## Formal Properties

## Deadlock

- Sequential programs may have terminal states
- For parallel systems, however, computations typically do not terminate
- Deadlock state: $\operatorname{Post}(x)=\varnothing$; a system with no deadlock is called live
- Therefore, deadlocks are undesirable and mostly represent a design error.
- A typical deadlock scenario occurs in the synchronization when components mutually wait for each other to progress.
- We assume mostly the systems is live; deadlock avoidance is another story.



## Example: Dining Philosophers



- To take food, each philosopher needs two sticks
- A deadlock occurs when all philosophers possess a single stick
- The problem is to design a protocol such that the complete system is deadlock-free, i.e., at least one philosopher can eat and think infinitely often.
- A fair solution may be required with each philosopher being able to think and eat infinitely often (freedom of individual starvation)

A possible solution is to make the sticks available for only one philosopher at a time. It can be verified that this solution is deadlock- and starvation-free.

## Linear-Time Property

- Recall $\operatorname{Trace}(T) \subseteq\left(2^{A P}\right)^{\omega}$ is the set of infinite sequence generated by $T$
- A linear-time property $P$ over $A P$ is a subset of $\left(2^{A P}\right)^{\omega}$ specifying the traces that a transition system should exhibit
- We say that system $T$ satisfies $P$, denoted by $T \vDash P$, if $\operatorname{Trace}(T) \subseteq P$
- "Linear" is the opposite of "branching" not "nonlinear"
- LT property is on a specific infinite execution



## Safety \& Invariant

- Safety: bad things never happen $\Leftrightarrow$ always good things
- Invariant: some property should hold for all reachable state

An LT property $P_{i n v}$ is an invariant if there is a propositional logic formula $\Phi$ (called the invariant condition) over $A P$ such that

$$
P_{i n v}=\left\{A_{0} A_{1} A_{2} \cdots \in\left(2^{A P}\right)^{\omega}: \forall i \geq 0, A_{i} \vDash \Phi\right\}
$$

- Therefore, $\boldsymbol{T} \vDash \boldsymbol{P}_{\text {inv }}$ iff $L(x) \vDash \Phi$ for all reachable states
- Can be checked easily be a DFS or a BFS
- Mutual exclusion property: $\Phi=\neg c r i t_{1} \vee \neg$ crit $_{2}$
- Traffic light: $\Phi=\neg$ green $\vee \neg$ walk



## Safety

- Invariant is essentially a state-based safety property
- In general, safety may impose requirements on finite path fragments
- Ex: Money can only be withdrawn from the ATM once a correct PIN has been provided; this is not invariant but is still safety

An LT property $P_{\text {safe }}$ is a safety property if for all $\sigma \in\left(2^{A P}\right)^{\omega} \backslash P_{\text {safe }}$ there exists a finite bad prefix $\hat{\sigma}$ of $\sigma$ such that

$$
P_{\text {safe }} \cap\left\{\sigma^{\prime} \in\left(2^{A P}\right)^{\omega}: \widehat{\sigma} \text { is a finite prefix of } \sigma^{\prime}\right\}=\varnothing
$$

$>A P=\{$ red, yellow $\}$
> red phase must be preceded immediately by a yellow phase
$>$ Bad prefix: $\{y e l l o w\} \varnothing \emptyset\{$ red $\},\{y e l l o w\}\{y e l l o w\}\{r e d\}\{r e d\}$

## Liveness

- Safety says "something bad never happens"
- We also need liveness saying "something good will happen"
- Liveness should not constrain the finite behaviors, but require a certain condition on the infinite behaviors.
- For example, certain events occur infinitely often.

An LT property $P_{\text {live }}$ is a liveness property if $\operatorname{pref}\left(\boldsymbol{P}_{\text {live }}\right)=\left(2^{A P}\right)^{*}$

- pref $\left(P_{\text {live }}\right)$ denotes the set of all finite prefix of $P_{\text {live }}$
- $\left(2^{A P}\right)^{*}$ denotes the set all of finite words over $2^{A P}$



## Example: Liveness

- Eventually: each process will eventually enter its critical section:
the set of all infinite words $A_{0} A_{1} \cdots \in\left(2^{A P}\right)^{\omega}$ such that

$$
\left(\exists i \geq \mathbf{0}: \text { crit }_{1} \in A_{i}\right) \wedge\left(\exists i \geq \mathbf{0}: \text { crit }_{2} \in A_{i}\right)
$$

- Repeated eventually: each process will enter its critical section infinitely often the set of all infinite words $A_{0} A_{1} \cdots \in\left(2^{A P}\right)^{\omega}$ such that $\left(\forall k \geq 0, \exists i \geq k: c r i t_{1} \in A_{i}\right) \wedge\left(\forall k \geq, \exists i \geq k:\right.$ crit $\left._{2} \in A_{i}\right)$
- Starvation freedom: each waiting process will eventually enter its critical section the set of all infinite words $A_{0} A_{1} \cdots \in\left(2^{A P}\right)^{\omega}$ such that

$$
\begin{aligned}
& \left(\forall i \geq: \text { wait }_{1} \in A_{i} \Rightarrow\left(\exists k>\boldsymbol{i}: \text { crit }_{1} \in A_{k}\right)\right) \wedge \\
& \left(\forall i \geq: \text { wait }_{2} \in A_{i} \Rightarrow\left(\exists k>\boldsymbol{i}: \text { crit }_{2} \in A_{k}\right)\right)
\end{aligned}
$$

## Decomposition Theorem

Any LT property $P$ can be decomposed as $P=P_{\text {safe }} \cap P_{\text {live }}$


- $P=\left(2^{A P}\right)^{\omega}$ is the only property that is both safe and live
- In general, a property can be neither safe nor live
> Consider $A P=\{a\}$ and $P=$ first $\emptyset$ and then $\{a\}$ infinitely often
$>$ It can be decomposed as $P=\varnothing\left(2^{A P}\right)^{\omega} \cap\{\sigma$ : $\{\boldsymbol{a}\}$ infinitely often in $\sigma\}$


## Stage Summary

- System having no deadlock will generate infinite sequences
- Linear-time properties evaluate infinite sequences
- Safety is a property that is violated in a finite horizon
- Liveness is a property that does not care about what have done
- In general, an LT property consists of both safety and liveness


## Question

(a) If $a$ becomes valid, afterward $b$ stays valid ad infinitum or until $c$ holds.
(b) Between two neighboring occurrences of $a, b$ always holds.
(c) Between two neighboring occurrences of $a, b$ occurs more often than $c$.
(d) $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until $c$ becomes valid.

Question: For each property, determine if it is a safety or liveness or both or none.

## Review of Last Lecture

- A dynamic system can be modeled as an LTS $T=\left(X, U, \rightarrow, X_{0}, A P, L\right)$
- A system can generate infinite sequences with properties $\operatorname{Trace}(T)$
- A (linear-time) property is a set of "good" infinite traces $P \subseteq\left(2^{A P}\right)^{\omega}$
- $\quad T \vDash P$ if $\operatorname{Trace}(T) \subseteq P$ (nothing to do with actions)
- Some property can be violated in a finite horizon (safety)
- In general, a property can be decomposed as safety and liveness
- Large systems are obtained by composition $T=T_{1} \otimes T_{2} \otimes \cdots \otimes T_{n}$
- Product composition is essentially synchronization
- A general form of synchronization can be written as $T=T_{1} \otimes_{H} T_{2}$, where $H \subseteq U_{\mathbf{1}} \times U_{2}$ are pairs that should be synchronized


## Bisimulation \＆Abstraction

## Model Equivalence by Bisimulation

## Motivations

- Different people may build different models for the same system
- Some models are complex but some are simple
- How to determine whether two models are describing the same thing?
- How to simplify a complex model to a simple but equivalent one?


## Basic Ideas

- Model equivalence is captured by "bisimulation"
- One model is more "precise" than the other if
"no matter what you do, I can do the same thing" (simulation)
- Two models are equivalent if they can simulate each other


## Equivalence Relation

- a relation from set $A$ to set $B$ is a set of pairs $\sim \subseteq A \times B$
- we write $\boldsymbol{a} \sim \boldsymbol{b}$ if $(\boldsymbol{a}, \boldsymbol{b}) \in \sim$
- a relation $\sim \subseteq A \times A$ on $A$ is an equivalence relation if it satisfies:
$>$ reflexivity: $\forall a \in A: a \sim a$
$>$ symmetry: $\forall a, b \in A$, if $a \sim b$, then $b \sim a$
$>$ transitivity: $\forall a, b, \in A$, if $a \sim b$ and $b \sim c$, then $a \sim c$
- an equivalent relation induces an equivalent class

$$
A / \sim=\left\{[a] \in 2^{A}: a \in A\right\}, \text { where }[a]=\{b \in A: a \sim b\}
$$

$$
\begin{array}{lll}
8 \\
a
\end{array}
$$

## Model Equivalence



- $\operatorname{Trace}\left(T_{1}\right)=\operatorname{Trace}\left(T_{2}\right)$ but state $x_{3}$ is $T_{2}$ seems to be different
- $\operatorname{Trace}\left(T_{1}\right)=\operatorname{Trace}\left(T_{3}\right)$ but are they really equivalent?


## Observations

- trace equivalence is not good enough to describe model equivalence although it is good enough for LT properties
- we needs to look at the equivalence of states


## State Equivalence

- What does two states are "equivalent" mean?
$>$ they should have the same property (atomic propositions)
> they should have the same future behaviors
- Two systems are equivalent if their initial states are equivalent
- For a system itself, we can aggregate equivalent states (abstraction)



## Simulation Relation

Let $T_{1}$ and $T_{2}$ be two LTSs, where $T_{i}=\left(X_{i}, U_{i}, \rightarrow_{i}, X_{0, i}, A P, L_{i}\right)$. Then a relation $\sim \subseteq X_{1} \times X_{2}$ is a simulation relation from $T_{1}$ to $T_{2}$ if

- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- for all $x_{1} \sim x_{2}$, it holds that

$$
>L_{1}\left(x_{1}\right)=L_{2}\left(x_{2}\right)
$$

$>$ If $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ then there exists $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$
We say $T_{1}$ is simulated by $T_{2}$ or $T_{2}$ simulates $T_{1}$, denoted by $T_{1} \preccurlyeq T_{2}$ if there exists a simulation relation from $T_{1}$ to $T_{2}$
$>x_{1}^{0} \sim x_{2}^{0}$ implies

$$
\forall x_{1}^{0} \xrightarrow[1]{u_{1}} x_{1}^{1} \xrightarrow[1]{u_{2}} \cdots \xrightarrow[1]{u_{n}} x_{1}^{n}, \exists x_{2}^{0} \xrightarrow[2]{u_{1}^{\prime}} x_{2}^{1} \xrightarrow[2]{u_{2}^{\prime}} \cdots \xrightarrow[2]{u_{n}^{\prime}} x_{2}^{n}: L_{1}\left(x_{1}^{0} \cdots x_{1}^{n}\right)=L_{2}\left(x_{2}^{0} \cdots x_{2}^{n}\right)
$$

## Example: Simulation Relation



- We have $T_{1} \leqslant T_{2}$
- Consider relation $\sim=\left\{\left(x_{1}, x_{1}\right),\left(x_{2}, x_{2}\right)\right\} \subseteq X_{1} \times X_{2}$
- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- for all $x_{1} \sim x_{2}$, it holds that
$>L_{1}\left(x_{1}\right)=L_{2}\left(x_{2}\right)$
$>$ If $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ then there exists $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$


## Bisimulation Relation

Let $T_{1}$ and $T_{2}$ be two LTSs, where $T_{i}=\left(X_{i}, U_{i}, \delta_{i}, X_{0, i}, A P, L_{i}\right)$. Then A relation $\sim \subseteq X_{1} \times X_{2}$ is a bisimulation relation between $T_{1}$ to $T_{2}$ if

- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- $\forall x_{0,2} \in X_{0,2}, \exists x_{0,1} \in X_{0,1}: x_{0,1} \sim x_{0,2}$
- for all $x_{1} \sim x_{2}$, it holds that
$>L_{1}\left(x_{1}\right)=L_{2}\left(x_{2}\right)$
$>$ if $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ then there exists $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$
$>$ if $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ then there exists $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$ We say $T_{1}$ and $T_{2}$ are bisimilar, denoted by $T_{1} \cong T_{2}$, if there exists a bisimulation relation between $T_{1}$ and $T_{2}$

Remark: bisimulation is equivalent to

- $\sim \subseteq X_{1} \times X_{2}$ is a simulation relation from $T_{1}$ to $T_{2}$; and
- $\sim^{-1} \subseteq X_{2} \times X_{1}$ is a simulation relation from $T_{2}$ to $T_{1}$.


## Example: Bisimulation Relation



- We have $T_{1} \cong T_{3}$
- Consider relation $\sim=\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\} \subseteq X_{1} \times X_{3}$
- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- $\forall x_{0,2} \in X_{0,2}, \exists x_{0,1} \in X_{0,1}: x_{0,1} \sim x_{0,2}$
- for all $x_{1} \sim x_{2}$, it holds that

$$
>L_{1}\left(x_{1}\right)=L_{2}\left(x_{2}\right)
$$

$>$ if $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ then there exists $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$
$>$ if $x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right)$ then there exists $x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right)$ with $x_{1}^{\prime} \sim x_{2}^{\prime}$

## Algorithm for Computing Bisimulation

- Question: how to determine whether or not $T_{1} \cong T_{2}$ ?
- Problem: bisimulation is a global property



## Fixed-Point Algorithm for Bisimulation

- Question: how to determine whether or not $T_{1} \cong T_{2}$ ?
- Idea: first relate all pairs and then iterative shrink the relation

Define operator

$$
F: 2^{X_{1} \times X_{2}} \rightarrow 2^{X_{1} \times X_{2}}
$$

by: for any $R \subseteq X_{1} \times X_{2}$, we have $\left(x_{1}, x_{2}\right) \in F(R)$ if

- $\left(x_{1}, x_{2}\right) \in R$
- $\forall x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right), \exists x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right):\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in R$
- $\forall x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}\right), \exists x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}\right):\left(x_{1}^{\prime}, x_{2}^{\prime}\right) \in R$

Then the fixed-point

$$
\boldsymbol{R}^{*}:=\lim _{k \rightarrow \infty} \boldsymbol{F}^{k}\left(\boldsymbol{R}_{\mathbf{0}}\right), \text { where } \boldsymbol{R}_{\mathbf{0}}=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right): \boldsymbol{L}_{\mathbf{1}}\left(\boldsymbol{x}_{\mathbf{1}}\right)=\boldsymbol{L}_{2}\left(\boldsymbol{x}_{2}\right)\right\}
$$

is the maximal bisimulation relation between $T_{1}$ and $T_{2}$.

## Example: Fixed-Point Iteration



- $R_{0}=\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{5}\right)\right\}$
- $R_{1}=F\left(R_{0}\right)=\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right)\right\}$
- $\quad R_{2}=F\left(R_{1}\right)=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)\right\}$
- $\boldsymbol{R}_{3}=\boldsymbol{F}\left(\boldsymbol{R}_{2}\right)=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)\right\}$
- $\boldsymbol{R}_{\mathbf{4}}=\boldsymbol{F}\left(\boldsymbol{R}_{3}\right)=\left\{\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)\right\}$
- $\boldsymbol{R}_{5}=\boldsymbol{F}\left(\boldsymbol{R}_{\mathbf{4}}\right)=\varnothing$


## Example: Fixed-Point Iteration



- $R_{0}=\left\{\left(x_{1}, x_{1}\right),\left(x_{1}, x_{4}\right),\left(x_{2}, x_{2}\right),\left(x_{2}, x_{3}\right),\left(x_{2}, x_{5}\right)\right\}$
- $\boldsymbol{R}_{1}=\boldsymbol{F}\left(\boldsymbol{R}_{0}\right)=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right),\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{4}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)\right\}$
- $\quad R_{2}=F\left(R_{1}\right)=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{3}\right)\right\}$
- $\boldsymbol{R}_{3}=\boldsymbol{F}\left(\boldsymbol{R}_{2}\right)=\left\{\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right),\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)\right\}$
- $\boldsymbol{R}_{4}=\boldsymbol{F}\left(\boldsymbol{R}_{3}\right)=\left\{\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{2}\right)\right\}$
- $\boldsymbol{R}_{5}=F\left(\boldsymbol{R}_{4}\right)=\varnothing$
$T_{1} \not \neq T_{2}$ !


## Comment on Bisimulation

- $T_{1} \cong T_{2}$ iff each each $X_{0, i}$ is related to some $X_{0, j}$ in $R^{*}$
- Simulation implies trace inclusion, i.e.,

$$
T_{1} \preccurlyeq T_{2} \Rightarrow \operatorname{Trace}\left(T_{1}\right) \subseteq \operatorname{Trace}\left(T_{2}\right)
$$

- Bisimulation implies trace equivalence, i.e.,

$$
T_{1} \cong T_{2} \Rightarrow \operatorname{Trace}\left(T_{1}\right)=\operatorname{Trace}\left(T_{2}\right)
$$

- The vice versa is not true in general
- What if we also want to match control inputs? Change the definitions of the operator to

$$
\forall x_{1}^{\prime} \in \operatorname{Post}\left(x_{1}, u\right), \exists x_{2}^{\prime} \in \operatorname{Post}\left(x_{2}, u\right) \cdots
$$

## Bisimulation on Itself

- For a single system $T$, we can compute the maximal bisimulation relation $\sim \subseteq X \times X$ between $T$ and itself (by the fixed-point alg.)
- Note that such a relation ~ is always non-empty. Why? since a state should be equivalent to itself, i.e., the identity relation is included in $\sim$
- Relation $\sim$ is in fact an equivalent relation telling which states are equivalent in terms of both the current property and the future
- Therefore, we can aggregate equivalent states and treat them as a new state (the equivalent classes)
- In this way, we are able to abstract the system model without losing any information


## Quotient-Based Abstraction

Let $T=\left(X, U, \rightarrow, X_{0}, A P, L\right)$ be an LTS and $\sim \subseteq X \times X$ be an equivalence relation on $X$. Then $\sim$ induces a quotient transition system

$$
T / \sim=\left(X / /_{\sim}, U, \rightarrow_{\sim}, X / \sim, 0, A P, L_{\sim}\right)
$$

- $X / \sim$ is the quotient space (the set of all equivalence classes) with $X / \sim, 0=\left\{[x] \in 2^{X}:[x] \cap X_{0} \neq \varnothing\right\}$
- for $X_{1}, X_{2} \in X / \sim$ and $u \in U$, we have

$$
X_{1} \xrightarrow[\sim]{u} X_{2} \Leftrightarrow \exists x_{1} \in X_{1}, \exists x_{2} \in X_{2}: x_{1} \xrightarrow{u} x_{2}
$$

- $\quad L / \sim(x)=L(x)$ for all $x \in X$


## Theorem

- for any $\sim \subseteq X \times X$, we have $T \preccurlyeq T / \sim$
- if $\sim \subseteq X \times X$ is a bisimulation relation for $T$, then $T \cong T / \sim$


## Example: Quotient System


original system $T$

quotient system $T / \sim$

- Consider equivalence relation shown by the colors
- Trivially, we have $T \leqslant T / \sim$
- However, $T \neq T / \sim$ since $\sim$ is not a bisimulation (consider states $2 \& 3$ )


## Example: Quotient System



- Since $\sim \subseteq X \times X$ is a bisimulation relation on $T$
- This time we have $T \cong T / \sim$


## Under-Approx. v.s. Over-Approx.

- In $T / \sim$, we have $X_{1} \xrightarrow[\sim]{u} X_{2} \Leftrightarrow \exists x_{1} \in X_{1}, \exists x_{2} \in X_{2}: x_{1} \xrightarrow{u} x_{2}$
- This is why $T \preccurlyeq T / \sim$ and we call this over-approximation
- What if we change it to $X_{1} \xrightarrow[\sim]{u} X_{2} \Leftrightarrow \forall x_{1} \in X_{1}, \exists x_{2} \in X_{2}: x_{1} \xrightarrow{u} x_{2}$
- Then we have $T / \sim \preccurlyeq T$ and we call this under-approximation
- They coincide when $\sim \subseteq X \times X$ is a bisimulation relation
- For an infinite-state system, there may not always exist a finite quotient; hence we need over/under-approximation
- Over-approximation is useful for checking safety as $\operatorname{Trace}(T) \subseteq \operatorname{Trace}(T / \sim)$
- Under-approx. is useful for checking reachability as $\operatorname{Trace}(T / \sim) \subseteq \operatorname{Trace}(T)$


## Example: Quotient System


original system $T$

quotient system $T / \sim$

- Over-approximation: with dashed lines, $T \leqslant T / \sim$
- Under-approximation: without dashed lines, $T / \sim \preccurlyeq T$


## Stage Summary

- Simulation means "no matter what you do, I can match it and preserve the ability of matching in the future"
- Two states are equivalent if they have both the same property and the same future behaviors
- Two systems are equivalent if they can simulate each other
- By aggregating equivalent states, one can build the quotient system that bisimulates the original system
- Bisimulation implies trace equivalent; hence preserves LT properties


## Review of Last Lecture

- Two different models may be essentially equivalent
- $\operatorname{Trace}\left(T_{1}\right)=\operatorname{Trace}\left(T_{2}\right)$ is not fine enough for model equivalence
- Simulation: $T_{1} \preccurlyeq T_{2}$ means $T_{2}$ can "match" $T_{1}$
- Bisimulation: $T_{1} \cong T_{2}$ means they can "match" each other
- The maximal bisimulation relation can be computed by fixed-point alg.
- An equivalence relation over $X$ induces a quotient system $T / \sim$
- If $\sim \subseteq X \times X$ is a bisimulation relation for $T$, then $T \cong T / \sim$
- Remark: $T_{1} \preccurlyeq_{R} T_{2}$ and $T_{2} \preccurlyeq_{R^{\prime}} T_{1}$ does not necessarily imply $T_{1} \cong T_{2}$; they have to be the same relation, i.e., $R^{-1}=R^{\prime}$ !

