Formal Methods for Dynamic Systems

殷翔上海交通大学 自动化系

yinxiang＠sjtu．edu．cn http：／／xiangyin．sjtu．edu．cn
2021.07 厦门大学暑期课程

References

Studies in Systems, Decision and Control 89
Calin Belta
Boyan Yordanov
Ebru Aydin Gol

Paulo Tabuada
Foreword by Rajeev Alur

Verification and Control of Hybrid
Systems
A Symbolic Approach

ESpringer

Introduction to Discrete Event Systems
Second Edition

No required textbook, but you can read:

- "Formal Methods for Discrete-Time Dynamical Systems", by Belta, Yordanov \& Gol
- "Principles of Model Checking", by Baier \& Katoen
- "Verification and Control of Hybrid Systems: A Symbolic Approach", by Tabuada
- "Introduction to Discrete Event Systems", by Cassandras \& Lafortune
- "Automata, Logics and Infinite Games", by Gradel, Thomas \& Wilke (Eds.)

Introduction

What is a Dynamic System

$$
\mathcal{D}:\left\{\begin{array}{c}
x_{t+1}=f\left(x_{t}, u_{t}, w_{t}\right) \\
y_{t}=g\left(x_{t}, u_{t}, v_{t}\right)
\end{array}\right.
$$

discrete-time dynamic system
$\mathcal{D}:\left\{\begin{array}{l}\dot{x}(t)=f(x(t), u(t), w(t)) \\ y(t)=g(x(t), u(t), v(t))\end{array}\right.$
continuous-time dynamic system

- The system has a state-space that contains possibly infinite states
- The evolution of states is determined by a dynamic function
- The dynamic can be both physical laws or logic rules

Aircrafts

Robotics

Circuits

Program

Dynamic Systems

- Classical analysis and design objectives for dynamic systems
> controllability and observability analysis
$>$ stabilization and reference tracking
> optimal control
- They are all about solving the differential equations and are about the "lower-level" dynamics of the system
- More dynamic systems are hybrid and the design objectives are more complicated and intelligent at the "high-level"
> safety: avoid some logic error
> liveness: eventually accomplish some tasks
$>$ security: some crucial information is not released

Autonomous Vehicles

- There are many low-level point-to-point navigation/control algorithms
- Autonomous vehicles are also facing high-level decision/planning problems
- Go to region \mathbf{A} before visiting region B
- Visit region A infinitely often without reaching region B
- React to dynamic environment and uncertainties: if see A, then do B

Picture From: Wongpiromsarn,Topcu \& Murray, IEEE TAC, 2012

Cyber-Physical Systems (CPS)

Cyber-physical systems (CPS) integrate sensing, computation, control and networking into physical objects and infrastructure, connecting them to the internet and to each other.

Big Data

Internet of Things

Cyber-Layer:
Perception, Control, Decision, Computation

Industry Process

Energy Systems

Transportation

Physical-Layer: Physic Objects, ODE Dynamics

Need Formal Methods

Design Challenges in Control of CPS

- Cyber-Physical Systems: Safety-Critical Infrastructures
- Safety: physical safety, functional safety, information security...
- Critical: provide 100\% guarantee!
- Cyber Controllers are Computational
- Logical and high level behaviors
- CPS are very Complicated
- Fully automated design: Correct-by-Construction

Current Design Process

Current Control Design Process for CPS

- given some spec by natural languages
- use engineering intuition/experience to come up with a solution
- extensive testing and iteration

Problems

- not rigorous: Ad hoc approaches + lists of "if-then-else" rules
- little or no formal guarantees on correctness
- test \& re-design: design period is very long

Ideal Design Process

Future Control Design Process for CPS (Hopefully!)

- rigorous requirement: no ambiguity
- fully automated: algorithmic process
- sequential design: no iteration
- safety guarantee: correct-by-construction

Formal Methods: Two Basic Paradigms

Formal Methods
(Model-Based Approach)

Formal Modeling

- Model: Transition Systems
- Specification: Formal Languages

Verification (Analysis)

- Formal guarantee for spec

Synthesis (Control Design)

- Reactive to environment, e.g., controllability \& observability
- Correct-by-construction! (No need to verify)

Relationship with AI

Formal reasoning \& logic is the Foundation of AI

Symbolicism

Actionism

- Al is not just learning and neural networks
- Logics and formal reasoning are also important parts of AI
- Formal methods is closely related to dynamic systems

You Will Learn in This Course

- How to describe dynamic systems using formal models
> labeled transition systems
> bisimulation and quotient-based abstraction
- How to describe formal specifications/requirements
> linear-time properties
> linear-temporal logics, computation tree logics (briefly)
- How to formally verify whether a model satisfies a specification
$>$ automata-based LTL model checking
> finite-state automata, Büchi automata, Rabin automata
- How to synthesize a reactive controller to enforce a specification
> game-based LTL controller synthesis
> safety game, reachability game, Büchi game, Rabin game

Basic Notations

Set Theory

- "belongs to" \in; "subset" \subseteq, \subset; "union" \cup; "intersection" \cap
- cartesian product: $\boldsymbol{A} \times \boldsymbol{B}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in A, \boldsymbol{b} \in \boldsymbol{B}\}$, e.g., $\{1\} \times\{\boldsymbol{a}, \boldsymbol{b}\}=\{(\mathbf{1}, \boldsymbol{a}),(\mathbf{1}, \boldsymbol{b})\}$
- powerset: $2^{A}=\{x: x \subseteq A\}$, e.g., $2^{\{a, b\}}=\{\varnothing,\{a\},\{b\},\{a, b\}\}$
- cardinality: $|A|=$ number of elements in A, e.g., $|\{a, b, c\}|=3$

Propositional \& Predicate Logics

- "negation" \neg; "and" \wedge; "or" \vee; "implies" $\rightarrow($ note: $\boldsymbol{a} \rightarrow \boldsymbol{b} \equiv \neg \boldsymbol{a} \vee \boldsymbol{b})$
- quantifiers: "for all" \forall; "there exists" \exists
- $\quad(\exists x)(\forall y)[x$ loves $y] \rightarrow(\forall y)(\exists x)[x$ loves $y]$; this formula is always true
- $(\forall x)(\exists y)[x$ loves $y] \rightarrow(\exists y)(\forall x)[x$ loves $y]$; this formula is not always true

Labeled Transition Systems

Labeled Transition Systems

A labeled transition system (LTS) is a tuple

$$
T=\left(X, U, \rightarrow, X_{0}, A P, L\right)
$$

- X is a set of states
- U is a set of inputs (controls or actions)
- $\rightarrow \subseteq X \times U \times X$ is a transition relation
- $X_{0} \subseteq X$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: X \rightarrow 2^{A P}$ is a labeling function
$>$ For any $\left(x, u, x^{\prime}\right) \in \rightarrow$, we also write it as $x \xrightarrow{u} x^{\prime}$
$>\rightarrow$ can also be considered as a partial function from $X \times U$ to 2^{X}

Graph Representation of LTS

- $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$
- $\boldsymbol{U}=\left\{\boldsymbol{u}_{\mathbf{1}}, \boldsymbol{u}_{\mathbf{2}}\right\}$
- $\rightarrow=\left\{\begin{array}{l}\left(x_{1}, u_{1}, x_{2}\right),\left(x_{1}, u_{2}, x_{3}\right),\left(x_{2}, u_{1}, x_{2}\right),\left(x_{2}, u_{1}, x_{3}\right), \\ \left(x_{3}, u_{1}, x_{2}\right),\left(x_{3}, u_{2} x_{4}\right),\left(x_{4}, u_{1}, x_{4}\right),\left(x_{4}, u_{2}, x_{4}\right)\end{array}\right\} \subseteq X \times U \times X$
- $X_{0}=\left\{x_{1}\right\} \subseteq X$
- $\boldsymbol{A P}=\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\}$
- $L\left(x_{1}\right)=\{a, b\}, L\left(x_{2}\right)=\{a\}, L\left(x_{3}\right)=\{b, c\}, L\left(x_{4}\right)=\{c\}$

Successors \& Predecessors

- Successor states: Post $(x, u)=\left\{x^{\prime} \in X: x \xrightarrow{u} x^{\prime}\right\}$
- Predecessor states: $\operatorname{Pre}(x, u)=\left\{x^{\prime} \in X: x^{\prime} \xrightarrow{u} x\right\}$
- The dynamic of the system is non-deterministic in general, i.e.,

$$
\left|X_{0}\right|>1 \text { or }|\operatorname{Post}(x, u)|>1
$$

- Non-determinism can model uncertainty or adversary
- LTS is said to be deterministic if $\left|X_{0}\right|=1 \wedge|\operatorname{Post}(x, u)|=1, \forall x \in X, u \in U$

- $\operatorname{Post}\left(x_{1}, u_{1}\right)=\left\{x_{2}\right\}, \operatorname{Post}\left(x_{2}, u_{1}\right)=\left\{x_{2}, x_{3}\right\}$
- $\operatorname{Pre}\left(x_{2}, u_{1}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}, \operatorname{Pre}\left(x_{2}, u_{3}\right)=\left\{x_{1}\right\}$
- Define $\operatorname{Pre}(x)=\cup_{u \in U} \operatorname{Pre}(x, u) ; \operatorname{Post}(x)$ the same
- $\operatorname{Post}\left(x_{2}\right)=\left\{x_{2}, x_{3}\right\}, \operatorname{Pre}\left(x_{2}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$

Dynamic of LTS

- Input run: $\boldsymbol{u}_{\mathbf{1}} \boldsymbol{u}_{\mathbf{2}} \cdots \boldsymbol{u}_{\boldsymbol{n}}(\cdots)$
- State run: $\rho=x_{0} x_{1} \cdots x_{n}(\cdots)$ such that $x_{0} \xrightarrow{u_{1}} x_{1} \xrightarrow{u_{2}} \cdots \xrightarrow{u_{n}} x_{n}$
- Trace: $L(\rho)=L\left(x_{0}\right) L\left(x_{1}\right) \cdots L\left(x_{n}\right)(\cdots)$
- All finite runs $\operatorname{Run}^{f}(T)$; all infinite runs $\operatorname{Run}(T)$
- All finite runs Trace ${ }^{f}(T)$; all infinite runs $\operatorname{Trace}(T)$
- Note: the state run or trace generated by an input run may not be unique

- Input: $\boldsymbol{u}_{\mathbf{2}} \boldsymbol{u}_{\mathbf{1}} \boldsymbol{u}_{\mathbf{1}}$
- Run: $x_{1} \xrightarrow{u_{2}} x_{3} \xrightarrow{u_{1}} x_{2} \xrightarrow{u_{1}} x_{3}$ or $x_{1} \xrightarrow{u_{2}} x_{3} \xrightarrow{u_{1}} x_{2} \xrightarrow{u_{1}} x_{2}$
- Trace: $\{a, b\}\{b, c\}\{a\}\{b, c\}$ or $\{a, b\}\{b, c\}\{a\}\{a\}$
- Infinite runs: $x_{1}\left(x_{3} x_{2}\right)^{\omega}$ or $x_{1} x_{3} x_{2} x_{3}\left(x_{2}\right)^{\omega}$
$\{b, \boldsymbol{c}\}$ • ω means "repeat infinite times"

LTS Example: Robot in a Grid-World

- B: base
- I: intersection
- R: recharge region
- D: dangerous region
- G: data gather region

B

A robot in an indoor space

Corresponding LTS

LTS Example: Mutually Exclusive Processes

- two processes sharing a resource (asynchronous)
- each process has a critical section in its code
- non-critical state (N) \rightarrow trying to enter critical state $(\mathrm{T}) \rightarrow$ critical state (C)
- only one process can be in its critical section at a time (mutual exclusion)

A possible mutually exclusive protocol represented by LTS
Process 1 Process 2

LTS Example: Discrete Time Control System

- $\mathcal{D}: x_{k+1}=A x_{k}+B u_{k}+b$, where $A=\left[\begin{array}{cc}0.95 & -0.5 \\ 0.5 & 0.65\end{array}\right], B=\left[\begin{array}{c}-1 \\ 2\end{array}\right], b=\left[\begin{array}{c}0.5 \\ -1.3\end{array}\right]$
- One-step embedding of $\mathcal{D}:\left(X=\mathbb{R}^{2}, \boldsymbol{U}=\mathbb{R}, \boldsymbol{\delta}(\boldsymbol{x}, \boldsymbol{u})=\boldsymbol{A} \boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{B} u_{\boldsymbol{k}}+\boldsymbol{b}\right)$

Use affine function to describe property

- $p: p_{i}(x)>0$
- z: $\boldsymbol{p}_{i}(x)=0$
- $\boldsymbol{n}: \boldsymbol{p}_{\boldsymbol{i}}(\boldsymbol{x})<\mathbf{0}$
- Input word: $u_{0} u_{1} \cdots u_{100}$ with $u_{k}=0.04 k(k \leq 50), u_{k}=-0.04 k+4(k \geq 50)$
- State run: $\left[\begin{array}{l}8 \\ 5\end{array}\right]\left[\begin{array}{c}5.60 \\ 5.95\end{array}\right]\left[\begin{array}{c}2.80 \\ 5.44\end{array}\right] \ldots$
- Trace: $(p, p, n, p)(p, p, n, p)(n, p, n, p) \cdots, e . g ., p_{1}(x)=\left[\begin{array}{ll}1 & -1\end{array}\right] x+1.8$

Composition of LTSs

- Building the LTS model directly for the entire system is very difficult
- In practice, a large system is composed by many components
- Components interact with each other by
> some "private actions" can execute individually/asynchronously
> some "common actions" need to execute synchronously
- Monolithic Model = Local Modules + Synchronization Rules

Product of LTSs

Let T_{1} and T_{2} be two LTSs, where $T_{i}=\left(X_{i}, U_{i}, \rightarrow_{i}, X_{0, i}, A P_{i}, L_{i}\right)$. The product of T_{1} and T_{2} is a new LTS

$$
T_{1} \otimes T_{2}=\left(X, U, \rightarrow, X_{0}, A P, L\right)
$$

- $X=X_{1} \times X_{2}$ with $X_{0}=X_{0,1} \times X_{0,2}$
- $U=U_{1} \cup U_{2}, A P=A P_{1} \cup A P_{2}, L\left(x_{1}, x_{2}\right)=L\left(x_{1}\right) \cup L\left(x_{2}\right)$
- $\rightarrow \subseteq X \times U \times X$ is defined by:
$>u \in U_{1} \cap U_{2}:\left(x_{1}, x_{2}\right) \xrightarrow{u}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)$ iff $x_{1} \xrightarrow[1]{u} x_{1}^{\prime}$ and $x_{2} \xrightarrow[2]{u} x_{2}^{\prime}$
$>u \in U_{1} \backslash U_{2}:\left(x_{1}, x_{2}\right) \xrightarrow{u}\left(x_{1}^{\prime}, x_{2}\right)$ iff $x_{1} \xrightarrow[1]{u} x_{1}^{\prime}$
$>u \in U_{2} \backslash U_{1}:\left(x_{1}, x_{2}\right) \xrightarrow{u}\left(x_{1}, x_{2}^{\prime}\right)$ iff $x_{2} \xrightarrow[2]{u} x_{2}^{\prime}$

Example: Traffic Lights

A pedestrian crossing system

Car light system $\boldsymbol{T}_{\boldsymbol{c}}$

Pedestrian light system $\boldsymbol{T}_{\boldsymbol{p}}$

Example: Traffic Lights

A pedestrian crossing system

Case 1: Two lights are fully asynchronized

Car light system $\boldsymbol{T}_{\boldsymbol{c}}$

Product system $\boldsymbol{T}_{\boldsymbol{c}} \otimes \boldsymbol{T}_{\boldsymbol{p}}$ Not safe due to $\{g, w\}$!

Example: Traffic Lights

Case 2: Two lights are fully synchronized

A pedestrian crossing system
Car light system T_{c}
Pedestrian light system $\boldsymbol{T}_{\boldsymbol{c}}$

Product system $\boldsymbol{T}_{\boldsymbol{c}} \otimes \boldsymbol{T}_{\boldsymbol{p}}$ Not safe due to $\{g, w\}$!

Example: Traffic Lights

Case 3: Two lights are partially synchronized

A pedestrian crossing system
Car light system $\boldsymbol{T}_{\boldsymbol{c}}$
Pedestrian light system $\boldsymbol{T}_{\boldsymbol{c}}$

Comments on Product Composition

- Fully asynchronized system is essentially a "shuffle"
- Synchronization essentially restricts the behavior of each module
- Not all possible states are reachable in the product
- Synchronization can be physical, or by communication, or by control
- Controller can be a new component that synchronizes with the plant
- The state-space grows exponentially fast in the \# of components
- "product" and "parallel" compositions are sometimes different in the literature; we do not distinguish explicitly here

Stage Summary

- Dynamic system can be represented as an LTS
- "States" in LTS can be either physical locations or logical status
- Atomic propositions represent high-level properties of interest
- Large system is usually composed by local modules by product
- Product essentially captures how systems interact with each other

Question

Bar Code Reader (BCR)

Book Program (BP)

Printer

- The bar code reader reads a bar code and communicates the data of the just scanned product to the booking program. On receiving such data, the booking program transmits the price of the article to the printer that prints the article Id together with the price on the receipt.
- Question: Build the entire booking system $B C R \otimes B P \otimes$ Printer $=(B C R \otimes B P) \otimes$ Printer

