Formal Properties

Deadlock

- Sequential programs may have terminal states
- For parallel systems, however, computations typically do not terminate
- **Deadlock state:** *Post*(*x*) = Ø; a system with no deadlock is called live
- Therefore, deadlocks are undesirable and mostly represent a design error.
- A typical deadlock scenario occurs in the synchronization when components mutually wait for each other to progress.
- We assume mostly the systems is live; deadlock avoidance is another story.

Example: Dining Philosophers

- To take food, each philosopher needs two sticks
- A deadlock occurs when all philosophers possess a single stick
- The problem is to design a protocol such that the complete system is deadlock-free, i.e., at least one philosopher can eat and think infinitely often.
- A fair solution may be required with each philosopher being able to think and eat infinitely often (freedom of individual starvation)

A possible solution is to make the sticks available for only one philosopher at a time. It can be verified that this solution is deadlock- and starvation-free.

Linear-Time Property

- Recall $Trace(T) \subseteq (2^{AP})^{\omega}$ is the set of infinite sequence generated by T
- A linear-time property *P* over *AP* is a subset of $(2^{AP})^{\omega}$ specifying the traces that a transition system should exhibit
- We say that system T satisfies P, denoted by $T \models P$, if $Trace(T) \subseteq P$
- "Linear" is the opposite of "branching" not "nonlinear"
- LT property is on a specific infinite execution

Safety & Invariant

- Safety: bad things never happen ⇔ always good things
- Invariant: some property should hold for all reachable state

An LT property P_{inv} is an invariant if there is a propositional logic formula Φ (called the invariant condition) over *AP* such that

$$P_{inv} = \{A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega} : \forall i \ge 0, A_i \models \Phi\}$$

- Therefore, $T \vDash P_{inv}$ iff $L(x) \vDash \Phi$ for all reachable states
- Can be checked easily be a DFS or a BFS
- Mutual exclusion property: $\Phi = \neg crit_1 \lor \neg crit_2$
- Traffic light: $\Phi = \neg green \lor \neg walk$

Safety

- Invariant is essentially a state-based safety property
- In general, safety may impose requirements on finite path fragments
- Ex: Money can only be withdrawn from the ATM once a correct PIN has been provided; this is not invariant but is still safety

An LT property P_{safe} is a safety property if for all $\sigma \in (2^{AP})^{\omega} \setminus P_{safe}$ there exists a finite bad prefix $\hat{\sigma}$ of σ such that $P_{safe} \cap \left\{ \sigma' \in (2^{AP})^{\omega} : \hat{\sigma} \text{ is a finite prefix of } \sigma' \right\} = \emptyset$

- $\blacktriangleright AP = \{red, yellow\}$
- red phase must be preceded immediately by a yellow phase
- Bad prefix: {yellow}ØØ{red}, {yellow}{yellow}{red}{red}

Liveness

- Safety says "something bad never happens"
- We also need liveness saying "something good will happen"
- Liveness should not constrain the finite behaviors, but require a certain condition on the infinite behaviors.
- For example, certain events occur infinitely often.

An LT property P_{live} is a liveness property if $pref(P_{live}) = (2^{AP})^*$

- $pref(P_{live})$ denotes the set of all finite prefix of P_{live}
- $(2^{AP})^*$ denotes the set all of finite words over 2^{AP}

Example: Liveness

• Eventually: each process will eventually enter its critical section:

the set of all infinite words $A_0A_1 \dots \in (2^{AP})^{\omega}$ such that $(\exists i \ge 0: crit_1 \in A_i) \land (\exists i \ge 0: crit_2 \in A_i)$

- Repeated eventually: each process will enter its critical section infinitely often the set of all infinite words A₀A₁ ··· ∈ (2^{AP})^ω such that (∀k ≥ 0, ∃i ≥ k: crit₁ ∈ A_i) ∧ (∀k ≥, ∃i ≥ k: crit₂ ∈ A_i)
- Starvation freedom: each waiting process will eventually enter its critical section the set of all infinite words A₀A₁ ··· ∈ (2^{AP})^ω such that (∀i ≥: wait₁ ∈ A_i ⇒ (∃k > i: crit₁ ∈ A_k)) ∧ (∀i ≥: wait₂ ∈ A_i ⇒ (∃k > i: crit₂ ∈ A_k))

Decomposition Theorem

- $P = (2^{AP})^{\omega}$ is the only property that is both safe and live
- In general, a property can be neither safe nor live
 - ▶ Consider $AP = \{a\}$ and P =first \emptyset and then $\{a\}$ infinitely often
 - ▶ It can be decomposed as $P = \emptyset(2^{AP})^{\omega} \cap \{\sigma: \{a\} \text{ infinitely often in } \sigma\}$

Stage Summary

- System having no deadlock will generate infinite sequences
- Linear-time properties evaluate infinite sequences
- Safety is a property that is violated in a finite horizon
- Liveness is a property that does not care about what have done
- In general, an LT property consists of both safety and liveness

Question

- (a) If a becomes valid, afterward b stays valid ad infinitum or until c holds.
- (b) Between two neighboring occurrences of a, b always holds.
- (c) Between two neighboring occurrences of a, b occurs more often than c.
- (d) $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until c becomes valid.

Question: For each property, determine if it is a safety or liveness or both or none.

Review of Last Lecture

- A dynamic system can be modeled as an LTS $T = (X, U, \rightarrow, X_0, AP, L)$
- A system can generate infinite sequences with properties Trace(T)
- A (linear-time) property is a set of "good" infinite traces $P \subseteq (2^{AP})^{\omega}$
- $T \vDash P$ if $Trace(T) \subseteq P$ (nothing to do with actions)
- Some property can be violated in a finite horizon (safety)
- In general, a property can be decomposed as safety and liveness
- Large systems are obtained by composition $T = T_1 \otimes T_2 \otimes \cdots \otimes T_n$
- Product composition is essentially synchronization
- A general form of synchronization can be written as $T = T_1 \bigotimes_H T_2$, where $H \subseteq U_1 \times U_2$ are pairs that should be synchronized

Bisimulation & Abstraction

Model Equivalence by Bisimulation

Motivations

- Different people may build different models for the same system
- Some models are complex but some are simple
- How to determine whether two models are describing the same thing?
- How to simplify a complex model to a simple but equivalent one?

Basic Ideas

- Model equivalence is captured by "bisimulation"
- One model is more "precise" than the other if "no matter what you do, I can do the same thing" (simulation)
- Two models are equivalent if they can simulate each other

Equivalence Relation

- a relation from set A to set B is a set of pairs $\sim \subseteq A \times B$
- we write *a*∼*b* if (*a*, *b*) ∈ ~
- a relation $\sim \subseteq A \times A$ on A is an equivalence relation if it satisfies:
 - ▶ reflexivity: $\forall a \in A: a \sim a$
 - > symmetry: $\forall a, b \in A$, if $a \sim b$, then $b \sim a$
 - → transitivity: $\forall a, b, \in A$, if $a \sim b$ and $b \sim c$, then $a \sim c$
- an equivalent relation induces an equivalent class $A/_{\sim} = \{[a] \in 2^A : a \in A\}, \text{ where } [a] = \{b \in A : a \sim b\}$
- $A = \{a, b, c, d, e\}$
- $\sim = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d), (e, e)\}$
- $A/_{\sim} = \{\{a, b\}, \{c, d\}, \{e\}\}$
- $[a] = [b] = \{a, b\}, [c] = [d] = \{c, d\}, [e] = \{e\}$

Model Equivalence

- $Trace(T_1) = Trace(T_2)$ but state x_3 is T_2 seems to be different
- $Trace(T_1) = Trace(T_3)$ but are they really equivalent?

Observations

- trace equivalence is not good enough to describe model equivalence although it is good enough for LT properties
- we needs to look at the equivalence of states

State Equivalence

- What does two states are "equivalent" mean?
 - they should have the same property (atomic propositions)
 - they should have the same future behaviors
- Two systems are equivalent if their initial states are equivalent
- For a system itself, we can aggregate equivalent states (abstraction)

Simulation Relation

Let T_1 and T_2 be two LTSs, where $T_i = (X_i, U_i, \rightarrow_i, X_{0,i}, AP, L_i)$. Then a relation $\sim \subseteq X_1 \times X_2$ is a simulation relation from T_1 to T_2 if

- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- for all $x_1 \sim x_2$, it holds that

 \succ $L_1(x_1) = L_2(x_2)$

▶ If $x'_1 \in Post(x_1)$ then there exists $x'_2 \in Post(x_2)$ with $x'_1 \sim x'_2$

We say T_1 is simulated by T_2 or T_2 simulates T_1 , denoted by $T_1 \leq T_2$ if there exists a simulation relation from T_1 to T_2

$$x_1^0 \sim x_2^0 \text{ implies} \forall x_1^0 \stackrel{u_1}{\to} x_1^1 \stackrel{u_2}{\to} \cdots \stackrel{u_n}{\to} x_1^n, \exists x_2^0 \stackrel{u_1'}{\to} x_2^1 \stackrel{u_2'}{\to} \cdots \stackrel{u_n'}{\to} x_2^n: L_1(x_1^0 \cdots x_1^n) = L_2(x_2^0 \cdots x_2^n)$$

Example: Simulation Relation

- We have $T_1 \leq T_2$
- Consider relation $\sim = \{(x_1, x_1), (x_2, x_2)\} \subseteq X_1 \times X_2$

• $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$

• for all $x_1 \sim x_2$, it holds that

 \succ $L_1(x_1) = L_2(x_2)$

▶ If $x'_1 \in Post(x_1)$ then there exists $x'_2 \in Post(x_2)$ with $x'_1 \sim x'_2$

Bisimulation Relation

Let T_1 and T_2 be two LTSs, where $T_i = (X_i, U_i, \delta_i, X_{0,i}, AP, L_i)$. Then A relation $\sim \subseteq X_1 \times X_2$ is a bisimulation relation between T_1 to T_2 if

- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- $\forall x_{0,2} \in X_{0,2}, \exists x_{0,1} \in X_{0,1}: x_{0,1} \sim x_{0,2}$
- for all $x_1 \sim x_2$, it holds that

 \succ $L_1(x_1) = L_2(x_2)$

→ if $x'_1 \in Post(x_1)$ then there exists $x'_2 \in Post(x_2)$ with $x'_1 \sim x'_2$

➢ if x'₂ ∈ Post(x₂) then there exists x'₁ ∈ Post(x₁) with x'₁ ~ x'₂
We say T₁ and T₂ are bisimilar, denoted by T₁ ≅ T₂, if there exists a bisimulation relation between T₁ and T₂

Remark: bisimulation is equivalent to

- $\sim \subseteq X_1 \times X_2$ is a simulation relation from T_1 to T_2 ; and
- $\sim^{-1} \subseteq X_2 \times X_1$ is a simulation relation from T_2 to T_1 .

Example: Bisimulation Relation

- We have $T_1 \cong T_3$
- Consider relation $\sim = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\} \subseteq X_1 \times X_3$
- $\forall x_{0,1} \in X_{0,1}, \exists x_{0,2} \in X_{0,2}: x_{0,1} \sim x_{0,2}$
- $\forall x_{0,2} \in X_{0,2}, \exists x_{0,1} \in X_{0,1}: x_{0,1} \sim x_{0,2}$
- for all $x_1 \sim x_2$, it holds that

 - → if $x'_1 \in Post(x_1)$ then there exists $x'_2 \in Post(x_2)$ with $x'_1 \sim x'_2$
 - ▶ if $x'_2 \in Post(x_2)$ then there exists $x'_1 \in Post(x_1)$ with $x'_1 \sim x'_2$

Algorithm for Computing Bisimulation

- Question: how to determine whether or not $T_1 \cong T_2$?
- Problem: bisimulation is a global property

Fixed-Point Algorithm for Bisimulation

- Question: how to determine whether or not $T_1 \cong T_2$?
- Idea: first relate all pairs and then iterative shrink the relation

Then the fixed-point

$$R^* \coloneqq \lim_{k \to \infty} F^k(R_0)$$
, where $R_0 = \{(x_1, x_2) : L_1(x_1) = L_2(x_2)\}$

is the maximal bisimulation relation between T_1 and T_2 .

 (x_1, x_3) (x_{1}, x_{4}) x_1, x_1 (x_1, x_2) (x_{1}, x_{5}) x_{2}, x_{1} (x_2, x_2) $(x_2, x_3)(x_2, x_4)$ (x_{2}, x_{5})

 $R_0 = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3), (x_2, x_5)\}$ $R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$

 $R_0 = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3), (x_2, x_5)\}$ $R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$

•
$$R_2 = F(R_1) = \{(x_1, x_1), (x_2, x_2), (x_2, x_3)\}$$

$$R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_2 = F(R_1) = \{(x_1, x_1), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_3 = F(R_2) = \{(x_1, x_1), (x_2, x_2)\}$$

$$R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_2 = F(R_1) = \{(x_1, x_1), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_3 = F(R_2) = \{(x_1, x_1), (x_2, x_2)\}$$

$$R_4 = F(R_3) = \{(x_2, x_2)\}$$

$$R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_2 = F(R_1) = \{(x_1, x_1), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_3 = F(R_2) = \{(x_1, x_1), (x_2, x_2)\}$$

$$P \quad R_4 = F(R_3) = \{(x_2, x_2)\}$$

•
$$R_5 = F(R_4) = \emptyset$$

 $R_0 = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3), (x_2, x_5)\}$

$$R_1 = F(R_0) = \{(x_1, x_1), (x_1, x_4), (x_2, x_2), (x_2, x_3)\}$$

•
$$R_2 = F(R_1) = \{(x_1, x_1), (x_2, x_2), (x_2, x_3)\}$$

$$P \quad R_3 = F(R_2) = \{(x_1, x_1), (x_2, x_2)\}$$

$$P \quad R_4 = F(R_3) = \{(x_2, x_2)\}$$

•
$$R_5 = F(R_4) = \emptyset$$

 $T_1 \ncong T_2!$

Comment on Bisimulation

- $T_1 \cong T_2$ iff each each $X_{0,i}$ is related to some $X_{0,j}$ in R^*
- Simulation implies trace inclusion, i.e.,

 $T_1 \leq T_2 \Rightarrow Trace(T_1) \subseteq Trace(T_2)$

• Bisimulation implies trace equivalence, i.e.,

 $T_1 \cong T_2 \Rightarrow Trace(T_1) = Trace(T_2)$

- The vice versa is not true in general
- What if we also want to match control inputs? Change the definitions of the operator to

 $\forall x'_1 \in Post(x_1, u), \exists x'_2 \in Post(x_2, u) \cdots$

Bisimulation on Itself

- For a single system *T*, we can compute the maximal bisimulation relation $\sim \subseteq X \times X$ between *T* and itself (by the fixed-point alg.)
- Note that such a relation ~ is always non-empty. Why? since a state should be equivalent to itself, i.e., the identity relation is included in ~
- Relation ~ is in fact an equivalent relation telling which states are equivalent in terms of both the current property and the future
- Therefore, we can aggregate equivalent states and treat them as a new state (the equivalent classes)
- In this way, we are able to abstract the system model without losing any information

Quotient-Based Abstraction

Let $T = (X, U, \rightarrow, X_0, AP, L)$ be an LTS and $\sim \subseteq X \times X$ be an equivalence relation on *X*. Then \sim induces a quotient transition system

 $T/_{\sim}=(X/_{\sim}, U, \rightarrow_{\sim}, X/_{\sim,0}, AP, L_{\sim})$

• $X/_{\sim}$ is the quotient space (the set of all equivalence classes) with $X/_{\sim,0} = \{ [x] \in 2^X : [x] \cap X_0 \neq \emptyset \}$

• for
$$X_1, X_2 \in X/_{\sim}$$
 and $u \in U$, we have
 $X_1 \stackrel{u}{\xrightarrow{\sim}} X_2 \Leftrightarrow \exists x_1 \in X_1, \exists x_2 \in X_2: x_1 \stackrel{u}{\rightarrow} x_2$

•
$$L/_{\sim}(x) = L(x)$$
 for all $x \in X$

Theorem

- for any $\sim \subseteq X \times X$, we have $T \leq T/_{\sim}$
- if $\sim \subseteq X \times X$ is a bisimulation relation for *T*, then $T \cong T/_{\sim}$

Example: Quotient System

- Consider equivalence relation shown by the colors
- Trivially, we have $T \leq T/_{\sim}$
- However, $T \cong T/_{\sim}$ since \sim is not a bisimulation (consider states 2&3)

Example: Quotient System

- Since $\sim \subseteq X \times X$ is a bisimulation relation on *T*
- This time we have $T \cong T/_{\sim}$

Under-Approx. v.s. Over-Approx.

- In $T/_{\sim}$, we have $X_1 \xrightarrow{u} X_2 \Leftrightarrow \exists x_1 \in X_1, \exists x_2 \in X_2: x_1 \xrightarrow{u} x_2$
- This is why $T \leq T/_{\sim}$ and we call this over-approximation
- What if we change it to $X_1 \xrightarrow{u} X_2 \Leftrightarrow \forall x_1 \in X_1, \exists x_2 \in X_2: x_1 \xrightarrow{u} x_2$
- Then we have $T/_{\sim} \leq T$ and we call this under-approximation
- They coincide when $\sim \subseteq X \times X$ is a bisimulation relation
- For an infinite-state system, there may not always exist a finite quotient; hence we need over/under-approximation
- Over-approximation is useful for checking safety as $Trace(T) \subseteq Trace(T/_{\sim})$
- Under-approx. is useful for checking reachability as $Trace(T/_{\sim}) \subseteq Trace(T)$

Example: Quotient System

- Over-approximation: with dashed lines, $T \leq T/_{\sim}$
- Under-approximation: without dashed lines, $T/_{\sim} \leq T$

Stage Summary

- Simulation means "no matter what you do, I can match it and preserve the ability of matching in the future"
- Two states are equivalent if they have both the same property and the same future behaviors
- Two systems are equivalent if they can simulate each other
- By aggregating equivalent states, one can build the quotient system that bisimulates the original system
- Bisimulation implies trace equivalent; hence preserves LT properties

Review of Last Lecture

- Two different models may be essentially equivalent
- $Trace(T_1) = Trace(T_2)$ is not fine enough for model equivalence
- Simulation: $T_1 \leq T_2$ means T_2 can "match" T_1
- Bisimulation: $T_1 \cong T_2$ means they can "match" each other
- The maximal bisimulation relation can be computed by fixed-point alg.
- An equivalence relation over X induces a quotient system $T/_{\sim}$
- If $\sim \subseteq X \times X$ is a bisimulation relation for *T*, then $T \cong T/_{\sim}$
- Remark: $T_1 \leq_R T_2$ and $T_2 \leq_{R'} T_1$ does not necessarily imply $T_1 \cong T_2$; they have to be the same relation, i.e., $R^{-1} = R'!$