## 5 Functions

## Basic Definition of Functions

－In mathematics，a function is usually referred to as a mapping $f: A \rightarrow B$ that maps each element in domain $A$ to a new element in another domain $B$ ．Essentially，a function can be defined as a relation having specific properties．

## Definition：Functions

A relation $f \subseteq A \times B$ is said to be a function（函数）from $A$ to $B$ if
（1）$(\forall x)(\forall y)\left(\forall y^{\prime}\right)\left(\left(x f y \wedge x f y^{\prime}\right) \rightarrow y=y^{\prime}\right)$
（2）$(\forall x)(x \in A \rightarrow(\exists y)(y \in B \wedge x f y))$
－We make the following remarks regarding the above definition of function
1．The first condition says that for each element $x \in A$ ，it is related to a unique element in $B$ ．We usually denote by $f(x)$ the unique element such that $\langle x, f(x)\rangle \in f$ ．

2．The second condition says that any element in $A$ is related to some element in $B$ ， i．e．， $\operatorname{dom}(f)=A$ ．Therefore，a function is also called a total function（全函数）．If $\operatorname{dom}(f) \subset A$ ，i．e．，$f(x)$ is undefined for some $x \in A$ ，then we call $f$ a partial function （部分函数）．For example，$f=\{\langle 1,2\rangle,\langle 2,3\rangle\}$ is a function from $\{1,2\}$ to $\{2,3\}$ ，but is just a partial function from $\{1,2,3\}$ to $\{1,2,3\}$ ．
3．Finally，we note that $f$ is a function from $A$ to $B$ does not imply that $f^{-1}$ is a function from $B$ to $A$ ．For example $f=\{\langle 1,3\rangle,\langle 2,3\rangle,\langle 3,1\rangle\}$ is a function，but $f^{-1}=$ $\{\langle 3,1\rangle,\langle 3,2\rangle,\langle 1,3\rangle\}$ is not a function．

4．Sometimes，it is not convenient to list all pairs in $f$ ．It we can write $f(x)$ in a close－ form，then usually we use $f: A \rightarrow B, f: x \mapsto y$ to denote that $f$ is a function from $A$ to $B$ and $\langle x, y\rangle \in f$ ．For example，$f: \mathbb{R} \rightarrow \mathbb{R}, f: x \mapsto 2 x+1$ means that $f=\{\langle x, y\rangle: y=2 x+1\} \subseteq \mathbb{R} \times \mathbb{R}$.

5．The set of all functions from $A$ to $B$ is denoted by $A_{B}=\{f:(f: A \rightarrow B)\}$ ．We note the following differences：
－Since $\emptyset: \emptyset \rightarrow B$ ，we have $\emptyset_{B}=\{\emptyset\}$ for any $B$
－$f: A \rightarrow \emptyset$ does not exist when $A \neq \emptyset$ ．Therefore，$A_{\emptyset}=\emptyset$ when $A \neq \emptyset$ ．

## Example：Commonly Used Functions

- Constant Function（常函数）：$f: A \rightarrow B$ such that $(\forall x)(f(x)=c)$ for some $c \in B$ ．
- Identity Function（恒等函数）：$I_{A}: A \rightarrow A$ such that $(\forall x)(f(x)=x)$
- Indicator Function（特征函数）：Let $A \subseteq E$ ．Then $\mathcal{X}_{A}: E \rightarrow\{0,1\}$ is defined by $\mathcal{X}_{A}(x)=1$ iff $x \in A$ ．


## Injections，Surjections \＆Bijections

－Depending on how a function maps each element from the domain to its range，e．g．， one－to－one or not，we can classify functions as follows：

## Definition：Classification of Functions

Let $f: A \rightarrow B$ be a function．Then we say $f$ is a

- injection（单射）：if $\left(\forall x_{1} \in A\right)\left(\forall x_{2} \in A\right)\left(x_{1} \neq x_{2} \rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)\right)$
- surjection（满射）：if $\operatorname{ran}(f)=B$
- bijection（双射）：if it is both an injection and a surjection．

Injection is also called one－to－one，surjection is also called onto and bijection is also called one－to－one correspondence．

## Examples

－For $A=\{1,2,3\}, B=\{1,2,3,4\}, f_{1}=\{\langle 1,2\rangle,\langle 3,2\rangle,\langle 2,3\rangle\}$ is neither an injec－ tion nor a surjection，but $f_{2}=\{\langle 1,2\rangle,\langle 3,4\rangle,\langle 2,1\rangle\}$ is an injection．
－For $f: \mathbb{N} \rightarrow \mathbb{N}, f: x \mapsto 2 x$ ，it is an injection but is NOT a surjection．However， for $f: \mathbb{R} \rightarrow \mathbb{R}, f: x \mapsto 2 x$ ，it is a bijection．
$-\emptyset: \emptyset \rightarrow B$ is always an injection．Furthermore，it is a bijection when $B=\emptyset$ ．
－Since a function $f \subseteq A \times B$ is also a relation，it makes sense to talk about its converse $f^{-1} \subseteq B \times A$ ．However，$f^{-1}$ may not be a function because either（i） $\operatorname{dom}\left(f^{-1}\right) \subset B$ ； or（ii）$\left\langle b, a_{1}\right\rangle,\left\langle b, a_{2}\right\rangle \in f^{-1}$ for different $a_{1}$ and $a_{2}$ ．Therefore，only when $f$ is a bijection， we have that $f^{-1}: B \rightarrow A$ is a function，and we call $f^{-1}$ the inverse function（逆函数） of $f$ ．In fact $f^{-1}$ is still a bijection such that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$ ．
－Also，for $g: A \rightarrow B$ and $f: B \rightarrow C$ ，it is easy to check that $f \circ g: A \rightarrow C$ is also a function such that for any $x \in A$ ，we have $f \circ g(x)=f(g(x)))$ ．Furthermore，we have

## Theorem：Composition of Functions

Let $g: A \rightarrow B$ and $f: B \rightarrow C$ ．Then
（1）If $f$ and $g$ are bijections（respectively，injections or surjections），then $f \circ g$ is also a bijection（respectively，injection or surjection）．
（2）If $f \circ g$ is a surjection，then $f$ is a surjection．
（3）If $f \circ g$ is an injection，then $g$ is an injection．

Note that when $f \circ g$ is a surjection，$g$ may not be a surjection．For example，for $A=$ $\{1,2\}, B=\{3,4\}, C=\{5\}$ ，consider $g=\{\langle 1,3\rangle,\langle 2,3\rangle\}$ and $f=\{\langle 3,5\rangle,\langle 4,5\rangle\}$ ．Then $f \circ g=\{\langle 1,5\rangle,\langle 2,5\rangle\}$ is surjection from $A$ to $C$ but $g$ is not surjection from $A$ to $B$ ．

## Cardinality and Equinumerous

－Given a set $A$ ，we denote by $|A|$ or $\operatorname{card}(A)$ the cardinality（基数）of $A$ ，which is the number of all elements in it．It is easy to compare cardinalities for finite sets，e．g．， $|\{1,2,3\}|=3>|\{a, b\}|=2$ ．However，the question is how to compare infinite sets？ For example，for $\mathbb{N}$ and $\mathbb{N}_{\text {even }}$ ，which one has＂more＂elements？Our basic idea is to use bijection to establish equivalence of elements numbers．

## Definition：Equinumerous

Let $A$ and $B$ be two sets．We say $A$ and $B$ are equinumerous（等势），denoted by $A \approx B$ ，if there exists a bijection from $A$ to $B$ ．
－Using the concept of equinumerous，we can classify the size of a set as follows．

## Definition：Finite Sets \＆Infinite Sets

Let $A$ be a set．Then we say $A$ is

- finite（有限的）：if $A \approx\{1,2, \cdots, n\}$ for some $n$ and we define $|A|=n$ ．
- infinite（无限的）：if it is not finite．

Furthermore，for infinite set $A$ ，we say $A$ is countably infinite（可数无限的）if $A \approx \mathbb{N}$ ，where $\mathbb{N}=\{0,1,2, \ldots\}$ is the set of all natural numbers．The cardinality of infinite set is defined as follows：
$-|\mathbb{N}|=\aleph_{0}$ ，where $\aleph_{0}$ is called the Aleph Zero（阿列夫零）；
－If $\left|A_{k}\right|=\aleph_{k}$ ，then $\left|2^{A_{k}}\right|=\aleph_{k+1}$ ，where $\aleph_{k}$ is called the Aleph $k$（阿列夫 $k$ ）．
－We use bijection to define that two sets have the same cardinality．Similarly，we say $A$ is dominated（支配）by $B$ ，denoted as $A \preceq B$ ，if there exists an injection $f: A \rightarrow B$ ．We write $A \prec B$ if $A \preceq B$ and $A \not \approx B$ ．Intuitively，$A \prec B$ means that $A$ has＂less＂elements than $B$ ．It is easy to guess that $A \approx B$ iff $(A \preceq B) \wedge(B \preceq A)$ ．In fact，it is correct，but its proof is actually much difficult than we may guess．

## Theorem：Schröder－Berstein＇s Theorem

If $A \preceq B$ and $B \preceq A$ ，then $A \approx B$ ．
－For finite sets，it is easy to compare their sizes．Clearly，if $A \subset B$ ，then we have $|A|<|B|$ ． For example，we have $\{1,2,3,4\} \approx\{a, b, c, d\} \approx\{$ 离，散，数，学 $\} \not \approx\{$ 数，学分 $\}$ ．However， for infinite sets，$A \subset B$ does not imply that $|A|<|B|$ ．
－ $\mathbb{N}_{\text {even }} \approx \mathbb{N}$ since we have bijection $f: x \mapsto 2 x$ ．
$-(0,1) \approx \mathbb{R}$ since we have bijection $f(x)=\tan \left(\pi\left(x-\frac{1}{2}\right)\right)$
$-\mathbb{R} \approx \mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$ since we have bijection $f: x \mapsto e^{x}$

## From Countable Infinity to Uncountable Infinity

- Note that any countably infinite set $A$ is equinumerous to natural numbers $\mathbb{N}$. To establish a bijection from $A$ to $\mathbb{N}$, essentially, it asks to find a way to list of elements of $A$ in order. Using this fact, we can show that the Cartisan product of natural numbers $\mathbb{N} \times \mathbb{N}$ and rational numbers $\mathbb{Q}$ are all countably infinite.

$$
\text { Result: } \mathbb{N} \approx \mathbb{N} \times \mathbb{N} \approx \mathbb{Q}
$$

To prove the above facts, we just need to list all elements in $\mathbb{N} \times \mathbb{N}$ and $\mathbb{Q}$ as follows:

$\langle 0,1\rangle$
$\langle 1,0\rangle \rightarrow\langle 2,0\rangle$

$\langle 0,2\rangle$
$\langle 1,2\rangle$
$\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$


$$
\mathbb{Q} \approx \mathbb{N}
$$

- However, we cannot list all real numbers in order, which tells that $\mathbb{R}$ is uncountable.


## Result: $\mathbb{N} \not \approx \mathbb{R}$

The proof of the above fact is the famous Cantor's diagonal argument. Note that $(0,1) \approx$ $\mathbb{R}$; it suffices to show $(0,1) \not \approx \mathbb{R}$. Specifically, we assume that, by some means, all real numbers in $(0,1)$ can be listed in order. Suppose that it is listed such that the $i$ th real number is $0 . a_{i} b_{i} c_{i} d_{i} e_{i} \ldots$. Then we consider a new real number $0 . a b c d e \ldots$ such that $a \neq a_{1}, b \neq b_{2}, c \neq c_{3}, d \neq d_{4}, \ldots$ This means that this new number is not listed! Therefore, there is no way to list all elements in $(0,1)$, which means that it is uncountable.

- The above result shows that $\mathbb{R}$ is "larger" than $\mathbb{N}$. The following result shows that we can always find a set larger than a given set

Result: for any set $A$, we have $A \not \approx 2^{A}$
We prove the above result by contradiction. Assume that there exists a bijection $f: A \rightarrow$ $2^{A}$. We define set $Y=\{x \in A: x \notin f(x)\}$. Clearly, $Y \in 2^{A}$. Since $f$ is a bijection, we can choose the unique element $y \in A$ such that $f(y)=Y$. However, there is a problem

- if $y \in Y$, then $y \notin f(y)=Y$;
- if $y \notin Y$, then $y \in f(y)=Y$.
- We have shown using the Cantor's diagonal argument that $\mathbb{N} \not \approx \mathbb{R}$. In fact, using the Schröder-Berstein's theorem, we can further argue that $|\mathbb{R}|=\aleph_{1}$, i.e.,

Result: $2^{\mathbb{N}} \approx \mathbb{R}$

