5 Functions

Basic Definition of Functions

▶ In mathematics, a function is usually referred to as a mapping $f : A \to B$ that maps each element in domain A to a new element in another domain B. Essentially, a function can be defined as a relation having specific properties.

Definition: Functions

A relation $f \subseteq A \times B$ is said to be a **function** (函数) from A to B if

(1)
$$(\forall x)(\forall y)(\forall y')((xfy \land xfy') \to y = y)$$

(2)
$$(\forall x)(x \in A \to (\exists y)(y \in B \land xfy))$$

- ▶ We make the following remarks regarding the above definition of function
 - 1. The first condition says that for each element $x \in A$, it is related to a unique element in *B*. We usually denote by f(x) the unique element such that $\langle x, f(x) \rangle \in f$.

')

- 2. The second condition says that any element in A is related to some element in B, i.e., dom(f) = A. Therefore, a function is also called a <u>total function</u> (全函数). If dom(f) ⊂ A, i.e., f(x) is undefined for some x ∈ A, then we call f a <u>partial function</u> (部分函数). For example, f = {(1,2), (2,3)} is a function from {1,2} to {2,3}, but is just a partial function from {1,2,3} to {1,2,3}.
- 3. Finally, we note that f is a function from A to B does not imply that f^{-1} is a function from B to A. For example $f = \{\langle 1, 3 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle\}$ is a function, but $f^{-1} = \{\langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 1, 3 \rangle\}$ is not a function.
- 4. Sometimes, it is not convenient to list all pairs in f. It we can write f(x) in a closeform, then usually we use $f: A \to B, f: x \mapsto y$ to denote that f is a function from A to B and $\langle x, y \rangle \in f$. For example, $f: \mathbb{R} \to \mathbb{R}, f: x \mapsto 2x + 1$ means that $f = \{\langle x, y \rangle : y = 2x + 1\} \subseteq \mathbb{R} \times \mathbb{R}.$
- 5. The set of all functions from A to B is denoted by $A_B = \{f : (f : A \to B)\}$. We note the following differences:
 - Since $\emptyset : \emptyset \to B$, we have $\emptyset_B = \{\emptyset\}$ for any B
 - $-f: A \to \emptyset$ does not exist when $A \neq \emptyset$. Therefore, $A_{\emptyset} = \emptyset$ when $A \neq \emptyset$.

Example: Commonly Used Functions

- Constant Function (常函数): $f: A \to B$ such that $(\forall x)(f(x) = c)$ for some $c \in B$.
- Identity Function (恒等函数): $I_A : A \to A$ such that $(\forall x)(f(x) = x)$
- Indicator Function (特征函数): Let $A \subseteq E$. Then $\mathcal{X}_A : E \to \{0, 1\}$ is defined by $\mathcal{X}_A(x) = 1$ iff $x \in A$.

Injections, Surjections & Bijections

▶ Depending on how a function maps each element from the domain to its range, e.g., one-to-one or not, we can classify functions as follows:

Definition: Classification of Functions

Let $f: A \to B$ be a function. Then we say f is a

- **injection** (**\mathring{\mathbf{\mu}}**): if $(\forall x_1 \in A)(\forall x_2 \in A)(x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$
- surjection (満射): if ran(f) = B
- **bijection** (双射): if it is both an injection and a surjection.

Injection is also called <u>one-to-one</u>, surjection is also called <u>onto</u> and bijection is also called one-to-one correspondence.

Examples

- For $A = \{1, 2, 3\}, B = \{1, 2, 3, 4\}, f_1 = \{\langle 1, 2 \rangle, \langle 3, 2 \rangle, \langle 2, 3 \rangle\}$ is neither an injection nor a surjection, but $f_2 = \{\langle 1, 2 \rangle, \langle 3, 4 \rangle, \langle 2, 1 \rangle\}$ is an injection.
- For $f : \mathbb{N} \to \mathbb{N}, f : x \mapsto 2x$, it is an injection but is NOT a surjection. However, for $f : \mathbb{R} \to \mathbb{R}, f : x \mapsto 2x$, it is a bijection.
- $-\emptyset: \emptyset \to B$ is always an injection. Furthermore, it is a bijection when $B = \emptyset$.
- ▶ Since a function $f \subseteq A \times B$ is also a relation, it makes sense to talk about its converse $f^{-1} \subseteq B \times A$. However, f^{-1} may not be a function because either (i) dom $(f^{-1}) \subset B$; or (ii) $\langle b, a_1 \rangle, \langle b, a_2 \rangle \in f^{-1}$ for different a_1 and a_2 . Therefore, only when f is a bijection, we have that $f^{-1} : B \to A$ is a function, and we call f^{-1} the inverse function (逆函数) of f. In fact f^{-1} is still a bijection such that $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$.
- ▶ Also, for $g: A \to B$ and $f: B \to C$, it is easy to check that $f \circ g: A \to C$ is also a function such that for any $x \in A$, we have $f \circ g(x) = f(g(x))$. Furthermore, we have

Theorem: Composition of Functions

Let $g: A \to B$ and $f: B \to C$. Then

- (1) If f and g are bijections (respectively, injections or surjections), then $f \circ g$ is also a bijection (respectively, injection or surjection).
- (2) If $f \circ g$ is a surjection, then f is a surjection.
- (3) If $f \circ g$ is an injection, then g is an injection.

Note that when $f \circ g$ is a surjection, g may not be a surjection. For example, for $A = \{1, 2\}, B = \{3, 4\}, C = \{5\}$, consider $g = \{\langle 1, 3 \rangle, \langle 2, 3 \rangle\}$ and $f = \{\langle 3, 5 \rangle, \langle 4, 5 \rangle\}$. Then $f \circ g = \{\langle 1, 5 \rangle, \langle 2, 5 \rangle\}$ is surjection from A to C but g is not surjection from A to B.

Cardinality and Equinumerous ▶ Given a set A, we denote by |A| or card(A) the cardinality (基数) of A, which is the number of all elements in it. It is easy to compare cardinalities for finite sets, e.g., $|\{1,2,3\}| = 3 > |\{a,b\}| = 2$. However, the question is how to compare infinite sets? For example, for \mathbb{N} and \mathbb{N}_{even} , which one has "more" elements? Our basic idea is to use bijection to establish equivalence of elements numbers. **Definition:** Equinumerous Let A and B be two sets. We say A and B are **equinumerous** (等势), denoted by $A \approx B$, if there exists a bijection from A to B. ▶ Using the concept of equinumerous, we can classify the size of a set as follows. **Definition: Finite Sets & Infinite Sets** Let A be a set. Then we say A is - finite (有限的): if $A \approx \{1, 2, \dots, n\}$ for some *n* and we define |A| = n. - infinite (无限的): if it is not finite. Furthermore, for infinite set A, we say A is **countably infinite** (可数无限的) if $A \approx \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, \dots\}$ is the set of all natural numbers. The cardinality of infinite set is defined as follows: $- |\mathbb{N}| = \aleph_0$, where \aleph_0 is called the **Aleph Zero** (阿列夫零); - If $|A_k| = \aleph_k$, then $|2^{A_k}| = \aleph_{k+1}$, where \aleph_k is called the Aleph k (阿列夫 k). \blacktriangleright We use bijection to define that two sets have the same cardinality. Similarly, we say A is

dominated (支配) by B, denoted as $A \leq B$, if there exists an <u>injection</u> $f : A \rightarrow B$. We write $A \prec B$ if $A \leq B$ and $A \not\approx B$. Intuitively, $A \prec B$ means that A has "less" elements than B. It is easy to guess that $A \approx B$ iff $(A \leq B) \land (B \leq A)$. In fact, it is correct, but its proof is actually much difficult than we may guess.

Theorem: Schröder-Berstein's Theorem

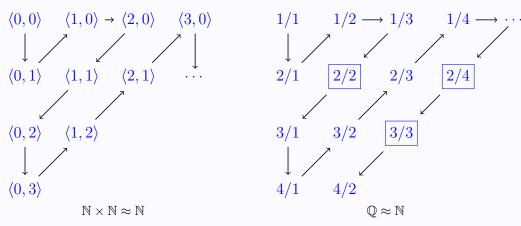
```
If A \preceq B and B \preceq A, then A \approx B.
```

- For finite sets, it is easy to compare their sizes. Clearly, if A ⊂ B, then we have |A| < |B|.
 For example, we have {1,2,3,4} ≈ {a,b,c,d} ≈ {离, 散, 数, 学} ≈ {数, 学分}. However, for infinite sets, A ⊂ B does not imply that |A| < |B|.
 - $-\mathbb{N}_{even} \approx \mathbb{N}$ since we have bijection $f: x \mapsto 2x$.
 - $-(0,1) \approx \mathbb{R}$ since we have bijection $f(x) = \tan(\pi(x-\frac{1}{2}))$
 - $-\mathbb{R} \approx \mathbb{R}^+ = \{x \in \mathbb{R} : x > 0\}$ since we have bijection $f : x \mapsto e^x$

From Countable Infinity to Uncountable Infinity

▶ Note that any countably infinite set A is equinumerous to natural numbers N. To establish a bijection from A to N, essentially, it asks to find a way to <u>list of elements of A in order</u>. Using this fact, we can show that the Cartisan product of natural numbers $\mathbb{N} \times \mathbb{N}$ and rational numbers \mathbb{Q} are all countably infinite.

To prove the above facts, we just need to list all elements in $\mathbb{N} \times \mathbb{N}$ and \mathbb{Q} as follows:



▶ However, we cannot list all real numbers in order, which tells that \mathbb{R} is uncountable.

Result: $\mathbb{N} \not\approx \mathbb{R}$

The proof of the above fact is the famous Cantor's diagonal argument. Note that $(0,1) \approx \mathbb{R}$; it suffices to show $(0,1) \not\approx \mathbb{R}$. Specifically, we assume that, by some means, all real numbers in (0,1) can be listed in order. Suppose that it is listed such that the *i*th real number is $0.a_ib_ic_id_ie_i\ldots$. Then we consider a new real number $0.abcde\ldots$ such that $a \neq a_1, b \neq b_2, c \neq c_3, d \neq d_4, \ldots$. This means that this new number is not listed! Therefore, there is no way to list all elements in (0, 1), which means that it is uncountable.

▶ The above result shows that ℝ is "larger" than N. The following result shows that we can always find a set larger than a given set

Result: for any set A, we have $A \not\approx 2^A$

We prove the above result by contradiction. Assume that there exists a bijection $f : A \to 2^A$. We define set $Y = \{x \in A : x \notin f(x)\}$. Clearly, $Y \in 2^A$. Since f is a bijection, we can choose the unique element $y \in A$ such that f(y) = Y. However, there is a problem

- if
$$y \in Y$$
, then $y \notin f(y) = Y$;

- if $y \notin Y$, then $y \in f(y) = Y$.
- ► We have shown using the Cantor's diagonal argument that $\mathbb{N} \not\approx \mathbb{R}$. In fact, using the Schröder-Berstein's theorem, we can further argue that $|\mathbb{R}| = \aleph_1$, i.e.,

Result: $2^{\mathbb{N}} \approx \mathbb{R}$