
Formal Properties

Page . 2

Xiang Yin SJTU-XMU 2021

Deadlock

• Sequential programs may have terminal states

• For parallel systems, however, computations typically do not terminate

• Deadlock state: 𝑷𝒐𝒔𝒕 𝒙 = ∅; a system with no deadlock is called live

• Therefore, deadlocks are undesirable and mostly represent a design error.

• A typical deadlock scenario occurs in the synchronization when components

mutually wait for each other to progress.

• We assume mostly the systems is live; deadlock avoidance is another story.

Page . 3

Xiang Yin SJTU-XMU 2021

Example: Dining Philosophers

• To take food, each philosopher needs two sticks

• A deadlock occurs when all philosophers possess

a single stick

• The problem is to design a protocol such that the

complete system is deadlock-free, i.e., at least one

philosopher can eat and think infinitely often.

• A fair solution may be required with each

philosopher being able to think and eat infinitely

often (freedom of individual starvation)

A possible solution is to make the sticks available for only one philosopher at a

time. It can be verified that this solution is deadlock- and starvation-free.

Page . 4

Xiang Yin SJTU-XMU 2021

Linear-Time Property

• Recall 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝟐𝑨𝑷
𝝎

is the set of infinite sequence generated by 𝑻

• A linear-time property 𝑷 over 𝑨𝑷 is a subset of 𝟐𝑨𝑷
𝝎

specifying the

traces that a transition system should exhibit

• We say that system 𝑻 satisfies 𝑷, denoted by 𝑻 ⊨ 𝑷, if 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝑷

• “Linear” is the opposite of “branching” not “nonlinear”

• LT property is on a specific infinite execution

𝒀 𝑵

𝒀

𝒀 𝒀 𝒀

𝑵 𝒀

𝑵 𝒀

𝒀

Page . 5

Xiang Yin SJTU-XMU 2021

Safety & Invariant

• Safety: bad things never happen ⇔ always good things

• Invariant: some property should hold for all reachable state

An LT property 𝑷𝒊𝒏𝒗 is an invariant if there is a propositional logic

formula 𝚽 (called the invariant condition) over 𝑨𝑷 such that

𝑷𝒊𝒏𝒗 = {𝑨𝟎𝑨𝟏𝑨𝟐⋯ ∈ 𝟐𝑨𝑷
𝝎
: ∀𝒊 ≥ 𝟎, 𝑨𝒊 ⊨ 𝚽}

• Therefore, 𝑻 ⊨ 𝑷𝒊𝒏𝒗 iff 𝑳 𝒙 ⊨ 𝚽 for all reachable states

• Can be checked easily be a DFS or a BFS

• Mutual exclusion property: 𝚽 = ¬𝒄𝒓𝒊𝒕𝟏 ∨ ¬𝒄𝒓𝒊𝒕𝟐

• Traffic light: 𝚽 = ¬𝒈𝒓𝒆𝒆𝒏 ∨ ¬𝒘𝒂𝒍𝒌

Page . 6

Xiang Yin SJTU-XMU 2021

Safety

An LT property 𝑷𝒔𝒂𝒇𝒆 is a safety property if for all 𝝈 ∈ 𝟐𝑨𝑷
𝝎
∖ 𝑷𝒔𝒂𝒇𝒆

there exists a finite bad prefix ෝ𝝈 of 𝝈 such that

𝑷𝒔𝒂𝒇𝒆 ∩ 𝝈′ ∈ 𝟐𝑨𝑷
𝝎
: ෝ𝝈 𝐢𝐬 𝐚 𝐟𝐢𝐧𝐢𝐭𝐞 𝐩𝐫𝐞𝐟𝐢𝐱 𝐨𝐟 𝝈′ = ∅

• Invariant is essentially a state-based safety property

• In general, safety may impose requirements on finite path fragments

• Ex: Money can only be withdrawn from the ATM once a correct PIN has been

provided; this is not invariant but is still safety

➢ 𝑨𝑷 = {𝒓𝒆𝒅, 𝒚𝒆𝒍𝒍𝒐𝒘}

➢ red phase must be preceded immediately by a yellow phase

➢ Bad prefix: {𝒚𝒆𝒍𝒍𝒐𝒘}∅∅{𝒓𝒆𝒅}, 𝒚𝒆𝒍𝒍𝒐𝒘 𝒚𝒆𝒍𝒍𝒐𝒘 𝒓𝒆𝒅 {𝒓𝒆𝒅}

Page . 7

Xiang Yin SJTU-XMU 2021

Liveness

• Safety says “something bad never happens”

• We also need liveness saying “something good will happen”

• Liveness should not constrain the finite behaviors, but require a certain

condition on the infinite behaviors.

• For example, certain events occur infinitely often.

An LT property 𝑷𝒍𝒊𝒗𝒆 is a liveness property if 𝒑𝒓𝒆𝒇 𝑷𝒍𝒊𝒗𝒆 = 𝟐𝑨𝑷
∗

• 𝒑𝒓𝒆𝒇 𝑷𝒍𝒊𝒗𝒆 denotes the set of all finite prefix of 𝑷𝒍𝒊𝒗𝒆

• 𝟐𝑨𝑷
∗

denotes the set all of finite words over 𝟐𝑨𝑷

Page . 8

Xiang Yin SJTU-XMU 2021

Example: Liveness

• Eventually: each process will eventually enter its critical section:

• Repeated eventually: each process will enter its critical section infinitely often

the set of all infinite words 𝑨𝟎𝑨𝟏⋯ ∈ 𝟐𝑨𝑷
𝝎

such that

∃𝒊 ≥ 𝟎: 𝒄𝒓𝒊𝒕𝟏 ∈ 𝑨𝒊 ∧ ∃𝒊 ≥ 𝟎: 𝒄𝒓𝒊𝒕𝟐 ∈ 𝑨𝒊

• Starvation freedom: each waiting process will eventually enter its critical section

the set of all infinite words 𝑨𝟎𝑨𝟏⋯ ∈ 𝟐𝑨𝑷
𝝎

such that

∀𝒌 ≥ 𝟎, ∃𝒊 ≥ 𝒌: 𝒄𝒓𝒊𝒕𝟏 ∈ 𝑨𝒊 ∧ ∀𝒌 ≥, ∃𝒊 ≥ 𝒌: 𝒄𝒓𝒊𝒕𝟐 ∈ 𝑨𝒊

the set of all infinite words 𝑨𝟎𝑨𝟏⋯ ∈ 𝟐𝑨𝑷
𝝎

such that

∀𝒊 ≥:𝒘𝒂𝒊𝒕𝟏 ∈ 𝑨𝒊 ⇒ ∃𝒌 > 𝒊: 𝒄𝒓𝒊𝒕𝟏 ∈ 𝑨𝒌 ∧

∀𝒊 ≥:𝒘𝒂𝒊𝒕𝟐 ∈ 𝑨𝒊 ⇒ ∃𝒌 > 𝒊: 𝒄𝒓𝒊𝒕𝟐 ∈ 𝑨𝒌

Page . 9

Xiang Yin SJTU-XMU 2021

Decomposition Theorem

Any LT property 𝑷 can be decomposed as 𝑷 = 𝑷𝒔𝒂𝒇𝒆 ∩ 𝑷𝒍𝒊𝒗𝒆

• 𝑷 = 𝟐𝑨𝑷
𝝎

is the only property that is both safe and live

• In general, a property can be neither safe nor live

➢ Consider 𝑨𝑷 = {𝒂} and 𝑷 = first ∅ and then {𝒂} infinitely often

➢ It can be decomposed as 𝑷 = ∅ 𝟐𝑨𝑷
𝝎
∩ {𝝈: 𝒂 infinitely often in 𝝈}

Picture from the book of Baier and Katoen

Page . 10

Xiang Yin SJTU-XMU 2021

Stage Summary

• System having no deadlock will generate infinite sequences

• Linear-time properties evaluate infinite sequences

• Safety is a property that is violated in a finite horizon

• Liveness is a property that does not care about what have done

• In general, an LT property consists of both safety and liveness

Page . 11

Xiang Yin SJTU-XMU 2021

Question

Question: For each property, determine if it is a safety or liveness or both or none.

Page . 12

Xiang Yin SJTU-XMU 2021

Review of Last Lecture

• A dynamic system can be modeled as an LTS 𝑻 = (𝑿,𝑼,→,𝑿𝟎, 𝑨𝑷, 𝑳)

• A system can generate infinite sequences with properties 𝑻𝒓𝒂𝒄𝒆(𝑻)

• A (linear-time) property is a set of “good” infinite traces 𝑷 ⊆ 𝟐𝑨𝑷
𝝎

• 𝑻 ⊨ 𝑷 if 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝑷 (nothing to do with actions)

• Some property can be violated in a finite horizon (safety)

• In general, a property can be decomposed as safety and liveness

• Large systems are obtained by composition 𝑻 = 𝑻𝟏 ⊗𝑻𝟐 ⊗⋯⊗𝑻𝒏

• Product composition is essentially synchronization

• A general form of synchronization can be written as 𝑻 = 𝑻𝟏 ⊗𝑯 𝑻𝟐,

where 𝑯 ⊆ 𝑼𝟏 ×𝑼𝟐 are pairs that should be synchronized

Bisimulation & Abstraction

Page . 14

Xiang Yin SJTU-XMU 2021

Model Equivalence by Bisimulation

Motivations

• Different people may build different models for the same system

• Some models are complex but some are simple

• How to determine whether two models are describing the same thing?

• How to simplify a complex model to a simple but equivalent one?

Basic Ideas

• Model equivalence is captured by “bisimulation”

• One model is more “precise” than the other if

“no matter what you do, I can do the same thing” (simulation)

• Two models are equivalent if they can simulate each other

Page . 15

Xiang Yin SJTU-XMU 2021

Equivalence Relation

• a relation from set 𝑨 to set 𝑩 is a set of pairs ~ ⊆ 𝑨 × 𝑩

• we write 𝒂~𝒃 if 𝒂, 𝒃 ∈ ~

• a relation ~ ⊆ 𝑨 × 𝑨 on 𝑨 is an equivalence relation if it satisfies:

➢ reflexivity: ∀𝒂 ∈ 𝑨:𝒂~𝒂

➢ symmetry: ∀𝒂, 𝒃 ∈ 𝑨, if 𝒂~𝒃, then 𝒃~𝒂

➢ transitivity: ∀𝒂, 𝒃, ∈ 𝑨, if 𝒂~𝒃 and 𝒃~𝒄, then 𝒂~𝒄

• an equivalent relation induces an equivalent class

𝑨/∼= 𝒂 ∈ 𝟐𝑨: 𝒂 ∈ 𝑨 , where 𝒂 = {𝒃 ∈ 𝑨: 𝒂 ∼ 𝒃}

𝒂 𝒃 𝒄 𝒅 𝒆

• 𝑨 = 𝒂, 𝒃, 𝒄, 𝒅, 𝒆

• ∼= { 𝒂, 𝒂 , 𝒂, 𝒃 , 𝒃, 𝒂 , 𝒃, 𝒃 ,
𝒄, 𝒄 , 𝒄, 𝒅 , 𝒅, 𝒄 , 𝒅, 𝒅 , (𝒆, 𝒆)}

• 𝑨/∼= 𝒂, 𝒃 , 𝒄, 𝒅 , 𝒆

• 𝒂 = 𝒃 = 𝒂, 𝒃 , 𝒄 = 𝒅 = 𝒄, 𝒅 , 𝒆 = {𝒆}

Page . 16

Xiang Yin SJTU-XMU 2021

Model Equivalence

Observations

• trace equivalence is not good enough to describe model equivalence

although it is good enough for LT properties

• we needs to look at the equivalence of states

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

𝒖

𝒖

𝒖

𝑻𝟏

{𝒂}

𝒙𝟐𝒙𝟏

𝒙3

{𝒃}

{𝒃}

𝒖

𝒖

𝒖

𝒖

𝒖

𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

{𝒃}

𝒖

𝒖

𝒖

𝒖

𝒖

𝑻𝟑

𝒙3 𝒙4

𝒖

𝒖

{𝒂}

• 𝑻𝒓𝒂𝒄𝒆 𝑻𝟏 = 𝑻𝒓𝒂𝒄𝒆(𝑻𝟐) but state 𝒙𝟑 is 𝑻𝟐 seems to be different

• 𝑻𝒓𝒂𝒄𝒆 𝑻𝟏 = 𝑻𝒓𝒂𝒄𝒆(𝑻𝟑) but are they really equivalent?

Page . 17

Xiang Yin SJTU-XMU 2021

State Equivalence

• What does two states are “equivalent” mean?

➢ they should have the same property (atomic propositions)

➢ they should have the same future behaviors

• Two systems are equivalent if their initial states are equivalent

• For a system itself, we can aggregate equivalent states (abstraction)

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

𝒖

𝒖

𝒖

𝑻𝟏

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

{𝒃}

𝒖

𝒖

𝒖

𝒖

𝒖

𝑻𝟑

𝒙3 𝒙4

𝒖

𝒖

{𝒂}

Page . 18

Xiang Yin SJTU-XMU 2021

Simulation Relation

Let 𝑻𝟏 and 𝑻𝟐 be two LTSs, where 𝑻𝒊 = (𝑿𝒊, 𝑼𝒊, →𝒊, 𝑿𝟎,𝒊, 𝑨𝑷, 𝑳𝒊). Then a

relation ∼⊆ 𝑿𝟏 × 𝑿𝟐 is a simulation relation from 𝑻𝟏 to 𝑻𝟐 if

• ∀𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏, ∃𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• for all 𝒙𝟏 ∼ 𝒙𝟐, it holds that

➢ 𝑳𝟏 𝒙𝟏 = 𝑳𝟐(𝒙𝟐)

➢ If 𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟏) then there exists 𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

We say 𝑻𝟏 is simulated by 𝑻𝟐 or 𝑻𝟐 simulates 𝑻𝟏, denoted by 𝑻𝟏 ≼ 𝑻𝟐

if there exists a simulation relation from 𝑻𝟏 to 𝑻𝟐

➢ 𝒙𝟏
𝟎 ∼ 𝒙𝟐

𝟎 implies

∀𝒙𝟏
𝟎
𝒖𝟏

𝟏
𝒙𝟏
𝟏
𝒖𝟐

𝟏
⋯

𝒖𝒏

𝟏
𝒙𝟏
𝒏, ∃𝒙𝟐

𝟎
𝒖𝟏
′

𝟐
𝒙𝟐
𝟏

𝒖𝟐
′

𝟐
⋯

𝒖𝒏
′

𝟐
𝒙𝟐
𝒏: 𝑳𝟏 𝒙𝟏

𝟎⋯𝒙𝟏
𝒏 = 𝑳𝟐(𝒙𝟐

𝟎⋯𝒙𝟐
𝒏)

Page . 19

Xiang Yin SJTU-XMU 2021

Example: Simulation Relation

• ∀𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏, ∃𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• for all 𝒙𝟏 ∼ 𝒙𝟐, it holds that

➢ 𝑳𝟏 𝒙𝟏 = 𝑳𝟐(𝒙𝟐)

➢ If 𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟏) then there exists 𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

• We have 𝑻𝟏 ≼ 𝑻𝟐

• Consider relation ∼= 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 ⊆ 𝑿𝟏 × 𝑿𝟐

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

𝒖

𝒖

𝒖

𝑻𝟏

{𝒂}

𝒙𝟐𝒙𝟏

𝒙3

{𝒃}

{𝒃}

𝒖

𝒖

𝒖

𝒖

𝒖

𝑻𝟐

Page . 20

Xiang Yin SJTU-XMU 2021

Bisimulation Relation

Let 𝑻𝟏 and 𝑻𝟐 be two LTSs, where 𝑻𝒊 = (𝑿𝒊, 𝑼𝒊, 𝜹𝒊, 𝑿𝟎,𝒊, 𝑨𝑷, 𝑳𝒊). Then A

relation ∼⊆ 𝑿𝟏 × 𝑿𝟐 is a bisimulation relation between 𝑻𝟏 to 𝑻𝟐 if

• ∀𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏, ∃𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• ∀𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐, ∃𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• for all 𝒙𝟏 ∼ 𝒙𝟐, it holds that

➢ 𝑳𝟏 𝒙𝟏 = 𝑳𝟐(𝒙𝟐)

➢ if 𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟏) then there exists 𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

➢ if 𝒙𝟐
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟐) then there exists 𝒙𝟏

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟏 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

We say 𝑻𝟏 and 𝑻𝟐 are bisimilar, denoted by 𝑻𝟏 ≅ 𝑻𝟐, if there exists a

bisimulation relation between 𝑻𝟏 and 𝑻𝟐

Remark: bisimulation is equivalent to

• ∼⊆ 𝑿𝟏 × 𝑿𝟐 is a simulation relation from 𝑻𝟏 to 𝑻𝟐; and

• ∼−𝟏⊆ 𝑿𝟐 × 𝑿𝟏 is a simulation relation from 𝑻𝟐 to 𝑻𝟏.

Page . 21

Xiang Yin SJTU-XMU 2021

Example: Bisimulation Relation

• ∀𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏, ∃𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• ∀𝒙𝟎,𝟐 ∈ 𝑿𝟎,𝟐, ∃𝒙𝟎,𝟏 ∈ 𝑿𝟎,𝟏: 𝒙𝟎,𝟏 ∼ 𝒙𝟎,𝟐

• for all 𝒙𝟏 ∼ 𝒙𝟐, it holds that

➢ 𝑳𝟏 𝒙𝟏 = 𝑳𝟐(𝒙𝟐)

➢ if 𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟏) then there exists 𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

➢ if 𝒙𝟐
′ ∈ 𝑷𝒐𝒔𝒕(𝒙𝟐) then there exists 𝒙𝟏

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟏 with 𝒙𝟏
′ ∼ 𝒙𝟐

′

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

𝒖

𝒖

𝒖

𝑻𝟏

{𝒂}

𝒙𝟐𝒙𝟏

{𝒃}

{𝒃}

𝒖

𝒖

𝒖

𝒖

𝒖

𝑻𝟑

𝒙3 𝒙4

𝒖

𝒖

{𝒂}

• We have 𝑻𝟏 ≅ 𝑻𝟑

• Consider relation ∼= 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 ⊆ 𝑿𝟏 × 𝑿𝟑

Page . 22

Xiang Yin SJTU-XMU 2021

Algorithm for Computing Bisimulation

• Question: how to determine whether or not 𝑻𝟏 ≅ 𝑻𝟐?

• Problem: bisimulation is a global property

{𝒂}

𝒙𝟐𝒙𝟏
𝒖 𝒙𝟑

𝒖 𝒙𝟒
𝒖 𝒙𝟓

𝒖

{𝒂} {𝒂} {𝒂} {𝒂}

{𝒂}

𝒙𝟐
′𝒙𝟏

′ 𝒖 𝒙𝟑
′𝒖 𝒙𝟒

′𝒖 𝒙𝟓
′𝒖

{𝒂} {𝒂} {𝒂} {𝒃}

?

Page . 23

Xiang Yin SJTU-XMU 2021

Fixed-Point Algorithm for Bisimulation

• Question: how to determine whether or not 𝑻𝟏 ≅ 𝑻𝟐?

• Idea: first relate all pairs and then iterative shrink the relation

Define operator

𝑭: 𝟐𝑿𝟏×𝑿𝟐 → 𝟐𝑿𝟏×𝑿𝟐

by: for any 𝑹 ⊆ 𝑿𝟏 × 𝑿𝟐, we have 𝒙𝟏, 𝒙𝟐 ∈ 𝑭(𝑹) if

• 𝒙𝟏, 𝒙𝟐 ∈ 𝑹

• ∀𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟏 , ∃𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 : 𝒙𝟏
′ , 𝒙𝟐

′ ∈ 𝑹

• ∀𝒙𝟐
′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐 , ∃𝒙𝟏

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟏 : 𝒙𝟏
′ , 𝒙𝟐

′ ∈ 𝑹

Then the fixed-point

𝑹∗ ≔ 𝐥𝐢𝐦
𝒌→∞

𝑭𝒌(𝑹𝟎), where 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟐 : 𝑳𝟏 𝒙𝟏 = 𝑳𝟐(𝒙𝟐)}

is the maximal bisimulation relation between 𝑻𝟏 and 𝑻𝟐.

Page . 24

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 25

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 26

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 27

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟐 = 𝑭 𝑹𝟏 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 28

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟐 = 𝑭 𝑹𝟏 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟑 = 𝑭 𝑹𝟐 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 }

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 29

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟐 = 𝑭 𝑹𝟏 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟑 = 𝑭 𝑹𝟐 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 }

• 𝑹𝟒 = 𝑭 𝑹𝟑 = { 𝒙𝟐, 𝒙𝟐 }

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 30

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟐 = 𝑭 𝑹𝟏 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟑 = 𝑭 𝑹𝟐 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 }

• 𝑹𝟒 = 𝑭 𝑹𝟑 = { 𝒙𝟐, 𝒙𝟐 }

• 𝑹𝟓 = 𝑭 𝑹𝟒 = ∅

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

Page . 31

Xiang Yin SJTU-XMU 2021

Example: Fixed-Point Iteration

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

𝑻𝟏 𝑻𝟐

{𝒂}

𝒙𝟐𝒙𝟏
{𝒃}

{𝒃}

𝒙3 𝒙4

{𝒂}

𝒙𝟏, 𝒙𝟏 𝒙𝟏, 𝒙𝟐 𝒙𝟏, 𝒙𝟑 𝒙𝟏, 𝒙𝟒

𝒙𝟐, 𝒙𝟏 𝒙𝟐, 𝒙𝟐 𝒙𝟐, 𝒙𝟑 𝒙𝟐, 𝒙𝟒

• 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 , (𝒙𝟐, 𝒙𝟓)}

• 𝑹𝟏 = 𝑭 𝑹𝟎 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟏, 𝒙𝟒 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟐 = 𝑭 𝑹𝟏 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 , 𝒙𝟐, 𝒙𝟑 }

• 𝑹𝟑 = 𝑭 𝑹𝟐 = { 𝒙𝟏, 𝒙𝟏 , 𝒙𝟐, 𝒙𝟐 }

• 𝑹𝟒 = 𝑭 𝑹𝟑 = { 𝒙𝟐, 𝒙𝟐 }

• 𝑹𝟓 = 𝑭 𝑹𝟒 = ∅

𝒙𝟓

{𝒃}

𝒙𝟏, 𝒙𝟓

𝒙𝟐, 𝒙𝟓

𝑇1 ≇ 𝑇2!

Page . 32

Xiang Yin SJTU-XMU 2021

Comment on Bisimulation

• Simulation implies trace inclusion, i.e.,

𝑻𝟏 ≼ 𝑻𝟐 ⇒ 𝑻𝒓𝒂𝒄𝒆 𝑻𝟏 ⊆ 𝑻𝒓𝒂𝒄𝒆(𝑻𝟐)

• Bisimulation implies trace equivalence, i.e.,

𝑻𝟏 ≅ 𝑻𝟐 ⇒ 𝑻𝒓𝒂𝒄𝒆 𝑻𝟏 = 𝑻𝒓𝒂𝒄𝒆(𝑻𝟐)

• The vice versa is not true in general

• What if we also want to match control inputs?

Change the definitions of the operator to

∀𝒙𝟏
′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟏, 𝒖 , ∃𝒙𝟐

′ ∈ 𝑷𝒐𝒔𝒕 𝒙𝟐, 𝒖 ⋯

• 𝑻𝟏 ≅ 𝑻𝟐 iff each each 𝑿𝟎,𝒊 is related to some 𝑿𝟎,𝒋 in 𝑹∗

Page . 33

Xiang Yin SJTU-XMU 2021

Bisimulation on Itself

• For a single system 𝑻, we can compute the maximal bisimulation

relation ∼⊆ 𝑿 × 𝑿 between 𝑻 and itself (by the fixed-point alg.)

• Note that such a relation ∼ is always non-empty. Why? since a state

should be equivalent to itself, i.e., the identity relation is included in ∼

• Relation ∼ is in fact an equivalent relation telling which states are

equivalent in terms of both the current property and the future

• Therefore, we can aggregate equivalent states and treat them as a

new state (the equivalent classes)

• In this way, we are able to abstract the system model without losing

any information

Page . 34

Xiang Yin SJTU-XMU 2021

Quotient-Based Abstraction

Let 𝑻 = (𝑿,𝑼,→, 𝑿𝟎, 𝑨𝑷, 𝑳) be an LTS and ∼⊆ 𝑿 × 𝑿 be an equivalence

relation on 𝑿. Then ∼ induces a quotient transition system

𝑻/∼= (𝑿/∼, 𝑼,→∼, 𝑿/∼,𝟎, 𝑨𝑷, 𝑳∼)

• 𝑿/∼ is the quotient space (the set of all equivalence classes)

with 𝑿/∼,𝟎= { 𝒙 ∈ 𝟐𝑿: 𝒙 ∩ 𝑿𝟎 ≠ ∅}

• for 𝑿𝟏, 𝑿𝟐 ∈ 𝑿/∼ and 𝒖 ∈ 𝑼, we have

𝑿𝟏→
𝒖

∼
𝑿𝟐 ⇔ ∃𝒙𝟏 ∈ 𝑿𝟏, ∃𝒙𝟐 ∈ 𝑿𝟐: 𝒙𝟏→

𝒖
𝒙𝟐

• 𝑳/∼ 𝒙 = 𝑳(𝒙) for all 𝒙 ∈ 𝑿

• for any ∼⊆ 𝑿 × 𝑿 , we have 𝑻 ≼ 𝑻/∼

• if ∼⊆ 𝑿 × 𝑿 is a bisimulation relation for 𝑻, then 𝑻 ≅ 𝑻/∼

Theorem

Page . 35

Xiang Yin SJTU-XMU 2021

Example: Quotient System

{𝒂}

𝟏

{𝒃}

𝟐

𝟑

𝟓

𝟔

𝟒 𝟕

𝟖

{𝒂}

{𝒂}

{𝒄}

{𝒄}

{𝒃}
{𝒃}

• Consider equivalence relation shown by the colors

• Trivially, we have 𝑻 ≼ 𝑻/∼

• However, 𝑻 ≇ 𝑻/∼ since ∼ is not a bisimulation (consider states 𝟐&𝟑)

{𝟒, 𝟕, 𝟖}{𝟏}

{𝟐, 𝟑} {𝟓, 𝟔}

{𝒂} {𝒃}

{𝒂}
{𝒄}

original system 𝑻 quotient system 𝑻/∼

Page . 36

Xiang Yin SJTU-XMU 2021

Example: Quotient System

{𝒂}

𝟏

{𝒃}

𝟐

𝟑

𝟓

𝟔

𝟒 𝟕

𝟖

{𝒂}

{𝒂}

{𝒄}

{𝒄}

{𝒃}
{𝒃}

• Since ∼⊆ 𝑿 × 𝑿 is a bisimulation relation on 𝑻

• This time we have 𝑻 ≅ 𝑻/∼

original system 𝑻

{𝟒, 𝟕, 𝟖}{𝟏}

{𝟐} {𝟓, 𝟔}

{𝒂} {𝒃}

{𝒂}
{𝒄}

quotient system 𝑻/∼

{𝟑}{𝒂}

Page . 37

Xiang Yin SJTU-XMU 2021

Under-Approx. v.s. Over-Approx.

• In 𝑻/∼, we have 𝑿𝟏→
𝒖

∼
𝑿𝟐 ⇔ ∃𝒙𝟏 ∈ 𝑿𝟏, ∃𝒙𝟐 ∈ 𝑿𝟐: 𝒙𝟏→

𝒖
𝒙𝟐

• This is why 𝑻 ≼ 𝑻/∼ and we call this over-approximation

• What if we change it to 𝑿𝟏→
𝒖

∼
𝑿𝟐 ⇔ ∀𝒙𝟏 ∈ 𝑿𝟏, ∃𝒙𝟐 ∈ 𝑿𝟐: 𝒙𝟏→

𝒖
𝒙𝟐

• Then we have 𝑻/∼≼ 𝑻 and we call this under-approximation

• They coincide when ∼⊆ 𝑿 × 𝑿 is a bisimulation relation

• For an infinite-state system, there may not always exist a finite quotient;

hence we need over/under-approximation

• Over-approximation is useful for checking safety as 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝑻𝒓𝒂𝒄𝒆(𝑻/∼)

• Under-approx. is useful for checking reachability as 𝑻𝒓𝒂𝒄𝒆 𝑻/∼ ⊆ 𝑻𝒓𝒂𝒄𝒆(𝑻)

Page . 38

Xiang Yin SJTU-XMU 2021

Example: Quotient System

{𝒂}

𝟏

{𝒃}

𝟐

𝟑

𝟓

𝟔

𝟒 𝟕

𝟖

{𝒂}

{𝒂}

{𝒄}

{𝒄}

{𝒃}
{𝒃}

• Over-approximation: with dashed lines, 𝑻 ≼ 𝑻/∼

• Under-approximation: without dashed lines, 𝑻/∼≼ 𝑻

{𝟒, 𝟕, 𝟖}{𝟏}

{𝟐, 𝟑} {𝟓, 𝟔}

{𝒂} {𝒃}

{𝒂}
{𝒄}

original system 𝑻 quotient system 𝑻/∼

Page . 39

Xiang Yin SJTU-XMU 2021

Stage Summary

• Simulation means “no matter what you do, I can match it and

preserve the ability of matching in the future”

• Two states are equivalent if they have both the same property and

the same future behaviors

• Two systems are equivalent if they can simulate each other

• By aggregating equivalent states, one can build the quotient system

that bisimulates the original system

• Bisimulation implies trace equivalent; hence preserves LT properties

Page . 40

Xiang Yin SJTU-XMU 2021

Review of Last Lecture

• Two different models may be essentially equivalent

• 𝑻𝒓𝒂𝒄𝒆 𝑻𝟏 = 𝑻𝒓𝒂𝒄𝒆 𝑻𝟐 is not fine enough for model equivalence

• Simulation: 𝑻𝟏 ≼ 𝑻𝟐 means 𝑻𝟐 can “match” 𝑻𝟏

• Bisimulation: 𝑻𝟏 ≅ 𝑻𝟐 means they can “match” each other

• The maximal bisimulation relation can be computed by fixed-point alg.

• An equivalence relation over 𝑿 induces a quotient system 𝑻/∼

• If ∼⊆ 𝑿 × 𝑿 is a bisimulation relation for 𝑻, then 𝑻 ≅ 𝑻/∼

• Remark: 𝑻𝟏 ≼𝑹 𝑻𝟐 and 𝑻𝟐 ≼𝑹′ 𝑻𝟏 does not necessarily imply 𝑻𝟏 ≅ 𝑻𝟐;

they have to be the same relation, i.e., 𝑹−𝟏 = 𝑹′!

