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5 Functions
Basic Definition of Functions

▶ In mathematics, a function is usually referred to as a mapping f : A → B that maps each
element in domain A to a new element in another domain B. Essentially, a function can
be defined as a relation having specific properties.

Definition: Functions

A relation f ⊆ A×B is said to be a function (函数) from A to B if

1 (∀x)(∀y)(∀y′)((xfy ∧ xfy′) → y = y′)

2 (∀x)(x ∈ A → (∃y)(y ∈ B ∧ xfy))

▶ We make the following remarks regarding the above definition of function

1. The first condition says that for each element x ∈ A, it is related to a unique element
in B. We usually denote by f(x) the unique element such that 〈x, f(x)〉 ∈ f .

2. The second condition says that any element in A is related to some element in B,
i.e., dom(f) = A. Therefore, a function is also called a total function (全函数). If
dom(f)⊂A, i.e., f(x) is undefined for some x ∈ A, then we call f a partial function
(部分函数). For example, f = {〈1, 2〉, 〈2, 3〉} is a function from {1, 2} to {2, 3}, but is
just a partial function from {1, 2, 3} to {1, 2, 3}.

3. Finally, we note that f is a function from A to B does not imply that f−1 is a
function from B to A. For example f = {〈1, 3〉, 〈2, 3〉, 〈3, 1〉} is a function, but f−1 =

{〈3, 1〉, 〈3, 2〉, 〈1, 3〉} is not a function.

4. Sometimes, it is not convenient to list all pairs in f . It we can write f(x) in a close-
form, then usually we use f : A → B, f : x 7→ y to denote that f is a function from
A to B and 〈x, y〉 ∈ f . For example, f : R → R, f : x 7→ 2x + 1 means that
f = {〈x, y〉 : y = 2x+ 1} ⊆ R× R.

5. The set of all functions from A to B is denoted by AB = {f : (f : A → B)}. We note
the following differences:

– Since ∅ : ∅ → B, we have ∅B = {∅} for any B

– f : A → ∅ does not exist when A 6= ∅. Therefore, A∅ = ∅ when A 6= ∅.

Example: Commonly Used Functions

– Constant Function (常函数): f : A→B such that (∀x)(f(x)=c) for some c ∈ B.

– Identity Function (恒等函数): IA : A → A such that (∀x)(f(x) = x)

– Indicator Function (特征函数): Let A ⊆ E. Then XA : E → {0, 1} is defined by
XA(x) = 1 iff x ∈ A.

1



CS2501H Discrete Mathematics (Honor) Xiang Yin

Injections, Surjections & Bijections

▶ Depending on how a function maps each element from the domain to its range, e.g.,
one-to-one or not, we can classify functions as follows:

Definition: Classification of Functions

Let f : A → B be a function. Then we say f is a
– injection (单射): if (∀x1 ∈ A)(∀x2 ∈ A)(x1 6= x2 → f(x1) 6= f(x2))

– surjection (满射)：if ran(f) = B

– bijection (双射): if it is both an injection and a surjection.

Injection is also called one-to-one, surjection is also called onto and bijection is also called
one-to-one correspondence.

Examples

– For A = {1, 2, 3}, B = {1, 2, 3, 4}, f1 = {〈1, 2〉, 〈3, 2〉, 〈2, 3〉} is neither an injec-
tion nor a surjection, but f2 = {〈1, 2〉, 〈3, 4〉, 〈2, 1〉} is an injection.

– For f : N → N, f : x 7→ 2x, it is an injection but is NOT a surjection. However,
for f : R → R, f : x 7→ 2x, it is a bijection.

– ∅ : ∅ → B is always an injection. Furthermore, it is a bijection when B = ∅.

▶ Since a function f ⊆ A × B is also a relation, it makes sense to talk about its converse
f−1 ⊆ B × A. However, f−1 may not be a function because either (i) dom(f−1) ⊂ B;
or (ii) 〈b, a1〉, 〈b, a2〉 ∈ f−1 for different a1 and a2. Therefore, only when f is a bijection,
we have that f−1 : B → A is a function, and we call f−1 the inverse function (逆函数)
of f . In fact f−1 is still a bijection such that f−1(f(x)) = x and f(f−1(y)) = y.

▶ Also, for g : A → B and f : B → C, it is easy to check that f ◦ g : A → C is also a
function such that for any x ∈ A, we have f ◦ g(x) = f(g(x))). Furthermore, we have

Theorem: Composition of Functions

Let g : A → B and f : B → C. Then
1 If f and g are bijections (respectively, injections or surjections), then f ◦ g is

also a bijection (respectively, injection or surjection).

2 If f ◦ g is a surjection, then f is a surjection.

3 If f ◦ g is an injection, then g is an injection.

Note that when f ◦ g is a surjection, g may not be a surjection. For example, for A =

{1, 2}, B = {3, 4}, C = {5}, consider g = {〈1, 3〉, 〈2, 3〉} and f = {〈3, 5〉, 〈4, 5〉}. Then
f ◦ g = {〈1, 5〉, 〈2, 5〉} is surjection from A to C but g is not surjection from A to B.
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Cardinality and Equinumerous

▶ Given a set A, we denote by |A| or card(A) the cardinality (基数) of A, which is the
number of all elements in it. It is easy to compare cardinalities for finite sets, e.g.,
|{1, 2, 3}| = 3 > |{a, b}| = 2. However, the question is how to compare infinite sets?
For example, for N and Neven, which one has “more” elements? Our basic idea is to use
bijection to establish equivalence of elements numbers.

Definition: Equinumerous

Let A and B be two sets. We say A and B are equinumerous (等势), denoted
by A ≈ B, if there exists a bijection from A to B.

▶ Using the concept of equinumerous, we can classify the size of a set as follows.

Definition: Finite Sets & Infinite Sets

Let A be a set. Then we say A is

– finite (有限的): if A ≈ {1, 2, · · · , n} for some n and we define |A| = n.

– infinite (无限的): if it is not finite.

Furthermore, for infinite set A, we say A is countably infinite (可数无限的) if
A ≈ N, where N = {0, 1, 2, . . . } is the set of all natural numbers. The cardinality
of infinite set is defined as follows:

– |N| = ℵ0, where ℵ0 is called the Aleph Zero (阿列夫零);

– If |Ak| = ℵk, then |2Ak | = ℵk+1, where ℵk is called the Aleph k (阿列夫 k).

▶ We use bijection to define that two sets have the same cardinality. Similarly, we say A is
dominated (支配) by B, denoted as A � B, if there exists an injection f : A → B. We
write A ≺ B if A � B and A 6≈ B. Intuitively, A ≺ B means that A has “less” elements
than B. It is easy to guess that A ≈ B iff (A � B) ∧ (B � A). In fact, it is correct, but
its proof is actually much difficult than we may guess.

Theorem: Schröder-Berstein’s Theorem

If A � B and B � A, then A ≈ B.

▶ For finite sets, it is easy to compare their sizes. Clearly, if A ⊂ B, then we have |A| < |B|.
For example, we have {1, 2, 3, 4} ≈ {a, b, c, d} ≈ {离, 散, 数, 学} 6≈ {数, 学分}. However,
for infinite sets, A ⊂ B does not imply that |A| < |B|.

– Neven ≈ N since we have bijection f : x 7→ 2x.

– (0, 1) ≈ R since we have bijection f(x) = tan(π(x− 1
2
))

– R ≈ R+ = {x ∈ R : x > 0} since we have bijection f : x 7→ ex
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From Countable Infinity to Uncountable Infinity

▶ Note that any countably infinite set A is equinumerous to natural numbers N. To establish
a bijection from A to N, essentially, it asks to find a way to list of elements of A in order.
Using this fact, we can show that the Cartisan product of natural numbers N × N and
rational numbers Q are all countably infinite.

Result: N ≈ N× N ≈ Q

To prove the above facts, we just need to list all elements in N× N and Q as follows:

〈0, 0〉

〈0, 1〉

〈0, 2〉

〈0, 3〉

〈1, 0〉 〈2, 0〉 〈3, 0〉

〈1, 1〉 〈2, 1〉

〈1, 2〉

. . .

1/1

2/1

3/1

4/1

1/2

2/2

3/2

4/2

1/3

2/3

3/3

1/4

2/4

. . .

N× N ≈ N Q ≈ N

▶ However, we cannot list all real numbers in order, which tells that R is uncountable.

Result: N 6≈ R

The proof of the above fact is the famous Cantor’s diagonal argument. Note that (0, 1) ≈
R; it suffices to show (0, 1) 6≈ R. Specifically, we assume that, by some means, all real
numbers in (0, 1) can be listed in order. Suppose that it is listed such that the ith
real number is 0.aibicidiei . . . . Then we consider a new real number 0.abcde . . . such
that a 6= a1, b 6= b2, c 6= c3, d 6= d4, . . . . This means that this new number is not listed!
Therefore, there is no way to list all elements in (0, 1), which means that it is uncountable.

▶ The above result shows that R is “larger” than N. The following result shows that we
can always find a set larger than a given set

Result: for any set A, we have A 6≈ 2A

We prove the above result by contradiction. Assume that there exists a bijection f : A →
2A. We define set Y = {x ∈ A : x /∈ f(x)}. Clearly, Y ∈ 2A. Since f is a bijection, we
can choose the unique element y ∈ A such that f(y) = Y . However, there is a problem

– if y ∈ Y , then y /∈ f(y) = Y ;
– if y /∈ Y , then y ∈ f(y) = Y .

▶ We have shown using the Cantor’s diagonal argument that N 6≈ R. In fact, using the
Schröder-Berstein’s theorem, we can further argue that |R| = ℵ1, i.e.,

Result: 2N ≈ R
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