Formal Properties




Deadlock

 Sequential programs may have terminal states

 For parallel systems, however, computations typically do not terminate
 Deadlock state: Post(x) = @; a system with no deadlock is called live

« Therefore, deadlocks are undesirable and mostly represent a design error.

« Atypical deadlock scenario occurs in the synchronization when components
mutually wait for each other to progress.

«  We assume mostly the systems is live; deadlock avoidance is another story.

You release the lock first Y
Once | have finished s
my task, you can confinue. (




Example: Dining Philosophers

« To take food, each philosopher needs two sticks

« A deadlock occurs when all philosophers possess
a single stick

« The problem is to design a protocol such that the
complete system is deadlock-free, i.e., at least one
philosopher can eat and think infinitely often.

« A fair solution may be required with each
philosopher being able to think and eat infinitely
often (freedom of individual starvation)

A possible solution is to make the sticks available for only one philosopher at a
time. It can be verified that this solution is deadlock- and starvation-free.



Linear-Time Property

Recall Trace(T) < (247)“ is the set of infinite sequence generated by T

A linear-time property P over AP is a subset of (2"”’)(‘) specifying the
traces that a transition system should exhibit

We say that system T satisfies P, denoted by T = P, if Trace(T) € P
“Linear” is the opposite of “branching” not “nonlinear”

LT property is on a specific infinite execution

R ONONGS



Safety & Invariant

Safety: bad things never happen < always good things

Invariant: some property should hold for all reachable state

An LT property P;,,, is an invariant if there is a propositional logic
formula & (called the invariant condition) over AP such that

Piny = {AgA14; - € (24P)*:Vi > 0,4; £ @}

Therefore, T E P, iff L(x) £ ® for all reachable states

Can be checked easily be a DFS or a BFS <.

Mutual exclusion property: ® = —crity V —crit, ./
Traffic light: ® = —wgreen v —walk ~



Safety

* Invariant is essentially a state-based safety property
* In general, safety may impose requirements on finite path fragments

 EX: Money can only be withdrawn from the ATM once a correct PIN has been
provided; this is not invariant but is still safety

An LT property Py, is a safety property if for all o € (24P)°\ Psafe
there exists a finite bad prefix @ of o such that

Psafe N {0' € (ZAP)w: o is a finite prefix of a’} =0

» AP = {red, yellow}
» red phase must be preceded immediately by a yellow phase

> Bad prefix: {yellow}@0{red}, {yellow}{yellow}{red}{red}



Liveness

- Safety says “something bad never happens”
« We also need liveness saying “something good will happen”

« Liveness should not constrain the finite behaviors, but require a certain
condition on the infinite behaviors.

« For example, certain events occur infinitely often.

An LT property Py, iS aliveness property if pref(Pjjye) = (2"”’)*

« pref(P;i,.) denotes the set of all finite prefix of Py,

+ (24P) denotes the set all of finite words over 24P




Example: Liveness

« Eventually: each process will eventually enter its critical section:

the set of all infinite words Ag4; - € (24P)” such that

(Hi > 0: crit1 € Al) A (Hi > 0: Critz € Al)

 Repeated eventually: each process will enter its critical section infinitely often
the set of all infinite words Ay4; - € (24P)” such that

(Vk = 0,3i = k: crit; € A;)) A (Vk =,3i = k: crit, € A;)

e Starvation freedom: each waiting process will eventually enter its critical section
the set of all infinite words AyA, - € (24P)® such that
(Vi >:waity € A; > (3k > i:crity € Ay)) A
(Vi >:wait, € A; = (3k > i:crit, € Ay))



Decomposition Theorem

Any LT property P can be decomposed as P = Pg,re N Pyjpe

safety and liveness property

(QAIP)w

safety properties _ -~ liveness properties

/__ - --- neither liveness
nor safety properties

Invariants ~

. P =(24P)" is the only property that is both safe and live

* In general, a property can be neither safe nor live

» Consider AP = {a} and P = first @ and then {a} infinitely often

» It can be decomposed as P = ¢(247)” n {o: {a} infinitely often in ¢}

Picture from the book of Baier and Katoen



Stage Summary

System having no deadlock will generate infinite sequences
Linear-time properties evaluate infinite sequences

Safety is a property that is violated in a finite horizon

Liveness is a property that does not care about what have done

In general, an LT property consists of both safety and liveness



Question

a

(
(b

If @ becomes valid, afterward b stays valid ad infinitum or until ¢ holds.

Between two neighboring occurrences of a, b always holds.

)
)
(¢c) Between two neighboring occurrences of a, b occurs more often than c.
) a A —=band b A —a are valid in alternation or until ¢ becomes valid.

(d

Question: For each property, determine if it is a safety or liveness or both or none.



Review of Last Lecture

« A dynamic system can be modeled as an LTS T = (X,U,—, Xy, AP, L)
« A system can generate infinite sequences with properties Trace(T)
- A (linear-time) property is a set of “good” infinite traces P c (24P )w
e TEPIif Trace(T) € P (nothing to do with actions)

« Some property can be violated in a finite horizon (safety)

 In general, a property can be decomposed as safety and liveness

« Large systems are obtained by compositionT=T; T, Q- Q T,
 Product composition is essentially synchronization

« A general form of synchronization can be writtenas T =T Qg T>,
where H € U4 X U, are pairs that should be synchronized



Bisimulation & Abstraction




Model Equivalence by Bisimulation

Motivations

« Different people may build different models for the same system

« Some models are complex but some are simple

« How to determine whether two models are describing the same thing?

« How to simplify a complex model to a simple but equivalent one?

Basic Ideas
 Model equivalence is captured by “bisimulation”

 One model is more “precise’” than the other if
“no matter what you do, | can do the same thing” (simulation)

« Two models are equivalent if they can simulate each other



Equivalence Relation

-
« arelation from set Ato set Bis aset of pairs~S AXB

« wewritea~bif (a,b) € ~
« arelation ~c Ax Aon Ais an equivalence relation if it satisfies:
> reflexivity: Va € A:a~a
» symmetry: Va,b € A, if a~b, then b~a
» transitivity: Va, b, € A, if a~b and b~c, then a~c
e an equivalent relation induces an equivalent class
A/.={[a] € 2%:a € A}, where [a] = {b € A:a ~ b}

.

« A={ab,cd, e}
u u g * ~={(a,a),(a,b),(b,a),(bb),
a b c d e (¢, ©), (c, ), (d, ©), (d, d), (e, )}
« A/.={{a b}, {c,d} {e}}
+ [a] = [b] = {a, b}, [c] = [d] = {c, d}, [¢] = {e}



Model Equivalence

» Trace(T{) = Trace(T,) but state x3 is T, seems to be different

« Trace(T,) = Trace(T3) but are they really equivalent?

Observations

« trace equivalence is not good enough to describe model equivalence
although it is good enough for LT properties

« we needs to look at the equivalence of states




State Equivalence

 What does two states are “equivalent” mean?
» they should have the same property (atomic propositions)

» they should have the same future behaviors

« Two systems are equivalent if their initial states are equivalent

 For asystem itself, we can aggregate equivalent states (abstraction)




Simulation Relation

4 ™
Let Ty and T, be two LTSs, where T; = (X;, U;, »i, X0, AP, L;). Then a

relation ~S X1 X X, is a simulation relation from T{ to T, if
* VX1 € Xo,1,3%02 € Xo2:X0,1 ~ X0,2
« forall x; ~ x5, It holds that
> Li(xq) = Ly (x3)
> If x; € Post(xy) then there exists x;, € Post(x;) with x; ~ x;

We say T, is simulated by T, or T, simulates T, denoted by T; < T,
If there exists a simulation relation from T{ to T,

> x9 ~ x9 implies
I /
o¥1 U2 Un 1 W2 u"n 0 n\ _ 0 n
Vx1 ?xl ? Txl, axz ?xz ;) ;)xz Ll(xl "‘xl) — Lz(xz "‘xz)



Example: Simulation Relation

 WehaveT;<T,

« Consider relation ~= {(xq1,x1), (x2,x5)} € X1 X X5

* Vxo,1 € Xo,1,3%02 € Xo2: X01 ~ Xo.2
« for all x; ~ x5, it holds that
> Li(xq1) = Ly(x32)
> If x; € Post(x,) then there exists x; € Post(x;) with x; ~ x,




Bisimulation Relation

¢ Let Ty and T, be two LTSs, where T; = (X;, U;, 6;, X¢ 3, AP, L;). Then A h
relation ~S X1 X X, is a bisimulation relation between T to T, if
* VX1 € Xo,1,3%02 € Xo2: X0,1 ~ X0,2
* VX2 € Xo,2,3%0,1 € Xo,1: X0,1 ~ X0,2
« forall x; ~ x5, It holds that
> Li(xq) = Ly (x3)
> if x; € Post(xq) then there exists x;, € Post(x;) with x; ~ x;
> if x, € Post(xy) then there exists x7 € Post(xy) with x; ~ x;
We say T, and T, are bisimilar, denoted by T; = T,, if there exists a
9 bisimulation relation between T and T, y

Remark: bisimulation is equivalent to
« ~C X, XX, is asimulation relation from T, to T,; and
- ~7lc X, x X, is a simulation relation from T, to T;.



Example: Bisimulation Relation

 WehaveT;=T;

« Consider relation ~= {(xl,xl), (xl,x4_), (xz,xz), (xz,xg)} C X]_ X X3

7~

* VXxo,1 € Xo,1,3%02 € Xo,2: X01 ~ Xo,2
* VXxo2 € Xo2,3%0,1 € Xo,1:X01 ~ Xo,2
« for all x; ~ x5, it holds that
> Li(xq1) = La(x2)
> if x7 € Post(x,) then there exists x; € Post(x;) with x; ~ x5

> if x5 € Post(x,) then there exists xj € Post(xy) with x; ~ x5




Algorithm for Computing Bisimulation

* Question: how to determine whether or not Ty = T,?

 Problem: bisimulation is a global property

a; a} a; aj

@w»@

a; a} a; (b}

@w»@



Fixed-Point Algorithm for Bisimulation

Question: how to determine whether or notT; = T,?

Idea: first relate all pairs and then iterative shrink the relation

Define operator
F: 2X1XX2 N 2X1XX2

by: for any R € X; X X,, we have (xq,x5) € F(R) if
* (x1,x2) ER
* Vx; € Post(xq),3x, € Post(xy): (x1,x3) ER
* Vx, € Post(x,),3x; € Post(x1): (x1,x3) ER

Then the fixed-point
R* == lim FX(R,), where Ry = {(x1,x2): L1(x1) = Ly(x3)}

k— oo

IS the maximal bisimulation relation between T; and T,.




Example: Fixed-Point Iteration




Example: Fixed-Point Iteration

@@@ * RO = {(xlixl)) (.X'1,X4_), (xz,xz), (xz,xg), (.X'Z,.X'5)}
QO
o




Example: Fixed-Point Iteration

1a}

o)

b}

T,

¢ RO = {(xl; xl)) (xlr .X'4_), (xZI xZ)t (xZI .X'3), (xZ; xS)}
@ @ * Ry =F(Rp) = {(x1,x1), (x1,x4), (x2,Xx2), (x2,Xx3)}
R
5




Example: Fixed-Point Iteration

1a}

Gl

' * RO = {(xl; xl)) (xlr .X'4_), (xZI xZ)l (xZI .X'3), (xZ' x5)}
@)@ ¢ Rl = F(RO) = {(.X'1,X1), (x11x4-): (XZ,Xz), (xZIxB)}

o © Ry =F(Ry) = {(x1, %), (X2, %2), (X2, %3))
R

o




Example: Fixed-Point Iteration

1a}

Gl

ROV
XXX

Ry = {(x1,x1), (x1, x4), (x2, X2), (X2, x3), (X2, X5)}
R1 = F(Ry) = {(x1,%1), (x1,x4), (x2, X2), (x2, x3)}
Ry = F(Ry) = {(x1,%1), (x2, x2), (x2, x3)}

R3 = F(Ry) = {(x1,x1), (x2,x2)}



Example: Fixed-Point Iteration

1a}

Gl

XXX
XXX

Ry = {(x1,x1), (x1, x4), (x2, X2), (X2, x3), (X2, X5)}
R1 = F(Ry) = {(x1,%1), (x1,x4), (x2, X2), (x2, x3)}
Ry = F(Ry) = {(x1,%1), (x2, x2), (x2, x3)}

R3 = F(Ry) = {(x1,x1), (x2,x2)}

Ry = F(R3) = {(x2,%2)}



Example: Fixed-Point Iteration

Ry = {(x1,x1), (x1, x4), (x2, X2), (X2, x3), (X2, X5)}
R1 = F(Ry) = {(x1,%1), (x1,x4), (x2, X2), (x2, x3)}
Ry = F(Ry) = {(x1,%1), (x2, x2), (x2, x3)}

R3 = F(Ry) = {(x1,x1), (x2,x2)}

Ry = F(R3) = {(x2,%3)}

Rs =F(Ry) =0



Example: Fixed-Point Iteration

Ry = {(x1,x1), (x1, x4), (x2, X2), (X2, x3), (X2, X5)}
R1 = F(Ry) = {(x1,%1), (x1,x4), (x2, X2), (x2, x3)}
Ry = F(Ry) = {(x1,%1), (x2, x2), (x2, x3)}

R3 = F(Ry) = {(x1,x1), (x2,x2)}

Ry = F(R3) = {(x2,%2)}

Rs =F(Ry) =0

T, 2 T,



Comment on Bisimulation

* T, =T, Iiff each each X, is related to some X in R”

« Simulation implies trace inclusion, i.e.,

T{<T, = Trace(T,) S Trace(T,)

« Bisimulation implies trace equivalence, i.e.,
T{ =T, = Trace(T{) = Trace(T,)

« Thevice versais not true in general

« What if we also want to match control inputs?
Change the definitions of the operator to

Vxj € Post(xq,u),3x5, € Post(xy,u) -



Bisimulation on Itself

For a single system T, we can compute the maximal bisimulation
relation ~C X x X between T and itself (by the fixed-point alg.)

Note that such arelation ~ is always non-empty. Why? since a state
should be equivalent to itself, i.e., the identity relation is included in ~

Relation ~ is in fact an equivalent relation telling which states are
equivalent in terms of both the current property and the future

Therefore, we can aggregate equivalent states and treat them as a
new state (the equivalent classes)

In this way, we are able to abstract the system model without losing
any information



Quotient-Based Abstraction

4 )
LetT = (X,U,—, Xy, AP,L) be an LTS and ~C X X X be an equivalence

relation on X. Then ~ induces a quotient transition system
T/.=X/.,U->_X/_oAP,L.)

« X/.is the quotient space (the set of all equivalence classes)
with X/ _ o= {[x] € 2%: [x] N X, + @}

- for Xy, X, €X/.and u e U, we have

u u
X1 ?Xz = Elx1 (S Xl,Ele € lexl — X9

S L/.(x)=L(x)forall x e X )

e ™
Theorem

« forany ~c XxX,wehaveT<T/.

« If ~€ X X Xis abisimulation relation for T,then T =T/ .
\ y,




Example: Quotient System

original system T guotient system T/ .

« Consider equivalence relation shown by the colors
 Trivially, we have T <T/.

« However, T 2 T/. since ~ is not a bisimulation (consider states 2&3)



Example: Quotient System

original system T guotient system T/ .

e Since ~C X X X Is abisimulation relationon T

e ThistimewehaveT =T/.



Under-Approx. v.s. Over-Approx.

« InT/.,we have Xl%Xz & dxq € X¢,3xy EXZ:xlixz

« Thisiswhy T <T/. and we call this over-approximation

« What if we change it to X4 %XZ & Vxq € Xq,3x3 € X5: X1 ixz
« Then wehave T/.< T and we call this under-approximation
« They coincide when ~C X x X is a bisimulation relation

* For an infinite-state system, there may not always exist a finite quotient;
hence we need over/under-approximation

« Over-approximation is useful for checking safety as Trace(T) € Trace(T/..)

« Under-approx. is useful for checking reachability as Trace(T/.) € Trace(T)



Example: Quotient System

original system T guotient system T/ .

 QOver-approximation: with dashed lines, T < T/.

 Under-approximation: without dashed lines, T/.<T



Stage Summary

- Simulation means “no matter what you do, | can match it and
preserve the ability of matching in the future”

« Two states are equivalent if they have both the same property and
the same future behaviors

 Two systems are equivalent if they can simulate each other

By aggregating equivalent states, one can build the quotient system
that bisimulates the original system

« Bisimulation implies trace equivalent; hence preserves LT properties



Review of Last Lecture

 Two different models may be essentially equivalent
 Trace(T{) = Trace(T,) is not fine enough for model equivalence
« Simulation: T; < T, means T, can “match” T,

 Bisimulation: T; = T, means they can “match” each other

« The maximal bisimulation relation can be computed by fixed-point alg.
 An equivalence relation over X induces a quotient system T/ .
« If ~c X XX is abisimulation relation for T,then T =T/.

* Remark: Ty <p T, and T, <,/ T, does not necessarily imply T; = T;
they have to be the same relation, i.e., R"1 = R’



