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1 Probability Space

Some Basic Knowledge about Set Theory

▶ A set A is finite if it has finite elements, i.e., A = {a1, a2, . . . , an}; otherwise, it is infinite.

▶ A set A is countable if it has a bijection to a subset of N, i.e., it can be “listed”; otherwise
it is uncountable.

▶ A finite set is always countable. If a set is countably infinite, then it is in the form of
A = {a1, a2, . . . , an, . . . }. Real numbers R or any interval [a, b] ⊆ R is uncountable.

▶ The power set of A is the collection of all its subsets, i.e., 2A = {B : B ⊆ A}.

Motivating Examples

▶ Example 1: Experiment with Finite Outcomes

– Consider a simple experiment: a coin is tossed twice.
– There are four possible outcomes: HH,HT, TH, TT

– We can talk about events like: A =“no H appears”, B =“T appears at least once”,
C=“T appears no less than H” ...

– Each of the above events has a probability: P (A) = 1
4
, P (B) = P (C) = 3

4
. Actually,

B and C are the same event.

▶ Example 2: Experiment with Countably Infinite Outcomes

– Consider another experiment: keep tossing a coin until H appears.
– There are countably infinite possible outcomes: H,TH, TTH, . . .

– We can talk about events like:
Ak =“H appears exactly in the kth toss” or Bk =“H appears in the first k tosses”.

– Then we have probability as follows:
P (A1) =

1
2
, P (A2) =

1
4
, P (A3) =

1
8
, . . . ,→ 0, which gives

∑∞
k=1 P (Ak) = 1; and

P (B1) =
1
2
, P (B2) =

3
4
, P (B3) =

7
8
, . . . ,→ 1.

▶ Example 3: Experiment with Uncountable Outcomes

– Consider the experiment: randomly take a single point in a disk of unit radius.
– There are uncountably many possible outcomes: all points in the unit disk.
– We can talk about events like:

A =“the point is on the boundary”, B =“the distance to 0 is between 0.3 and 0.5”.
– Then we can assign probability: P (A) = 0 and P (B) = 0.25− 0.09 = 0.16.
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An Informal Summary

We can conclude the followings from the above example:

▶ The most basic thing in an experiment is the sample space Ω, which is the set of all
outcomes. For example, Ω = {HH,HT, TH, TT} for Example 1, Ω = {H,TH, TTH, . . . }
for Example 2 and Ω = {(x, y) ∈ R2 : x2 + y2 ≤ 1} for Example 3.

▶ An event is a subset of the sample space Ω, e.g., A = {HT, TH, TT}, B =
{H,TH, TTH, TTTH} or C = {(x, y) ∈ R2 : x2 + y2 = 1}.

▶ An event A occurs if the outcome ω of the experiment is in A, i.e., ω ∈ A.

▶ A probability function that assigns each event a probability.

What We Need for Events

▶ If A and B are events, then we can think A ∪B, A ∩ B and Ac as new events
“A or B”, “A and B” and “no A”, respectively.

▶ Events A and B are called disjoint if A ∩ B = ∅.

▶ The empty set ∅ is the impossible event and the set Ω is the certain event.

▶ However, not an arbitrary subset of the sample space needs to be an event; we only want
consider those events in whose occurrences we may be interested. In fact, we may have
problem if we do not define events carefully!

▶ Let F be the collection of all events. Apparently we have F ⊆ 2Ω, but what else do we
need? The answer is σ-field defined as follows:

Definition: σ-Field

Let F ⊆ 2Ω be a set of subsets of Ω. We say that F is a σ-field on Ω if it satisfies the
following conditions:

1. ∅ ∈ F ;

2. if A ∈ F , then Ac ∈ F ;

3. if A1, A2, · · · ∈ F , then
∪∞

i=1 Ai ∈ F .

• For example, for any Ω, F = {∅,Ω},F = {∅, A,Ac,Ω} and F = 2Ω are all σ-fields.

• For σ-field F , if A,B ∈ F , then A ∩B,A \B ∈ F .
Proof: A ∩ B = (Ac ∪ Bc)c and A \B = A ∩ Bc.

• If F1,F2 are σ-fields, then F1 ∩ F2 is also a σ-field. (Try to proof as a homework)

• However, F1 ∪ F2 may not be a σ-field. Consider F1 = {∅, A,Ac,Ω},F2 = {∅, B,Bc,Ω}.

• Question: How F looks like if Ω = R or Ω = [a, b]?
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What We Need for Probability

▶ Suppose that we perform the experiment for N times and denote by N(A) the number
of times event A occurs, then we have P (A) ≈ N(A)

N
.

▶ Clearly N(∅) = 0 and N(Ω) = N . Furthermore, if A and B are disjoint events, then
N(A ∪ B) = N(A) ∪N(B). This suggests that P should be countably additive.

Definition: Probability Measure and Probability Space

Let Ω be a sample space and F ⊆ 2Ω be a σ-filed on Ω. A function P : F → [0, 1] is
said to be a probability measure on (Ω,F) if it satisfies the following conditions:

1. P (∅) = 0, P (Ω) = 1;
2. for any events A1, A2, · · · ∈ F such that ∀i ̸= j : Ai ∩ Aj = ∅, we have

P

(
∞∪
i=1

Ai

)
=

∞∑
i=1

P (Ai)

Then 3-tuple (Ω,F , P ) is said to be a probability space if F ⊆ 2Ω is a σ-filed on Ω
and P is a probability measure on (Ω,F).

• Remark (Atom)
Sometimes it is not convenient to list all events in F . But since F is a σ-field, if A,B ∈ F ,
then we must have A ∪ B ∈ F . Therefore, it suffices to list A and B. Given (Ω,F , P ),
we say A ∈ F is an atom if P (A) > 0 and ∀B ⊂ A : P (B) < P (A) ⇒ P (B) = 0. For
example, for F = {∅,Ω, A,B,C,A ∪B,B ∪ C,A ∪ C}, atoms are A,B and C.

Properties of Probability Space

▶ For any A ∈ F , we have P (Ac) = 1− P (A).
Proof: (i) P (A ∪ Ac) = P (Ω) = 1; (ii) P (A ∪ Ac) = P (A) + P (Ac) since A ∩ Ac = ∅.

▶ If A1, A2 ∈ F and A1 ⊆ A2, then P (A2) = P (A1) + P (A2 \ A1) ≥ P (A1).
Proof: Because A1 and A2 \ A1 are disjoint.

▶ For A1, A2 ∈ F , we have P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2).
Proof: P (A1∪A2) = P (A1∪(A2\A1)) = P (A1)+P (A2\A1) = P (A1)+P (A2\(A1∩A2))

▶ For A1, A2 . . . , An ∈ F , we have

P

(
n∪

i=1

Ai

)
=
∑
i

P (Ai)−
∑
i<j

P (Ai∩Aj)+
∑

i<j<k

P (Ai∩Aj∩Ak)−· · ·+(−1)n+1P (A1∩A2∩· · ·∩An)

Proof: Leave as a homework (Hint: by induction)

▶ For any sequence of events A1, A2, · · · ∈ F , we have

P

(
∞∪
k=1

Ak

)
= P

(
lim
n→∞

n∪
k=1

Ak

)
= lim

n→∞
P

(
n∪

k=1

Ak

)
; the same for ∩
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Conditional Probability

▶ Suppose that we perform an experiment N times. Then the conditional probability
for “if B occurs, then the probability of A is p” can be counted as N(A∩B)

N(B)
= N(A∩B)/N

N(B)/N
≈

P (A∩B)
P (B)

. This motivates the define conditional probability.

Definition: Conditional Probability

If P (B) > 0, then the conditional probability that A occurs given that B occurs is

P (A | B) =
P (A ∩B)

P (B)

P (A) is the prior probability of A; P (A | B) is the posterior probability of A given B.

• Law of Total Probability & Bayes’ Rule
Let A1∪̇A2∪̇ . . . ∪̇An = Ω be a partition of Ω and Ai ∈ F . Then for any B ∈ F , we have

P (B) = P (B ∩Ω) = P (B ∩ (A1 ∪A2 ∪ . . . An)) =
n∑

i=1

P (B ∩Ai) =
n∑

i=1

P (B | Ai)P (Ai)

This also leads to the well-known the Bayes’ Rule

P (Ai | B) =
P (B | Ai)P (Ai)∑n
i=1 P (B | Ai)P (Ai)

or P (A | B) =
P (B | A)P (A)

P (B | A)P (A) + P (B | Ac)P (Ac)

Independence

▶ In general P (A | B) changes when B changes unless A does not depend on B. Let us
consider the follows equivalence

P (A | B) = P (A | Bc) ⇔
P (A ∩B)

P (B)
=

P (A ∩Bc)

P (Bc)
⇔

P (A ∩B)

P (B)
=

P (A)− P (A ∩B)

1− P (B)
⇔ P (A ∩B) = P (A)P (B)

Definition: Independence

We say two events A,B ∈ F are (statistically) independent if P (A∩B) = P (A)P (B).

A set of events A1, A2, . . . , An ∈ F are said to be mutually independent if

∀{k1, k2, . . . , kl} ⊆ {1, 2, . . . , n} : P (Ak1 ∩ Ak2 ∩ · · · ∩ Akl) =
l∏

i=1

P (Aki)

• Remark: Pairwise independence does not imply mutual independence
Let Ω = {1, 2, . . . , 7},F = 2Ω, P ({1}) = P ({2}) = · · · = P ({6}) = 1

8
, P ({7}) = 1

4
.

Consider A = {1, 2, 7}, B = {3, 4, 7}, C = {5, 6, 7}, so P (A) = P (B) = P (C) = 1
2
.

However, these three events are
(1) pairwise independent, since P (A ∩B) = P (B ∩ C) = P (A ∩ C) = 1

4
;

(2) not mutually independent, since P (A ∩ B ∩ C) = 1
4
̸= P (A)P (B)P (C) = 1

8
.
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Examples for Conditional Probability & Independence

▶ Example 1
There are two kinds of COVID-19 vaccines distributed randomly:

– 70% are the α-vaccines and 30% are the β-vaccines.
– The effectiveness of the α-vaccine is 90% and that of the β-vaccine is 50%.

The experiment is that a person takes a vaccine randomly and waits for the effectiveness.

Then the sample space is Ω = {C+, C−, U+, U−}.

Let A = {C+, U+} be the event that he becomes immune and B = {U+, U−} be the
event that he takes the β-vaccine. Then we have

P (A) = P (A | B)P (B) + P (A | Bc)P (Bc) = 0.5× 0.3 + 0.9× 0.7 = 0.78

If the vaccine fails, then the probability that he took the β-vaccine is

P (B | Ac) =
P (B ∩ Ac)

P (Ac)
=

0.3× 0.5

1− 0.78
= 68.2%

Since P (A ∩ B) = 0.5 and P (A) = 0.78, events A and B are clearly dependent.

▶ Example 2
Choose a card randomly from a pack of 52 cards. Then we have

P (A) =
4

52
, P (♣) =

1

4
and P (♣A) =

1

52

So we conclude that the suit of the choose card is independent of its rank.
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