
CS2501H Discrete Mathematics (Honor) Xiang Yin

6 Graph Theory
Basic Definitions of Graphs

▶ Graph is a commonly used mathematical model for representing how things are connected.
In graphs, there are two basic types of elements: vertices (结点) and edges (边).
Intuitively, a vertex can represent a place and an edge can present the road connecting
two places. Depending on whether the edges consider direction or self-loops are allowed,
we categorize graphs are follows.

simple (简单) multi (多重) pseudo (图) directed (有向) simple directed
direction × × × √ √

multi-edge × √ √ √ ×
self-loop × × √ √ ×

▶ As we can see, directed graph is the most general notion as it allows direction, multi-edges
and self-loops. It can be defined as follows.

Definition: Graphs

A graph is a 3-tuple G = ⟨V,E, E⟩, where V = {v1, · · · , vn} is the set of vertices,
E = {e1, · · · , em} is the set of edges and E : E → V × V is a function that
determines the starting vertex and the ending vertex of each edge.

The above definition can be simplified if we consider special graphs. For example,
– for pseudo-graph, since there is no direction, we do not need to assign each edge an

ordered pair. Instead, we can define E : E → {{v, v′} : v, v′ ∈ V }.
– furthermore, for simple-graph, since there is no self-loop, we can define E : E →
{{v, v′} : v, v′ ∈ V } \ IV . Moreover, since there is no multi-edge, function E is actually
an injection because we cannot have two different edges starting from the same vertex
and ending at the same vertex.

▶ For directed graph, ek = ⟨v, v′⟩ means that ek is an edge from v to v′. For undirected
graph, ek = {v, v′} means that ek is an edge connecting v and v′. For simplicity, we
usually just write both cases as ek = (v, v′). Sometimes, we also just write a graph as a
2-tuple G = ⟨V,E⟩ and how each edge connects vertices is just shown by the figure.

▶ We say a simple graph is an empty graph (空图) if it has no edges and we denote by
Nn the empty graph with n vertices. Also we say a simple graph is a complete graph
(全图) if each pair of vertices are connected and we denote by Kn the complete graph

with n vertices. For example, K3 is and K4 is .

1

CS2501H Discrete Mathematics (Honor) Xiang Yin

Terminologies of Graphs

▶ Let G = ⟨V,E⟩ be an undirected graph. We say two vertices v, v′ are adjacent (相邻的)
if e = (u, v) for some e ∈ E. Also, we say edge e is incident (关联) with v and v′. Given
vertex v ∈ V , we denote by Γ(v) the set of all its adjacent vertices (or neighbours).

▶ Furthermore, for directed graphs, if there exists an edge of form e = ⟨v, v′⟩, then we say
v is the predecessor (前驱) of v′ and v′ is the successor (后继) of v. For vertex v ∈ V ,
we denoted by Γ−(v) and Γ+(v) the set of predecessors of v and the set of successors of
v, respectively.

▶ The degree (度) of a vertex v in an undirected graph, denoted by d(v), is the number of
edges incident with it, for which a self-loop at v contributes twice to d(v). For directed
graphs, we further define d+(v) = |{e ∈ E : e = ⟨v, v′⟩}| as its out-degree (出度) and
d−(v) = |{e ∈ E : e = ⟨v′, v⟩}| as its in-degree (入度).

v1 v4

v2 v3 v5

d(v1) = 6, d+(v1) = 3, d−(v1) = 3

d(v2) = 2, d+(v2) = 1, d−(v2) = 1

d(v3) = 3, d+(v3) = 2, d−(v3) = 1

d(v4) = 4, d+(v4) = 2, d−(v1) = 2

d(v5) = 1, d+(v5) = 0, d−(v5) = 1

▶ Regaridng the degrees of vertices, we have the following basic results:
1 For any graph G = ⟨V,E⟩, where |V | = n, |E| = m, we have

∑
v∈V

d(v) = 2m .

2 For any directed graph G = ⟨V,E⟩, we further have
∑

v∈V d+(v) =
∑

v∈V d−(v) = m.
3 The number of edges in Kn is 1

2
n(n− 1)

4 Any non-empty simple graph must have two vertices with the same degree.

▶ G′ = ⟨V ′, E ′⟩ is said to be a sub-graph (子图) of G = ⟨V,E⟩, denoted as G′ ⊆ G,
if V ′ ⊆ V and E ′ ⊆ E. Given graph G = ⟨V,E⟩ and a set of vertices V ′ ⊆ V , the
sub-graph induced (诱导子图) by V ′ is a new graph G′ = ⟨V ′, E ′⟩ such that

(∀v, v′ ∈ V ′)(e = (v, v′) ∈ E → e ∈ E ′)

For example, for the following graph G, G1 is the sub-graph induced by {v1, v2, v3, v4, v5}
and G2 is the sub-graph induced by {v2, v3, v4, v5}. Note that G3 is a just sub-graph of
G but is not an induced sub-graph because edges (v2, v5) and (v3, v4) are missing.

G

v1

v2

v3

v4

v5

v6

G1 ⊆ G

v1

v2

v3

v4

v5
G2 ⊆ G

v2

v3

v4

v5
G3 ⊆ G

v2

v3

v4

v5

2

CS2501H Discrete Mathematics (Honor) Xiang Yin

Graph Isomorphism

▶ Note that two graphs may looks different but essentially they are the “same” in terms of
renaming of vertices and edges.

Definition: Graph Isomorphism

Let G1 = ⟨V1, E1⟩ and G2 = ⟨V2, E2⟩ be two graphs. We say G1 and G2 are
isomorphic (同构), denoted by G1

∼= G2, if there exists a bijection f : V1 → V2

such that (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2.

For example, the following pairs of graphs are isomorphic:

∼=

v1 v2

v3 v4

v5 v6

v7 v8

∼=

v0 v1

v2

v3 v4

v5 v6

v7

v8 v9

▶ In general, it is difficult to check whether or not two graphs are isomorphic. However, we
can find necessary conditions two graphs must hold if they are isomorphic.

Theorem: Necessary Conditions for Graph Isomorphism

For any G1 = ⟨V1, E1⟩ and G2 = ⟨V2, E2⟩ such that G1
∼= G2, then

1. |V1| = |V2| and |E1| = |E2|.

2. The non-increasing sequences of vertices degrees of G1 and G2 are the same.

3. For any induced graph of G1, there is an induced sub-graph of G2 such that
these two induced sub-graphs are isomorphic.

▶ Note that, the above conditions are just necessary. If one of them is not satisfied, then
we can conclude that they are not isomorphic. However, we cannot make any conclusion
if they are satisfied. For example, let us consider graphs G1 and G2. For both graphs,
their non-increasing sequences of vertices degrees are both {3, 3, 3, 3, 2, 2, 2, 2}. However,
they are not isomorphic. To see this, let us consider induced sub-graph G′

2 ⊆ G2. One
can check that we cannot find an induced sub-graph G′

1 ⊆ G1 such G′
1 and G′

2 have the
same non-increasing sequences of vertices degrees. Therefore, we conclude that G1 ̸∼= G2.

G1 G2

G′
2

3

CS2501H Discrete Mathematics (Honor) Xiang Yin

Paths and Connectivity

▶ Given a graph G = ⟨V,E⟩, a path (道路) is a sequence v0e1v1 · · · envn such that ei =

(vi−1, vi). The length of a path is the number of edges in it, e.g., the length of the above
path is n. A single isolated vertex v is also considered as a path with length zero. Note
that, in general, path considers directions. We say a path v0e1v1 · · · envn is

– a simple path (简单道路) if it has no repeated edges;

– a elementary (初级道路) if it has no repeated vertices;

– a circuit (回路) if v0 = vn.

– We call circuit v0e1v1 · · · envn a simple circuit (简单回路) if it has no repeated edges
and an elementary circuit (初级回路) if it has no repeated vertices except v0 and vn.

▶ Given an undirected graph G = ⟨V,E⟩, we say G is connected (连通的) if there exists
a path between each pair of vertices; otherwise, we say G is disconnected. In general, a
graph can be decomposed into a set of sub-graphs that are connected.

Definition: Connected Components

Given an undirected graph G = ⟨V,E⟩, we say sub-graph G′ ⊆ G is a connected
component (连通分支) of G if (i) it is connected; and (ii) for any other connected
G′′ ⊆ G, we have G′ ⊆ G′′ implied G′ = G′′.

Intuitively, a connected component is a maximal connected sub-graph of G. For example,
for graph G, it has two connected components G1 and G2. However, for graph H, since
it is already connected, it only has one connected component H1, which is itself.

G1 G2

G

H1

H

▶ Similarly, for a directed graph G = ⟨V,E⟩, we say G is strongly connected (强连通
的) if there exists a path between each ordered pair of vertices by considering directions.
For directed graph, we can further talk about strongly connected component (强连
通分支) (SCC). The definition of SCC is exactly the same as the connected component.
The only difference is that connectivity in SCC considers directions. For example, for the
following directed graph G, it has four SCCs G1, G2, G3 and G4.

G

G1

G2

G3

G4

4

CS2501H Discrete Mathematics (Honor) Xiang Yin

Euler Paths and Circuits

▶ In some problems, we want to find a path that passes through all edges, e.g., to clean up
snows in all streets. Furthermore, for the purpose of efficiency, we want that no edge is
repeated in the path. Such a path is called an Euler path.

Definition: Euler Paths and Euler Circuits

Let G = ⟨V,E⟩ be a pseudo-graph. Then
– an Euler circuit (欧拉回路) is a simple circuit containing all edges.

– an Euler path (欧拉道路) is a simple path containing all edges.

▶ An interesting question is how can we determine whether or not a given graph contains
an Euler circuit. In fact, the existence of an Euler circuit can be checked easily by the
following result.

Theorem: Necessary and Sufficient Condition for Euler Circuit

A connected pseudo-graph G = ⟨V,E⟩ has an Euler circuit if and only if

∀v ∈ V : d(v) is even

Proof: (⇒) Let P be an Euler path. Each time P visits v, it contributes two degrees.
Since P contains exactly all edges, d(v) must be even.

(⇐) We prove this direction by induction on the number of edges |E| = m.

• Induction Basis: When m = 1, G has to be . Here, we have d(v) = 2 and there
exists an Euler circuit.

• Induction Step: Now, let us assume that for any graph having m ≤ k edges, if all
vertices have even degrees, then there exists an Euler circuit. We want to show that
the implication holds for graphs with m = k+1 edges. The arguments are as follows.

1. Since d(v) is even for any v ∈ V , there exists a simple circuit C in G.

2. By removing all edges in C from G, we obtain p connected components G1, · · · , Gp.

3. For each Gi = ⟨Vi, Ei⟩, we have |Ei| ≤ k. Furthermore, the degree of each vertex
in Gi is still even. Therefore, there exists an Euler path Ci for each Gi.

4. By connecting C1, · · · , Cn together by C, we obtain an Euler path for G.

G

C C1

C3

C2

5

CS2501H Discrete Mathematics (Honor) Xiang Yin

Euler Paths and Circuits

▶ Our necessary and sufficient condition for Euler circuits can be extended easily to the
case of Euler paths. In an Euler path, we still require that whenever each vertex has
an in-degree, it should have an out-degree, except the starting and the ending vertices.
Therefore, we have the following result.

Theorem: Necessary and Sufficient Condition for Euler Path

A connected pseudo-graph G = ⟨V,E⟩ has an Euler path if and only if

|{v ∈ V : d(v) is odd}| ≤ 2

▶ The proof of the above result is rather straightforward. Specifically, when there is no
odd-degree-vertex, there exists an Euler circuit. When there are two different odd-degree
vertices, by connecting these two vertices, we get a graph in which the degrees of all
vertices are even. Then we can find an Euler circuit in the new graph. By removing the
newly-added edge from this Euler circuit, we get an Euler path in the original graph.

▶ The above results are developed for undirected graphs. In fact, we can extend the condi-
tions to directed graphs as follows.

Theorem: Conditions for Euler Paths and Circuits in Directed Graphs

1 A strongly connected directed-graph has an Euler circuit if and only if

∀v ∈ V : d+(v) = d−(v)

2 A strongly connected directed-graph has an Euler path if and only if at most
one vertex v has d+(v)− d−(v) = 1, at most one vertex has d−(v)− d+(v) = 1 and
every other vertex has equal in-degree and out-degree.

▶ Let G = ⟨V,E⟩ be a simple graph. An edge e ∈ E is said to be a bridge/cut-edge
(桥/割边) if G−e has more connected components than G, where G−e is the sub-graph
obatined by removing edge e from G. Then Euler circuits can be constructed by the
following algorithm. We use notation E(v) to denote the set of all edges incident with v.

Fleury’s Algorithm

Step 1: Choose an arbitrary v0 ∈ V and P0 ← v0

Step 2: Suppose that Pk = v0e1v1 · · · ekvk.
Choose ek+1 ∈ E(vk) \ {e1, . . . ek} such that

ek+1 is not a bridge in G− {e1, . . . , ek}

If there is no above choice, then pick ek+1 ∈
E(vk)\{e1, . . . ek}. Add ek+1 to Pk to obtain Pk+1.
Step 3: Repeat the above until k = |E|.

e7

e6

v1

v2

v3

v4

v5

v6

e1

e10

e9

e2

e8

e3

e5

e4

A possible Euler circuit:
C = e1e7e4e3e2e9e6e5e8e10

6

CS2501H Discrete Mathematics (Honor) Xiang Yin

Hamilton Paths and Circuits

▶ In some problems, we want to find a path that passes through all vertices, e.g., to search
all buildings in a campus. Similarly, for the purpose of efficiency, we want that no vertex
is repeated in the path. Such a path is called a Hamilton path.

Definition: Hamilton Paths and Hamilton Circuits

Let G = ⟨V,E⟩ be a simple-graph. Then
– a Hamilton circuit (哈密顿回路) is an elementary circuit containing all vertices.

– a Hamiltonr path (哈密顿道路) is an elementary path containing all vertices.

▶ Note that, for Hamilton path/circuit, it suffices to consider simple graphs because self-
loops or multi-edges do not matter in visiting vertices. Also, it is without loss of generality
to consider simple graphs with more than 2 vertices. For example, for G1 and G2 shown
below, we can find Hamilton circuits. For G3, we can only find a Hamilton path. However,
for G4, there exists even no Hamliton path.

G1 G2 G3 G4

Unfortunately, unlike Euler circuit/path, for which we can find simple condition for the
existence, the problem of deciding the existence of Hamilton circuit/path is NP-hard.
Therefore, we seek to find simple but only sufficient condition.

▶ We say an elementary path v1v2 · · · vl is maximal (极长) if v1 and vl are not adjacent to
any vertex that is not on the path. In other words, we cannot further extend the path
either from v1 or from vl. Then we have the following result.

Lemma: Property of Maximal Elementary Paths

Let P = v1v2 · · · vl be a maximal elementary path. If d(v1) + d(vl) ≥ l, then there
must exist an elementary circuit that passes through v1, v2, · · · , vl.

Proof: By contraposition. Suppose that there is no elementary circuit that passes
through v1, v2, · · · , vl. Then we know that, for any p ∈ {1, . . . , l}, we have (v1, vp) ∈ E ⇒
(vl, vp−1) /∈ E. Otherwise, it will form an elementary circuit containing v1, v2, · · · , vl. The
argument can be seen from the following figure.

v1 vp−1 vp vp vl−1 vl

Now suppose that d(v1) = k. Then we have d(vl) ≤ l−k−1 because (i) vl is not adjacent
to any vertex v1, . . . , vl−1; and (ii) vl is not adjacent to any vp−1 such that (v1, vp) ∈ E.
This means that d(v1) + d(vl) ≤ l − 1.

7

CS2501H Discrete Mathematics (Honor) Xiang Yin

Hamilton Paths and Circuits

▶ Here, we provide a sufficient condition for the existence of Hamilton path. The idea
is based on the previous lemma, which shows that if the connectivity of the graph is
greater than some certain number, then we can always change maximal path to a circuit
containing the same vertices.

Theorem: Sufficient Condition for Hamilton Path

A simple-graph G = ⟨V,E⟩ has a Hamilton path if

∀v, v′ ∈ V : d(v) + d(v′) ≥ n− 1

Proof: First, we show by contradiction that G is connected. Assume that G is not
connected. Then it has at least two connected components, say G1 and G2 and suppose
that G1 has n1 vertices and G2 has n2 vertices. Let us pick two vertices v1 ∈ VG1 and
v2 ∈ VG2 . Then we have d(v1) ≤ n1− 1, d(v2) ≤ n2− 1, which means that d(v1)+ d(v2) ≤
n−2 < n−1. This contradicts to our condition, which means that G is connected. Next,
we show the existence of Hamilton path by construction.

First, we pick an arbitrary maximal elementary path P = v1v2 · · · vl, where l ≤ n. Such
a path can be obtained by extending the starting /ending vertex until we cannot do so.
– if l = n, then P is a Hamilton path.
– if l < n, then d(v1) + d(vl) ≥ n − 1 ≥ l. Then the previous lemma applies. That

is, there exists an elementary circuit, say C, passing through v1, . . . , vl. Since G is
connected, there exists a new vertex vl+1 out of C and is adjacent to some vertex vt in
C. Then we can obtain a new longer elementary path P ′ containing v1, · · · , vl, vl+1 by
first connecting vl+1 to C and then breaking C. The procedure is shown as follows

v1 v2 vt−1

vt

vt+1

vl+1

vl−1 vl×
By repeating the above procedure, we can extend an elementary path longer and longer
until all vertices have been included.

▶ In the above proof, we can use elementary path P = v1v2 · · · vl to find an elementary
circuit only when l < n; otherwise condition d(v1)+d(vl) ≥ n−1 ≥ l does not hold. If we
further have d(v1) + d(vl) ≥ n, then we can actually extend the Hamilton path found to
a Hamilton circuit by using the lemma one more time. This leads to the following result.

Theorem: Sufficient Condition for Hamilton Circuit

A simple-graph G = ⟨V,E⟩ has a Hamilton circuit if

∀v, v′ ∈ V : d(v) + d(v′) ≥ n

8

CS2501H Discrete Mathematics (Honor) Xiang Yin

Trees

▶ In graph theory, a tree is an undirected graph in which any two vertices are connected by
exactly one path, or equivalently a connected acyclic undirected graph.

Definition: Tree

A (undirected) tree (树) is a connected undirected graph with no circuit.

Because no circuit is allowed in a tree, we have the following results
– a tree is a simple graph; otherwise, self-loops or multi-edges will make circuit.
– each edge in a tree is a bridge/cut-edge; otherwise, a circuit can be found.

In trees, we call vertices with degree one leaves (树叶). Disconnected graphs with no
circuit are called forest (森林).

▶ In fact, we have many equivalent definitions of tree as follows:
Theorem: Equivalent Definitions of Trees

Let T = ⟨V,E⟩ be an undirected graph. Then the following statements are equiv-
alent definitions for trees.

1 T is a connected and |E| = |V | − 1;
2 T has no circuit and |E| = |V | − 1;
3 T is connected and each edge is a bridge;
4 T has no circuit and by adding any edge, we will have a circuit;
5 the path between any two vertices is unique.

Let us prove 1 by induction on the number of vertices.

– Induction Basic: when |V | = 1, we know that T has no circuit iff |E| = 0 = |V | − 1.

– Induction Step: We assume that T is a tree iff 1 holds for |V | ≤ k and we consider the
case of |V | = k + 1. We remove an arbitrary vertex v ∈ V from T . Let v1, · · · , vk ∈ V

be the adjacent vertices of v. Let C1, · · · , Ck be the connected components that contain
v1, · · · , vk, respectively, in the removed graph. Then we have

T is a tree iff C1, · · · , Ck are distinct and each Ci is a tree;

iff C1, · · · , Ck are distinct and |Ei| = |Vi| − 1

iff |
∪

Ei| = |
∪

Vi| − k

iff |E| = |V | − 1

▶ We can also show the following properties by contradiction using the handshake theorem.
Theorem:

1 For tree T with |V | ≥ 2, there are at least two leaves,
2 For forest F with |V | = n and k connected components, we have |E| = n− k.

9

CS2501H Discrete Mathematics (Honor) Xiang Yin

Spanning Trees

▶ In some applications, for example building electrical lines, we need the tree to connect all
vertices. Such a tree is called a spanning tree.

Definition: Spanning Trees

A sub-graph of G is called a spanning tree (生成树) of G if (i) it is a tree; and
(ii) it contains all vertices of G.

We note that a simple graph G has a spanning tree if and only if it is connected because
we can always remove edges until it is a spanning tree. Also, the spanning tree may not
be unique. For example, for G, sub-graphs T1, T2 and T3 are all spanning trees.

G T1 T2 T3

▶ Given a connected graph, we can construct a spanning tree using the Depth-First Search
(深度优先搜索). The basic idea is to (i) keep adding new edges until no edge can be
added; (ii) track back to the vertice at which some edge can be added, and repeat.

Depth-First Search Algorithm

Input: connected graph G = ⟨V,E⟩
Output: spanning tree T = ⟨VT , ET ⟩
Pick v0 ∈ V, VT ← {v0}, ET ← ϕ;
DFS (v0, ET , VT , G);

procedure DFS (v, ET , VT , G);
for v′ ∈ Γ(v) do

if v′ /∈ VT then
VT←VT∪{v′}, ET←ET∪{(v′, v)};
DFS (v′, ET , VT , G);

G

T
8

2

7 6

53 4

1

The number of each edge
denote when it is added.

▶ An alternative approach for constructing a spanning tree using the Breadth-First Search
(广度优先搜索). The basic idea is to start from a vertex and at the kth iteration, add
all vertices that are k-close to the initial vertex. We illustrate by the following example.

G0 G1 G3 G4 G5

10

CS2501H Discrete Mathematics (Honor) Xiang Yin

Minimum Spanning Trees

▶ In practice, edges in a graph may correspond to roads or lines in physical systems. There-
fore, it makes sense to consider the weight of a graph. Formally, a weighted graph (加
权图) is a tuple ⟨G,w⟩, where G = ⟨V,E⟩ is a graph and w : E → R is a weight function.
The weight of a graph, denoted by w(G), is the sum of the weights of all vertices, i.e.,
w(G) =

∑
e∈E w(e). It is of interest to consider spanning tree with minimum weight.

Definition: Minimum Spanning Tree

Given a weighted graph ⟨G,w⟩, a minimum spanning tree (最小生成树) T is
spanning tree such that, for any spanning tree T ′, we have w(T) ≤ w(T ′).

▶ Hereafter, we will present a set of different algorithms for finding a minimum spanning
tree (MST). The first one is the Kruskal’s algorithm. Its basic idea is to add edges with
minimum weights while avoiding circuits.

Kruskal’s Algorithm

Input: connected graph ⟨G,w⟩
Output: T = ⟨V,ET ⟩
while E ̸= ∅ and |ET | < n− 1

do
Pick minimum e ∈ E;
E ← E \ {e};
if T + e has no circuit then

ET ← ET ∪ {e} G1

2

64 7

4 3

1

5 5

MST T

2

4

3

1

Proof: The correctness of the Kruskal’s algorithm follows from the following arguments.

First, the resulting graph is a tree because it is connected and has no circuit. Moreover,
it is a spanning tree because VT = V . Next, we show that w(T) is minimum. To this
end, let T ∗ be an MST such that T ∗ ̸= T . We consider an edge e ∈ ET ∗ \ET . By adding
e to T , T + e has a circuit C such that:

(i)(∀a ∈ C)(ω(a) ≤ ω(e)); and (ii) there exist an edge f in C but not in T ∗

Then we consider a new tree T2 = T − f + e. We note that T2 is still a spanning tree and

w(T2) = w(T)− w(f) + w(e) ≥ w(T)

Furthermore, T2 has more common edge with T ∗ than T has. By repeating the above
procedure, we obtain T3, T4, · · · , T ∗ such that

w(T) ≤ w(T2) ≤ w(T3) ≤ w(T4) ≤ · · · ≤ w(T ∗)

However, T ∗ is already minimum, which means w(T) = w(T ∗) and T is also minimum.

11

CS2501H Discrete Mathematics (Honor) Xiang Yin

Minimum Spanning Trees

▶ Here, we present another algorithm for finding MST called the Prim’s Algorithm. The
idea is to start from a selected vertex and at each instant, grow the tree to the unexplored
region with minimum weight.

Prim’s Algorithm

Input: connected graph ⟨G,ω⟩
Output: T = ⟨VT , ET ⟩
pick v ∈ V , VT ← {v}, ET ← ∅;
while VT ̸= V do

Find minimum e = (v1, v2) ∈ E such
that v1 ∈ VT and v2 /∈ VT ;
VT ← VT ∪ {v2};
ET ← ET ∪ {e};

G

8 6

2 9

4

8

9

10

1

6

5

2

T

8

2

4

1

5

2

Proof: The correctness of the Prim’s algorithm follows from the following arguments.

Let Vk and Ek be the set of vertices and edges after k-th iteration, respectively, where
k = 0, 1, · · · , n − 1 and initially we have V0 = {v}, E0 = ∅. Let ek be the edge added to
ET in the k-th iteration, i.e., Ek = {e1, e2, · · · , ek}.

Claim: For each k ≤ n− 1, there exists an MST T ∗ = ⟨V,E∗⟩ such that Ek ⊆ E∗.

We prove the above claim by induction:

– Induction Basis: For k = 0, we have E0 = ∅, which is trivially correct

– Induction Step: We assume that for Ek, there exists an MST T ∗ = ⟨V,E∗⟩ such
that Ek ⊆ E∗. Now we consider the following cases of Ek+1:

∗ if ek+1 ∈ E∗, then Ek+1 = {e1, · · · , ek, ek+1} ⊆ E∗;
∗ if ek+1 /∈ E∗, then suppose ek+1 = (u, v), u ∈ Vk and v /∈ Vk. Let P be the

unique path in T ∗ between u and v. Then there must exist an edge e′ = (u′, v′)

in P such that u′ ∈ Vk and v′ /∈ Vk. Using this edge, we can construct a new
tree by

T ′ = T ∗ ∪ {ek+1} − {e′}

Clearly, T ′ is a spanning tree because it has exactly n−1 edges and is connected.
Furthermore, T ′ is MST since

ω(T ′) = ω(T ∗) + ω(ek+1)− ω(e′) ≤ ω(T ∗).

Therefore, we know that each Ek is contained in an MST, which means that the
resulting graph at final step k = n− 1 is itself an MST.

12

CS2501H Discrete Mathematics (Honor) Xiang Yin

Rooted Trees

▶ Previously, we consider trees with no direction. Here, we further investigate directed tree
(有向树). In directed trees, if there exists an edge e = (u, v) from u to v, then we say
u is the parent (父结点) of v and v is the child (子结点) of u. Vertices with the same
parent are called siblings (兄弟). Therefore, a directed tree will start from a root (根结
点), which has no parent and will end up with leaves (叶结点), which have no child. A
rooted tree is called a binary tree (二叉树) if every vertex has no more than 2 children.

▶ Given a rooted tree, the level (层) of vertex v ∈ V is the length of the path from the root
to v. The height (高度) of a tree is the maximum level of all its vertices. A rooted tree
with height h is said to be balanced (平衡的) if for any vertex, the difference between
the heights of the left and right sub-trees are within 1. One can conclude that for any
balanced tree with height h, the level of each vertex is either h or h− 1.

For example, T1 is a balanced tree. However, T2 and T3 are not balanced trees. For
example, for leaf v2 in T2, we have l(v2) = 1 but the height of T2 is 3. For T3, the height
of the left sub-tree of v1 is one, but the height of the right sub-tree of v1 is −1.

T1

v0

v1 v2

v3 v4 v5

v7v8

T2

v0

v1 v2

v3 v4

v7 v5 v6

T3

v0

v1 v2

v4
v3

v7

▶ In some problems, we want to put our information on leaves, e.g., coding letters. It will
be more convenient to put those information used more frequently or with more cost at
leaves with smaller levels. Specifically, suppose that we have n leaves {v1, . . . , vn} and
each leaf vi is associated with a weight wi. We want to build a binary tree T such that

(i) the leaves of tree T are exactly {v1, . . . , vn}; and
(ii) the weighted path length (WPL)

∑
i=1,...,n liwi is minimized, where li denotes the

level of leaf vi in T .
Such a binary tree with minimum WPL is called the Huffman Tree (哈夫曼树), which
can be constructed by the following Huffman’s algorithm.
Step 1: Ordering the weights of leaves such that wi1 ≤ wi2 ≤ · · · ≤ win .
Step 2: Construct a tree rooted at new vertex vi whose left child is vi1 and right child
is vi2 . Define wi = wi1 + wi2 as the weight of vi.
Step 3: If n = 1, then the tree rooted at vi is the Huffman tree. Otherwise, we delete
wi1 and wi2 from the weight list and add wi. Then go to Step 2 with n← n− 1.

7 5 5 2 4 2 4 5 5 7

6
5 5

6
7

10

2 4

6

2 4
7

10

5 5

13
10

5 5
6

13

2 4

7

23

13

CS2501H Discrete Mathematics (Honor) Xiang Yin

Planar Graphs

▶ An undiredted multi-graph is called a planar graph (平面图) if it can be drawn in the
plane without any edges crossing (called planar representation). For example, G1 and G2

are planar graphs, but G3 and G4 are not planar graphs.

G1 G2 G3
G4

▶ The planar representation of a graph splits the plane into regions (区域) (sometimes
also called faces). For example, a tree always splits the plane into a single region. Graph
G1 splits the plane into two regions and graph G2 splits the plane into four regions.

G1 R1 R2 G2
R1
R2

R3
R4

In the above examples, G1 has four vertices, four edges and two regions; G2 has four
vertices, six edges and four regions. The relationship among vertices, edges and regions
is characterized by the well-known Euler’s Formula.

Theorem: Euler’s Formula

Let G = ⟨V,E⟩ be a connected planar graph with regions R. Then we have

|R| = |E| − |V |+ 2

Proof: First, we consider the case where G has no circuit. Then G is a tree, which
means that |E| = |V | − 1. Also, it only has one region. Therefore, we have

|R| = 1 = (|V | − 1)− |V |+ 2.

Next, we consider the case where G has at least one circuit. We prove this case by
induction on the number of edges:

– Induction Basis: When G has one edges, it is a self-loop and we have 2 = 1−1+2.

– Induction Step: Suppose Euler’s formula holds for connected planar graphs with k

edges and at least one circuit. We consider the case of k + 1 edges.

We remove an arbitrary edge from a circuit of G and obtain a new graph G′, which
has k edges. Furthermore, we observe that

∗ If G′ has no circuit, it is a tree. By the first case, we have |RG′ | = k − |V |+ 2.

∗ If G′ has circuits, by the induction hypothesis, we still have |RG′ | = k−|V |+2.
Note that G has |RG′| + 1 regions because one edge is removed from a circuit.
Therefore, we conclude that

|R| = |RG′ |+ 1 = k + 1− |V |+ 2.

14

