of partially-
observed DES, Shu and Lin proposed several different notions of
detectability [23]–[25] to characterize whether or not the system state
can be determined unambiguously. More recently, motivated by the
security and privacy considerations in cyber-physical systems, the
notion of opacity has drawn many attentions, where it is assumed
that there exists a passive intruder (eavesdropper) that can access the
information-flow of the system and the system has some “secret”
that does not want to be revealed to the intruder [5] Depending on
different security requirements, different notions of opacity have been
studied including, e.g., initial-state opacity [21], current-state opacity
[16] and infinite-step opacity [20].

While there is a wide literature on the verification of observational
properties for partially-observed DES, several problems still remain.
In particular, the existing approaches for the verification of partially-
observed DES are mainly based on the observer structure and
its variants [6]. For some properties, such as diagnosability, pre-
dictability and strong detectability, researchers have further proposed
polynomial-time algorithms [13], [14], [30]. However, the existing
verification techniques are mainly developed for different properties
case-by-case. The following questions arise naturally:

• Can we provide a unified methodology for verifying existing
notions of observational properties in the literature without
investigating each of them case-by-case?

• Can we find a suitable way to classify different notions of obser-
vational properties in the literature in terms of their similarities
and the verification complexity?

In this paper, we aim to answer the above two questions by
providing a unified approach for verifying partially-observed DES.
Our approach relies on the recently developed new temporal logic
called HyperLTL [7]. HyperLTL generalizes the standard linear-time
temporal logic (LTL), which is evaluated over only a single trace, by
adding quantifiers among different traces. HyperLTL has been shown
as a very suitable tool for expressing information-flow properties
(also called hyper-properties [8]) in the context of formal verification.
Specifically, our uniform framework consists of two steps. First,
for a DES plant model, we construct the corresponding (modified)
Kripke structure that tracks both the state information and the
observation information in the system. The issue of unobservability
is effectively handled by the proposed structure. Next, we show
that most of the observational properties in the DES literature can
be captured by explicit HyperLTL formulae over the constructed
Kripke structure. These properties include, but not restricted to,
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diagnosability, predictability, (strong/weak/I-/delayed) detectability
and (initial-state/current-state/infinite-step) opacity.

Although verification algorithms already exist for these observa-
tional properties in the literature, our unified approach is still of
significance in threefold:

• First, our approach is uniform in the sense that all properties are
expressed using the same logic over the same Kripke structure.
As a consequence, one does not need to develop a customized
verification algorithm for each property case-by-case any more.

• Second, by expressing observational properties of DES in terms
of HyperLTL, the proposed unified framework provides the
access to HyperLTL model checking algorithms for the property
verification, based on which one can leverage many highly
optimized efficient tools such as MCHyper [9], HyperQube
[12] and AutoHyper [3]. Particularly, we show by numerical
experiments that our unified approach is more efficient than
the standard DES algorithms for properties involving quantifier
alternations such as weak detectability and opacity.

• Finally, by writing down each observational property explicitly
in HyperLTL, our framework naturally provides a complexity
hierarchy for different properties in terms of the alternation
depth of the quantifiers.

We would like to remark that, although HyperLTL itself is a
tool for specifying information-flow properties, it cannot be directly
applied to check observational properties in DES due to the following
two discrepancies. The first technical challenge is the presence of
unobservable events. Specifically, observational properties are evalu-
ated over the observation sequence to which an unobservable event
does not contribute. This is different from the standard HyperLTL
model checking where the time-indices of the internal trace and its
information-flow are the same. Second, the semantics of HyperLTL
are defined over infinite traces while observational properties in DES
are usually concerned with finite strings. For example, although
initial-state opacity has been expressed using HyperLTL (not for
DES models and without unobservable events) [1], [28], it has been
pointed out by [18] that expressing current-state opacity or infinite-
step opacity in terms of HyperLTL is technically challenging due
to the fact that the quantification acts at the beginning of trajectories
rather than every instant of trajectories. All these technical challenges
in applying HyperLTL to DES have been addressed in our results.

Finally, we note that model checking techniques have already been
used in the literature for the verification of partially-observed DES.
For example, model checking for diagnosability of DES is studied in
[4], [19], [27]. However, these works still use model checking over
single trace such as LTL model checking. In order to capture the
system-wide requirements in observational properties, existing works
need to build the information structure for the underlying specific
property such as twin-plant for diagnosability. However, here we use
HyperLTL directly, which does not need to construct an information-
synchronization structure for each specific property.

II. PRELIMINARIES

A. System Model

Let Σ be a finite set of events (or alphabets). A finite (respectively,
infinite) string s = σ1 · · ·σn(· · · ), σi ∈ Σ is a finite (respectively,
infinite) sequence of events. We denote by Σ∗ and Σω the sets of all
finite and infinite strings over Σ, respectively. The empty string ϵ is
included in Σ∗. The length of a finite string s∈Σ∗ is denoted by |s|
and with |ϵ|=0. A ∗-language (respectively, ω-language) is a set of
finite (respectively, infinite) strings. Given a language L ⊆ Σ∗ ∪Σω ,
the prefix closure of language L, denoted by L, is defined as the set
of all its finite prefixes, i.e., L= {s ∈ Σ∗ :∃w∈Σ∗ ∪ Σω s.t. sw∈

L}. A ∗-language L ⊆ Σ∗ is said to be prefix closed if L = L.
Given any string s ∈ L, the post-language of s in L is defined as
L/s={w ∈ Σ∗ ∪ Σω :sw∈L}.

We consider a DES modeled by a finite-state automaton (FSA)

G = (X,Σ, δ,X0),

where X is a finite set of states; Σ is a finite set of events; δ :
X×Σ→X is a partial transition function such that: for any x, x′∈X
and σ ∈ Σ, x′ = δ(x, σ) means that there exists a transition from
state x to state x′ with event label σ; and X0 ⊆ X is the set of
all possible initial states. We also extend the transition function to
δ :X×Σ∗→X recursively by: (i) δ(x, ϵ)=x; and (ii) for any x∈X ,
s ∈ Σ∗, and σ ∈ Σ, we have δ(x, sσ) = δ(δ(x, s), σ). We define
L(G, x)={s ∈ Σ∗ : δ(x, s)!} as the set of finite strings that can be
generated by system G from state x∈X . For simplicity, we define
L(G)=∪x0∈X0L(G, x0) as the ∗-language generated by system G.
Similarly, we define Lω(G, x) = {s ∈ Σω : ∀t ∈ {s} s.t. δ(x, t)!}
as the infinite strings generated by system G starting from x ∈ X
and we also define Lω(G) = ∪x0∈X0Lω(G, x0).

In a partially-observed DES, not all events can be observed
perfectly. To this end, we consider an observation mask function

M : Σ → O ∪ {ϵ},

where O is the set of observation symbols. An event σ ∈ Σ is
said to be unobservable if M(σ) = ϵ; otherwise, it is observable.
We denote by Σo and Σuo the sets of observable and unobservable
events, respectively. Moreover, events σ, σ′ ∈ Σ are said to be
indistinguishable if M(σ) = M(σ′). The mask function is also
extended to M :Σ∗∪Σω→O∗∪Oω such that, for any s ∈ L(G), we
have (i) M(ϵ)=ϵ; and (ii) for any s∈Σ∗, σ∈Σ, we have M(sσ)=
M(s)M(σ). We also extend mask to M :2Σ

∗∪Σω

→2O
∗∪Oω

by: for
any L ⊆ Σ∗ ∪ Σω :M(L) = {M(s) : s∈L}. Therefore, M(L(G))
and M(Lω(G)) are the observed ∗- and ω-languages generated by
system G, respectively.

For simplicity, we make the following standard assumptions in the
analysis of partially-observed DES:

A1 System G is live, i.e., ∀x ∈ X, ∃σ ∈ Σ : δ(x, σ)!; and
A2 System G does not contain an unobservable cycle, i.e., ∀x ∈

X, ∀s ∈ Σ∗ \ {ϵ} : x = δ(x, s) ⇒M(s) ̸= ϵ.

Since the system is partially-observed, the system-user needs to
determine the state of the system based on the observation string,
which is referred to as the state estimation problem. In this paper,
we will consider the following three types of state estimates. All
properties of partially-observed DES in this paper will be defined
using state estimates [29].

Definition 1 (State Estimates). Let α∈M(L(G)) be an observation
string. Then

• the initial-state estimate upon observation α is the set of initial
states the system could start from initially, i.e.,

X̂G,0(α)={x0∈X0 : ∃s∈L(G, x0) s.t. M(s)=α} (1)

• the current-state estimate upon observation α is the set of states
the system could be in currently, i.e.,

X̂G(α)=

{
δ(x0, s)∈X :

∃x0∈X0, s∈L(G, x0)
s.t. M(s)=α

}
(2)

Furthermore, let αβ ∈M(L(G)) be an observation string, where α
is a prefix of the entire observation αβ. Then

• the delayed-state estimate for the instant of α upon observation
αβ is the set of states the system could be in |β| steps ago when
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αβ is observed, i.e.,

X̂G(α | αβ)=
{
δ(x0, s)∈X:

∃x0∈X0, sw∈L(G, x0) s.t.
M(s)=α ∧M(sw)=αβ

}
(3)

B. LTL and HyperLTL

Let AP be a set of atomic propositions representing some basic
properties of interest. A trace π = π0π1 · · · ∈ (2AP)ω is an infinite
sequence over 2AP . We denote by π[i] = πi the ith element in
the trace and by π[i,∞] = πiπi+1 · · · ∈ (2AP)ω its suffix starting
from the ith instant. Linear Temporal Logic (LTL) is a widely used
approach for evaluating whether or not a trace π satisfies some desired
property. The syntax of LTL formulae is as follows

ψ ::= a | ¬ψ | ψ ∨ ψ | ⃝ψ | ψUψ,

where a ∈ AP is an atomic proposition; ¬ and ∨ are Boolean
operators “negation” and “disjunction”, respectively, and ⃝ and U
are temporal operators “next” and “until”, respectively. We can induce
Boolean operators such as “implication” by ψ1→ψ2≡¬ψ1∨ψ2 and
“conjunction” by ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2). Furthermore, we can
induce temporal operators “eventually” by ♢ψ ≡ ⊤Uψ and “always”
by □ψ ≡ ¬♢¬ψ. The semantics of LTL can be found in [2]. We
denote by π |=φ that trace π satisfies LTL formula φ.

Note that LTL can only evaluate a single trace. In many applica-
tions, the desired property is system-wide and can only be evaluated
among multiple traces. For example, in diagnosability analysis, we
need to check the existence of two strings with the same observation:
one is fault but the other is normal. HyperLTL generalizes LTL by
further supporting trace quantifiers. Let V={π1, π2, . . .} be the set
of trace variables, where each πi represents an individual trace. The
syntax of HyperLTL formulae is as follows [7]:

ϕ ::= ∃π. ϕ | ∀π. ϕ | ψ,
ψ ::= aπ | ¬ψ | ψ ∨ ψ | ⃝ψ | ψUψ,

where ∃ and ∀ are the universal and the existential trace quantifiers,
representing “for some trace” and “for all traces”, respectively.
Formula ψ is just an LTL formula except that the atomic propositions
can refer to distinct trace variables. Particularly, since HyperLTL
formulae can refer to multiple traces, we denote by aπ an atomic
proposition a ∈ AP that should be checked on trace π.

The semantics of HyperLTL are defined over a set of traces T ⊆
(2AP)ω and a partial mapping (called trace assignment) Π : V →
(2AP)ω . In particular, we denote by Π∅ the empty assignment whose
domain is the empty set ∅. We denote by Π[π 7→ ξ] the same trace
assignment as Π expect that π is mapped to ξ. The trace assignment
suffix Π[i,∞] denotes the trace assignment Π′(π) = Π(π)[i,∞] for
all π. Then we denote by (T,Π) |= ϕ that HyperLTL ϕ is satisfied
over a set of traces T ⊆ (2AP)ω and trace assignment Π : V →
(2AP)ω , which is defined as follows:

(T,Π) |= ∃π.ϕ iff ∃ξ ∈ T : (T,Π[π 7→ ξ]) |= ϕ
(T,Π) |= ∀π.ϕ iff ∀ξ ∈ T : (T,Π[π 7→ ξ]) |= ϕ
(T,Π) |= aπ iff a ∈ Π(π)[0]
(T,Π) |= ¬ψ iff (T,Π) ⊭ ψ
(T,Π) |= ψ1 ∨ ψ2 iff (T,Π) |= ψ1 or (T,Π) |= ψ2

(T,Π) |= ⃝ψ iff (T,Π[1,∞]) |= ψ
(T,Π) |= ψ1Uψ2 iff (∃i ≥ 0 : (T,Π[i,∞]) |= ψ2)∧

(∀0 ≤ j < i : (T,Π[j,∞]) |= ψ1)

We say a set of traces T ⊆ (2AP)ω satisfy a HyperLTL formual ϕ,
denoted by T |= ϕ, if (T,Π∅) |= ϕ.

C. Kripke Structure

In model checking of HyperLTL, the set of traces T ⊆ (2AP)ω are
usually generated by a Kripke structure. Formally, a Kripke structure
is a tuple K = (Q,Q0,∆,AP, L) where Q is the set of states,
Q0 ⊆ Q is the set of initial states, ∆ ⊆ Q × Q is the transition
relation, AP is the set of atomic propositions and L :Q→ 2AP is
the labeling function.

We say ρ=ρ0ρ1 . . .∈Qω is a run in K if ρ0∈Q0 and ⟨ρi, ρi+1⟩∈
∆, ∀i≥ 0. We say π = π0π1 . . . ∈ (2AP)ω is a trace in K if there
exists a run ρ=ρ0ρ1 . . .∈Qω such that πi=L(ρi), ∀i≥0. We denote
by Run(K) and Trace(K) the set of all runs and traces generated
by K, respectively. Then we say that a Kripke structure K satisfies
HyperLTL formula ϕ, denoted by K |=ϕ, if Trace(K) |=ϕ.

III. PARTIALLY-OBSERVED DES IN KRIPKE STRUCTURE

The main objective of this paper is to use HyperLTL model
checking techniques to solve the observational property verification
problems for partially-observed DES. To this end, we need to
transform the FSA model for DES into a Kripke structure for the
purpose of model checking.

In HyperLTL model checking, atomic propositions are usually as-
signed to each state or transition in the system model. However, in the
setting of partially-observed DES, we note that, for any internal string
s= σ1σ2 · · · ∈Σω , its observation string is M(α) = o1o2 · · · ∈Oω ,
where for each i≥ 1, oi is not necessarily the observation of event
σi, since there may have unobservable strings in between. Therefore,
the time-indices of the internal string and its information-flow may
be mismatched. We also cannot assign the empty proposition to those
unobservable transitions since it means “no property of interest”,
which is different from the empty observation.

To address unobservability, let x, x′ ∈X be two states in G and
o∈∆∪{ϵ} be an observation symbol including the empty observation
ϵ. We denote by x ⇝

o
x′ if x can reach x′ via some string whose

observation is o, i.e., ∃s∈L(G, x) such that δ(x, s)=x′ and M(s)=
o. Without unobservable event, the above string s must be a single
event when o ∈∆, and be ϵ when o= ϵ. However, for the general
case, s can be a string with more than one event even when o=ϵ.

Now, we present how to construct the Kripke structure associated
with a DES for the purpose of verification of observational properties.

Definition 2 (Kripke Structure for DES). Given partially-observed
DES G with mask M : Σ → O∪{ϵ}, its associated Kripke structure
is defined by:

KG = (Q,Q0,∆,AP, L)

where
• Q ⊆ X × (O ∪ {ϵ}) is the set of states;
• Q0 = {(x, ϵ) ∈ X ×{ϵ} : ∃x0 ∈ X0 s.t. x0 ⇝

ϵ
x} is the set of

initial states;
• ∆ ⊆ Q × Q is the transition function defined by: for any two

states q = (x, o), q′ = (x′, o′) ∈ Q, we have

⟨(x, o), (x′, o′)⟩ ∈ ∆ iff x⇝o
′
x′ ∧ o′ ∈ O

• AP = X ∪ O is the set of atomic propositions;
• L : Q → 2AP is the labeling function defined by: for each
q = (x, o) ∈ Q, we have

L(q) =

{
{x} if q ∈ Q0

{x, o} if q /∈ Q0
. (4)

Intuitively, for each state (x, o) in KG, the first component x
captures the current state of G and the second component o captures
the latest observation symbol happened in G. At each state (x, o),
when a feasible string s ∈ L(G, x) such that M(s) = o′ occurs,
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the Kripke structure moves to new state (δ(x, s), o′), where the
first component is determined by the transition function in G and
the second component simply records the observed symbol. Note
that the above string s may be in the form of s = w1σw2, where
w1, w2 ∈ Σ∗

uo and M(σ) = o. Since there is no event observed
initially, the initial state is of form (x, ϵ). The labeling function
assigns the state symbol x and the observation symbol o as the atomic
propositions hold at each (x, o). Therefore, the trace information
in KG already contains both the state sequence information and
the observation sequence information, which are sufficient for the
purpose of verifying observational properties of G. An example of
the construction of KG for G is given in Figure 1 for the illustration.

To formally see the connection between G and KG, let us consider
an arbitrary infinite string s ∈ Lω(G, x0) in G. Note that, we can
always write s in the form of

s = w0σ1w1σ2w2 · · · ∈ Σω

where each wi ∈ Σ∗
uo is an unobservable string and each σi ∈ Σo

is an observable event with M(σi) = oi. Let

x00 · · ·x
|w0|
0︸ ︷︷ ︸

visited along w0

x01 · · ·x
|w1|
1︸ ︷︷ ︸

visited along σ1w1

x02 · · ·x
|w2|
2︸ ︷︷ ︸

visited along σ2w2

· · · ∈ Xω (5)

be the infinite sequence of states visited along s from x0, where x00=
x0. Note that, in the construction of KG, upon each observation, we
will “jump” directly to a state without considering the states visited
by unobservable strings in between. Therefore, we know that, for any
of the indices k0, k1, . . . , where ki ∈ {0, . . . , |wi|}, the following
run exists in KG

ρ = (xk0
0 , ϵ)(xk1

1 , o1)(x
k2
2 , o2) · · · ∈ Run(KG)

We call such a run compatible with string s from initial state x0. Since
the choices of the indices k0, k1, . . . are not unique, we denote by
Run(s, x0) ⊆ Run(KG) the set of all runs that are compatible with
s and x0. Note that when s ∈ L(G, x0) is a finite string, there also
exists a finite run that is compatible with s and x0. With a slight
abuse of notation, we still denote this by ρ ∈ Run(s, x0).

On the other hand, for any run

ρ = (x0, ϵ)(x1, o1)(x2, o2) · · · ∈ Run(KG)

by construction, we have xi ⇝
oi+1

xi+1. Therefore, we can always
find an initial state x̂0 ∈ X0 and an infinite string s ∈ Lω(G, x̂0)
such that M(s) = o1o2 · · · and each xi is reached by a prefix of s
whose observation is o1o2 · · · oi. That is, ρ ∈ Run(s, x̂0).

We illustrate the construction of Kripke structure KG from DES
G by the following example.

Example 1. Let us consider system G shown in Figure 1(a),
where X = {0, 1, 2, 3, 4, 5}, Σo = {a, b, c, d}, Σuo = {u1, u2, f},
O = {o1, o2, o3} and the observation mask M : Σ → O is
defined by: M(a) = M(b) = o1,M(c) = o3,M(d) = o2 and
M(u1) =M(u2) =M(f) = ϵ. The initial states of KG are (0, ϵ)
and (3, ϵ) since the system may reach state 3 from the initial state 0
via unobservable string u1. From state (0, ϵ), by observing symbol
o1, one may reach states 1, 2, 4, 5. Therefore, transitions from (0, ϵ)
to states (1, o1), (2, o1), (4, o1) and (5, o1) are all defined in KG.
The labeling function can be encoded directly from the state, e.g.,
L((0, ϵ)) = {0} and L((1, o1)) = {1, o1}. For example, let us
consider initial-state x0 = 0 and infinite string s = u1bu2f(d)

ω ∈
Lω(G) with M(s) = o1(o2)

ω . Then a run in KG compatible
with s and x0 can be, e.g., (0, ϵ)(4, o1)(2, o2)

ω ∈ Run(s, x0) or
(3, ϵ)(1, o1)(2, o2)

ω∈Run(s, x0).

0 1 2

3 4 5

a/o1

u1/ϵ

f/ϵ

d/o2

c/o3

b/o1 u1/ϵ

u2/ϵ

(a) System G.

(0, ϵ) (1, o1) (2, o1) (2, o2)

(3, ϵ) (4, o1) (5, o1) (5, o3)

(b) Kripke structure KG.

Fig. 1. Example for a partially-observed DES and its Kripke structure.

IV. MAIN RESULTS

In this section, we consider the verification of all observational
properties including diagnosability, predictability, detectability and
opacity in a unified manner using HyperLTL on the constructed
Kripke structure for DES.

A. Diagnosability & Predictability in HyperLTL

For the fault diagnosis/prognosis problem, it is generally assumed
that system G may contain some faults modeled as a set of fault
events ΣF ⊆ Σ. With a slight abuse of notation, for any string s ∈
Σ∪Σω , we denote by ΣF ∈ s if string s contains a fault event in ΣF .
For simplicity, we assume that the state-space of G is partitioned as
X = XN∪̇XF , where XN is the set of normal states and XF is the
set of fault states such that

∀x0 ∈ X0, ∀s ∈ L(G, x0) : ΣF ∈ s⇔ δ(x0, s) ∈ XF. (6)

Note that this assumption is without loss of generality, since we can
always refine the state-space of G such that the partition holds.

Diagnosability then characterizes whether or not we can always
detect the occurrence of a fault event within a finite number of steps.
To this end, we define

ΨF = {s ∈ L(G) : ΣF ∈ s ∧ (∀t ∈ {s} \ {s} : ΣF /∈ t)}

as the set of strings in which fault event occurs for the first time. The
notion of diagnosability is reviewed as follows [22].

Definition 3 (Diagnosability). Given system G, observation mask
M : ∆ → O ∪ {ϵ} and fault events ΣF ⊆ Σ, we say system G
is diagnosable if any occurrence of fault can always be determined
within a finite number of delays, i.e.,

(∃n ∈ N)(∀s ∈ ΨF)(∀t ∈ L(G)/s)

[|M(t)| ≥ n⇒ X̂G(M(st)) ⊆ XF]. (7)

When it refers to fault prediction, the objective is to predict the
occurrences of fault events in advance such that (i) there is no miss-
alarm in the sense that any fault can be alarmed before it occurs;
and (ii) there is no false-alarm in the sense that, once a fault alarm
is issued, fault events will occur inevitably. To define the notion of
predictability, it is convenient to define

• the set of boundary states ∂(G), which is the set of normal
states from which a fault event can occur in the next step, i.e.,

∂(G) = {x ∈ XN : ∃σ ∈ ΣF s.t. δ(x, σ)!}
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• the set of indicator states I(G), which is the set of normal states
from which the system will enter fault states inevitably within
a finite number of steps, i.e,

I(G) =

{
x ∈ XN :

∃n ∈ N, ∀s ∈ L(G, x)
s.t. |s| ≥ n⇒ δ(x, s) ∈ XF

}
Using the notions of boundary states and indicator states, we recall
the definition of predictability as follows [10].

Definition 4 (Predictability). Given system G, observation mask
M : ∆ → O ∪ {ϵ} and fault events ΣF ⊆ Σ, we say system G is
predictable if the occurrence of fault can always be alarmed before
it happens, i.e.,

(∀x0 ∈ X0)(∀s ∈ L(G, x0) : δ(x0, s) ∈ ∂(G))

(∃t ∈ {s})[X̂G(M(t)) ⊆ I(G)]. (8)

Before expressing diagnosability in HyperLTL, we introduce some
notation simplifications. For any trace variable π, we define Fπ as
the proposition that the trace is at a fault state, i.e., Fπ ≡

∨
x∈XF

xπ .
Also, let π1 and π2 be two trace variables. Then we define

oπ1 = oπ2 iff
∧
o∈O

oπ1 ↔ oπ2

which is the proposition that π1 and π2 are observational-equivalent
at the initial instant. As such, formula □(oπ1 =oπ2) represents that
two infinite traces π1, π2 are observational-equivalent at any instants.

Now, we present the following theorem, stating how to formulate
diagnosability of G using HyperLTL for Kripke structure KG. Due
to space constraints, all proofs are omitted in this paper. All proofs
as well as more illustrative examples can be found in [31].

Theorem 1 (HyperLTL for Diagnosability). System G is
diagnosable if and only if KG |= ϕdia, where

ϕdia = ∀π1.∀π2. [♢Fπ1 ∧□(oπ1 = oπ2) → ♢Fπ2 ] . (9)

Intuitively, the above theorem says that, to make the system
diagnosable, for any two infinite strings having the same observation,
if one string contains a fault event, i.e., ♢Fπ1 , then the other string
should also contain a fault event, i.e., ♢Fπ2 . Otherwise, if □¬Fπ2 ,
since □(oπ1 =oπ2), then the fault in the former string can never be
determined within any finite number of steps.

We show the verification of diagnosability by an example.

Example 2. Let us still consider system G shown in Figure 1(a) with
Kripke structure KG in Figure 1(b). Here, we further assume ΣF =
{f}, i.e., XF = {2}. One can observe that G is diagnosable since
one can claim the occurrence of fault immediately after observing
symbol o2. Now, we show how this is captured by Theorem 1 using
our framework. Taking the negation of ϕdia, we have

¬ϕdia = ∃π1.∃π2. [♢Fπ1 ∧□(oπ1 = oπ2) ∧□¬Fπ2 ] .

To satisfy Fπ1 , trace π1 must be of form π1 = · · · {2, o2}ω ,
while to satisfy □¬Fπ2 = ¬♢Fπ2 , trace π2 must be of form
π2 = · · · {5, o3}ω . However, this implies that □(oπ1 = oπ2) cannot
be further satisfied. Therefore, we have KG |= ϕdia.

For the case of predictability, we observe that, a system is not pre-
dictable if for some string that goes to a boundary state x1 ∈ ∂(G),
there exists another string that goes to a normal but non-indicator
state x2 ∈ XN \ I(G) such that they have the same observation.
This is because, from the former state x1, a fault event can occur
immediately, while from the latter state x2, some non-fault string
can still execute infinitely. In the context of traces in Kripke structure

KG, the former string can be captured by a trace π1 such that ♢Fπ1 ,
while the second string can be captured by a trace π2 such that
¬♢Fπ2 . Furthermore, the observation equivalence condition is only
applied before the first occurrence of fault in π1. Therefore, ♢Fπ1

and the truncated observation equivalence can be captured together
by (oπ1 =oπ2)UFπ1 . This suggests that G is not predictable if

∃π1.∃π2. [(o
π1 = oπ2)UFπ1 ∧ ¬♢Fπ2 ] .

Then by taking the negation of the existence of such two traces, we
obtain the following main theorem for predictability.

Theorem 2 (HyperLTL for Predictability). System G is
predictable if and only if KG |= ϕpre, where

ϕpre = ∀π1.∀π2. [(o
π1 = oπ2)UFπ1 → ♢Fπ2 ] . (10)

B. Detectability in HyperLTL

Detectability is a property characterizing whether or not the precise
state of the system can be determined unambiguously under imper-
fect observations. Depending on the specific detection requirements,
various notions of detectability have been proposed in the literature.
In this section, we consider variants of detectability including I-
detectability, strong detectability, weak detectability, and delayed
detectability, and show how each of them can be formulated in terms
of HyperLTL formula.

First, we review some existing notions of detectability.

Definition 5 (Detectability). Given system G and observation mask
M : Σ → O ∪ {ϵ}, we say system G is

• I-detectable [23] if the initial-state of the system can always be
determined after a finite number of observations, i.e.,

(∃n ∈ N)(∀α ∈M(L(G)) : |α| ≥ n)[|X̂G,0(α)| = 1].

• strongly detectable [25] if the current-state of the system can
always be determined after a finite number of observations, i.e.,

(∃n ∈ N)(∀α ∈M(L(G)) : |α| ≥ n)[|X̂G(α)| = 1].

• weakly detectable [25] if the current-state and the subsequent
states of the system can be determined after a finite number of
observations for some trajectory of the system, i.e.,

(∃n ∈ N)(∃α ∈M(Lω(G)))

(∀β ∈ {α} : |β| ≥ n)[|X̂G(β)| = 1].

• delayed-detectable [24] if the precise state of the system at any
instant can be determined after some observation delays, i.e.,

(∃n∈N)(∀αβ∈M(L(G)) : |β|≥n)[|X̂G(α | αβ)|=1].

Now, we formulate the above variants of detectability using Hy-
perLTL. Based on different types of state-estimates, we present our
result in three parts in what follows.

Still, before expressing detectability in HyperLTL, we define
some notation simplifications for HyperLTL formulae. For any trace
variable π, we define Xπ

0 as the proposition that the trace starts from
an initial state in G, i.e., Xπ

0 ≡
∨

x∈X0
xπ . Furthermore, for trace

variables π1 and π2, we define xπ1 = xπ2 as the proposition that
the states of π1 and π2 at the initial instant are equivalent, i.e.,

xπ1 = xπ2 iff
∧
x∈X

xπ1 ↔ xπ2

We denote by xπ1 ̸= xπ2 if ¬(xπ1 = xπ2), which means that π1[0]
and π2[0] are not state-equivalent.
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The following theorem states how to formulate I-detectability of
G using HyperLTL for Kripke structure KG.

Theorem 3 (HyperLTL for I-Detectability).
System G is I-detectable if and only if KG |= ϕid, where

ϕid = ∀π1.∀π2.

[
[Xπ1

0 ∧Xπ2
0 ∧□(oπ1 = oπ2)]

→ (xπ1 = xπ2)

]
. (11)

Intuitively, the above theorem says that, for any two infinite traces
in KG that are initiated from actual initial-states in G, if they always
have the same observation proposition, then they must have the
same state proposition initially. Otherwise, there exist two infinite
traces starting from two distinct initial-states but having the same
observation, which violates the requirement of I-detectability.

Next, we consider the cases of strong detectability and weak
detectability. Compared with I-detectability, where two infinite traces
need to have the same state proposition initially, strong detectability
requires that two infinite traces need to converge to the same state
proposition. Such a convergence requirement can be captured by the
combination of temporal operators “always eventually” ♢□. Recall
that, in LTL, π |=♢□φ, if there exists i≥0 such that for any j≥ i,
we have π[j,∞] |=φ.

Now we present the following theorem stating how to formulate
strong detectability using HyperLTL.

Theorem 4 (HyperLTL for Strong Detectability). System
G is strongly detectable if and only if KG |= ϕsd, where

ϕsd=∀π1.∀π2. [□(o
π1 = oπ2) → ♢□(xπ1 = xπ2)] . (12)

The case of weak detectability is similar to the strong counterpart.
The main difference is that, for strong detectability, we require that
for all traces, we can eventually determines its state, while weak
detectability only requires the existence of such a trace. Therefore, the
HyperLTL condition ϕwd for weak detectability simply replaces the
first universal quantifier ∀ in ϕsd by an existential quantifier ∃. Note
that, although Theorem 5 seems to be similar to Theorem 4, there
is significant difference here: ∀.∀. in ϕsd does not require quantifier
alternation, while ∃.∀. in ϕwd has one time of quantifier alternation.

Theorem 5 (HyperLTL for Weak Detectability). System
G is weakly detectable if and only if KG |= ϕwd, where

ϕwd=∃π1.∀π2. [□(o
π1 = oπ2) → ♢□(xπ1 = xπ2)] . (13)

Finally, we consider the case of delayed detectability, which seems
to be more complicated since delayed-state estimate X̂G(α | αβ)
is involved. However, we show that it can still be captured by
HyperLTL quite elegantly in a similar fashion as the cases of other
notions of detectability. To this end, we observe that, system G is
not delayed-detectable if there exists an observation α such that
|X̂G(α | αβ)| ≥ 2 no matter how long the future observation β
is. Then by extending observation β to the infinite instant, we can
obtain two infinite strings in G such that (i) they have the same
observation; and (ii) they reach different states at instant |α|. This
key observation leads to the following theorem.

Theorem 6 (HyperLTL for Delayed Detectability). Sys-
tem G is delayed-detectable if and only if KG |= ϕdd, where

ϕdd = ∀π1.∀π2. [□(o
π1 = oπ2) → □(xπ1 = xπ2)] . (14)

C. Opacity in HyperLTL

Opacity is another important information-flow property describing
the privacy and security requirements of the system. In this context,
it is assumed that there exists an intruder (passive observer) that can
also observe the occurrences of events through the observation mask.
Furthermore, it is assumed that the system has some “secret”. Then
opacity captures the confidentiality that the secret can be revealed to
the intruder via the information-flow. In the context of DES, the secret
of the system is usually modeled as a set of secret states XS ⊆ X .
This naturally partitions the state space as X = XS∪̇XNS, where
XNS = X\XS is the set of non-secret states. According to what kind
of secrets the system wants to protect, variants of opacity have been
proposed in the literature. In this section, we consider the initial-state
opacity, infinite-step opacity, and current-state opacity, and formulate
all of them in HyperLTL.

Definition 6 (Opacity). Given system G, observation mask M : ∆ →
O ∪ {ϵ}, and secret states XS ⊆ X , we say system G is

• initial-state opaque [21] if the intruder can never know for sure
that the system was initially from a secret state, i.e.,

(∀α ∈M(L(G)))[X̂G,0(α) ⊈ XS].

• current-state opaque [16] if the intruder can never know for sure
that the system is currently at a secret state, i.e.,

(∀α ∈M(L(G)))[X̂G(α) ⊈ XS].

• infinite-step opaque [20] if the intruder can never know for sure
that the system was at a secret state for any specific instant, i.e.,

(∀αβ ∈M(L(G)))[X̂G,0(α | αβ) ⊈ XS].

For simplicity, we denote by Sπ and NSπ the propositions that
the trace is at a secret state and a non-secret state, respectively, i.e.,
Sπ ≡

∨
x∈XS

xπ and NSπ ≡
∨

x∈XNS
xπ . Now, we show how these

three variants of opacity can be formulated in terms of HyperLTL.
Essentially, initial-state opacity requires that, for any string, if it is

initiated from a secret state, then there must exist another string such
that (i) it is initiated from a non-secret state; and (ii) the two strings
have the same observation. This requirement can be captured easily
by HyperLTL formula based on the Kripke structure KG as follows.

Theorem 7 (HyperLTL for Initial-State Opacity). System
G is initial-state opaque if and only if KG |= ϕiso, where

ϕiso = ∀π1.∃π2.

[
[Xπ1

0 ∧ Sπ1 ] →
[Xπ2

0 ∧□(oπ1 = oπ2) ∧ NSπ2 ]

]
. (15)

When it refers to current-state opacity, however, the following
difficulty arises if we want to write down HyperLTL formula that is
checked on Kripke structure KG. Specifically, current-state opacity
requires that for any finite string that ends up with a secret state, there
exists another finite string ending up with a non-secret state such that
they have the same observation. However, the semantics of HyperLTL
are defined over infinite traces. To capture this using HyperLTL, we
need some mechanism to indicate that two infinite traces are at secret
and non-secret states, respectively, at the same instant. Furthermore,
the observation equivalence requirement should be only applied up
to that indicator instant, not for the entire infinite horizon.

In order to bridge the gap between the finite requirement in current-
state opacity and the infinite semantics of HyperLTL, we modifies
KG by allowing the process to stop at any finite instant.
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Definition 7 (Modified Kripke Structure). Given Kripke structure
KG=(Q,Q0,∆,AP, L), we defined the modified Kripke structure

K̃G = (Q̃, Q̃0, ∆̃, ÃP, L̃)

where
• Q̃ = Q∪Qc is the set of states, where Qc = {(xc, oc) : (x, o) ∈
Q} is simply a copy of the original state set Q;

• Q̃0 = Q0 is the set of initial states;
• ∆̃ ⊆ Q̃× Q̃ is the transition function defined as follows:

– for any q, q′ ∈ Q : ⟨q, q′⟩ ∈ ∆̃, we have ⟨q, q′⟩ ∈ ∆̃;
– for any q = (x, o) ∈ Q, we have

⟨(x, o), (xc, oc)⟩, ⟨(xc, oc), (x, o)⟩ ∈ ∆̃ (16)

• ÃP = X ∪O ∪ {τ} is the set of atomic propositions, where τ
is a new symbol;

• L̃ : Q̃→ 2ÃP is the labeling function defined by:
– for any q ∈ Q, we have L̃(q) = L(q);
– for any qc = (xc, oc) ∈ Qc, we have L̃(qc) = {x, τ}.

Specifically, we simply add a new copy state (xc, oc) for each state
(x, o) in KG. In addition to the original transitions in KG, each state
(x, o) and its copy state (xc, oc) form a loop. Furthermore, for each
copy state, we assign it a new atomic proposition τ . Intuitively, τ will
be used as an indicator to locate the specific instant of our interest
for checking secret status.

To formally see this, consider an arbitrary run in KG

ρ = (x0, ϵ)(x1, o1) · · · ∈ Run(KG)

Then for any instant k ≥ 0, based on the construction of K̃G, there
exists the following run in K̃G

ρ̃=(x0, ϵ)(x1, o1)· · ·(xk, ok)(xck, ock)(xk, ok)︸ ︷︷ ︸
loop to copy state at instant k

(xk+1, ok+1)· · ·

whose trace is given by

L̃(ρ̃)={x0}{x1, o1}· · ·{xk, ok}{xk, τ}{xk, ok}· · ·

As such, with the help of atomic proposition τ , we can easily locate
xk for which we what to check whether or not xk ∈ XS, and truncate
the infinite sequence after τ .

Note that, in the above infinite trace, we only want to loop at the
copy state once at the specific instant of interest. However, temporal
operator ♢τ is not sufficient to express this since τ may occur
multiple times. To this end, we define operator ♢1 as “eventually
and only once” as follows:

♢1τ ≡ ♢τ ∧□(τ → ⃝□¬τ), (17)

i.e., τ will eventually occur and once it occurs, it will never occur in
the future. Illustrative example for the construction of the modified
Kripke structure can also be found in [31].

We formulate current-state opacity as a HyperLTL formula on K̃G.

Theorem 8 (HyperLTL for Current-State Opacity). Sys-
tem G is current-state opaque if and only if K̃G |= ϕcso,
where

ϕcso = (18)

∀π1.∃π2.

[
[♢1τ

π1 ∧□(τπ1 →Sπ1)] →
[(oπ1 =oπ2)Uτπ1 ∧□(τπ1 →(τπ2∧NSπ2))]

]
.

Formula ϕcso above is explained as follows. For trace π1, which is
quantified by the universal quantifier, we require that it visits a copy
state only once, i.e., ♢1τ

π1 , and the copy state it visits is a secret

state, i.e., □(τπ1 →Sπ1). Then for such an arbitrary π1, we require
the existence of trace π2 such that (i) it has the same observation with
π1 until the stopping instant, i.e., (oπ1 =oπ2)Uτπ1 ; and (ii) when it
stops, it is at a non-secret copy state, i.e., □(τπ1 →(τπ2∧NSπ2)).

The case of infinite-step opacity is similar to the case of current-
state opacity. Specifically, it also requires that, for any string ending
up with a secret state, there exists another string ending up with a
non-secret state such that they have the same observation. However,
in addition, we need to further ensure that, for any string starting from
the above secret, there exists another string starting from the above
non-secret state such that they have the same observation. Otherwise,
the intruder may realize that the system was at a secret state after
some steps. To capture this difference, one can simply replace the
“truncated” observation equivalence condition (oπ1 = oπ2)Uτπ1 in
Equation (18) by an infinite horizon version of observation equiva-
lence condition □(oπ1 =oπ2). This leads to the following theorem.

Theorem 9 (HyperLTL for Infinite-Step Opacity). System
G is infinite-step opaque if and only if K̃G |= ϕifo, where

ϕifo = (19)

∀π1.∃π2.

[
[♢1τ

π1 ∧□(τπ1 →Sπ1)] →
[□(oπ1 = oπ2) ∧□(τπ1 → (τπ2 ∧ NSπ2))]

]
.

V. DISCUSSIONS AND NUMERICAL EXPERIMENTS

Now, let us go back to the second question in the introduction
that why some properties are similar while some are more different.
This, in fact, can be easily explained by the theory of HyperLTL.
In HyperLTL, the alternation depth is referred to as the number
of times the quantifiers alter from existential to universal, or vice
versa. It is known that the verification complexity of HyperLTL
will increase an exponential level when the formula has one more
quantifier alternation [7]. For example, the alternation depth of “∀.∃.”
is one, while the alternation depth of “∀.∀.” is zero. The former
corresponds to the case of opacity and weak detectability, while
the latter corresponds to other notions such as diagnosability. There-
fore, expressing observational properties in terms of HyperLTL also
suggests a natural way to classify existing notions of observational
properties in partially-observed DES: the larger alternation depth the
property has, the higher verification complexity it will require.

Here we present numerical experiments to compare the efficiency
of the proposed HyperLTL-based framework with the customized
DES algorithms for verifying diagnosability (DIAG), predictability
(PRED), I-detectability (ID), strong/weak detectability (SD/WD),
delayed detectability (DD), initial/current-state opacity (ISO/CSO)
and infinite-step opacity (IFO). Specifically, we implement the DES
algorithms as well as the as transformation algorithm from automata
to Kripke structures in Python3. For DIAG, PRED, ID, SD and DD,
we adopt the twin-plant-based polynomial-time algorithms [29], and
for WD, ISO, CSO and IFO, we adopt the observer-based algorithms
since they are inherently PSPACE-hard [29]. For the HyperLTL verifi-
cation, we employ the newly developed model checker AutoHyper
[3]. The experiments are conducted on a MacBook (8G/256G, Apple
M1). Specifically, for each property with a fixed number of states,
we randomly generate 50 systems and verify the property by both
the customized DES algorithm and the HyperLTL-based algorithm;
and we increase the state number from 15 to 80 states. Table I
shows the average running times (in seconds) for each property
with different sizes. All codes are available in the project website
https://github.com/jnzhaooo/jtudes.

In the conduct experiments, we note that the first five properties
involve no quantifier alternation, and they all have polynomial DES

7

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3355378

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on January 20,2024 at 07:53:56 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
STATISTIC RESULTS FOR NUMERICAL EXPERIMENTS ON RANDOMLY GENERATED SYSTEMS

DIAG PRED ID SD DD WD ISO CSO IFO
|X| DES HYP DES HYP DES HYP DES HYP DES HYP DES HYP DES HYP DES HYP DES HYP

15 0.03 0.43 0.06 0.41 0.13 0.23 0.08 1.53 0.35 0.75 3.41 2.93 3.74 0.72 2.23 0.85 4.68 0.97
30 0.08 0.85 0.07 0.68 0.17 0.54 0.09 4.72 1.26 2.41 10.4 3.48 9.44 1.12 6.14 1.60 24.6 2.17
50 0.14 1.07 0.27 1.15 0.51 2.06 0.23 7.35 3.38 4.02 20.9 5.42 18.4 1.45 12.9 3.16 73.9 4.18
80 0.61 1.48 0.46 1.32 1.39 3.13 0.87 12.9 5.62 6.93 53.2 6.36 26.1 1.94 32.3 5.73 171.3 7.21

algorithms. For these properties, the HyperLTL-based approach does
not seem to have computational advantage. For the last four prop-
erties, they all have one degree of quantifier alternation, and their
DES algorithms are generally based on the subset construction, which
requires exponential complexity. For these properties, however, the
average running time of HyperLTL-based framework is considerably
smaller. The main reason for the performance discrepancy is that
HyperLTL model checkers such as AutoHyper handle quantifier
alternations more efficiently. Specifically, for the last four properties,
where quantifier alternations are involved, the HyperLTL model
checker reduces the verification problem to a language inclusion
problem over an unfolded automaton and the specification automaton
without explicitly searching the entire state-space, which yield less
complexity than the exponential-time worst-case. In summary, the
experimental results show that the proposed framework not only
provides a unified method, but also is more efficient for properties
that previously need to be checked using subset construction.

VI. CONCLUSIONS

In this paper, we revisited the problems of verifying observational
properties for partially-observed DES, which have been studied very
actively and extensively in the past two decades in the context of
DES. We showed that the recent developed new temporal logic called
HyperLTL can be used as a suitable tool for unifying many of the im-
portant observational properties in the literature. Our framework does
not provide new decidability results since for all properties considered
here, verification algorithms have already been developed. However,
we believe that our unified view in terms of HyperLTL provides
new insights for those properties that were previously investigated
separately. Furthermore, our unified framework is of practical value
since it provides the access to many of the efficient model checking
tools for the purpose of verifying all these observational properties
instead of developing a customized algorithm for each case.

We would like to remark that, although we have shown that
many of the important properties in partially-observed DES can be
formulated in terms of HyperLTL, there still exist properties that
cannot be captured by the existing proposed framework. Example
of such properties are A-diagnosability [26] and A-detectability
[15]. Similarly, for non-observational properties, non-blockingness
also cannot be expressed by HyperLTL. Essentially, these properties
requiring the existence of a path from a state satisfying some
condition is essentially a branching-time property which is beyond
the semantics of HyperLTL. To address this issue and to further
generalize our framework, a possible future direction is to use more
expressive temporal logic such as HyperCTL∗ [7] that supports both
linear-time and branching-time properties over multiple traces.
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