1 Probability Space

Some Basic Knowledge about Set Theory

- A set A is finite if it has finite elements, i.e., $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$; otherwise, it is infinite.
- A set A is countable if it has a bijection to a subset of \mathbb{N}, i.e., it can be "listed"; otherwise it is uncountable.
- A finite set is always countable. If a set is countably infinite, then it is in the form of $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$. Real numbers \mathbb{R} or any interval $[a, b] \subseteq \mathbb{R}$ is uncountable.
- The power set of A is the collection of all its subsets, i.e., $2^{A}=\{B: B \subseteq A\}$.

Motivating Examples

- Example 1: Experiment with Finite Outcomes
- Consider a simple experiment: a coin is tossed twice.
- There are four possible outcomes: $H H, H T, T H, T T$
- We can talk about events like: $A=$ "no H appears", $B=$ " T appears at least once", $C=" T$ appears no less than H "...
- Each of the above events has a probability: $P(A)=\frac{1}{4}, P(B)=P(C)=\frac{3}{4}$. Actually, B and C are the same event.
- Example 2: Experiment with Countably Infinite Outcomes
- Consider another experiment: keep tossing a coin until H appears.
- There are countably infinite possible outcomes: $H, T H, T T H, \ldots$
- We can talk about events like:
$A_{k}=" H$ appears exactly in the k th toss" or $B_{k}=" H$ appears in the first k tosses".
- Then we have probability as follows:
$P\left(A_{1}\right)=\frac{1}{2}, P\left(A_{2}\right)=\frac{1}{4}, P\left(A_{3}\right)=\frac{1}{8}, \ldots, \rightarrow 0$, which gives $\sum_{k=1}^{\infty} P\left(A_{k}\right)=1$; and $P\left(B_{1}\right)=\frac{1}{2}, P\left(B_{2}\right)=\frac{3}{4}, P\left(B_{3}\right)=\frac{7}{8}, \ldots, \rightarrow 1$.

- Example 3: Experiment with Uncountable Outcomes

- Consider the experiment: randomly take a single point in a disk of unit radius.
- There are uncountably many possible outcomes: all points in the unit disk.
- We can talk about events like:
$A=$ "the point is on the boundary", $B=$ "the distance to $\mathbf{0}$ is between 0.3 and 0.5 ".
- Then we can assign probability: $P(A)=0$ and $P(B)=0.25-0.09=0.16$.

An Informal Summary

We can conclude the followings from the above example:

- The most basic thing in an experiment is the sample space Ω, which is the set of all outcomes. For example, $\Omega=\{H H, H T, T H, T T\}$ for Example $1, \Omega=\{H, T H, T T H, \ldots\}$ for Example 2 and $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ for Example 3.
- An event is a subset of the sample space Ω, e.g., $A=\{H T, T H, T T\}, B=$ $\{H, T H, T T H, T T T H\}$ or $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$.
- An event A occurs if the outcome ω of the experiment is in A, i.e., $\omega \in A$.
- A probability function that assigns each event a probability.

What We Need for Events

- If A and B are events, then we can think $A \cup B, A \cap B$ and A^{c} as new events " A or B ", " A and B " and "no A ", respectively.
- Events A and B are called disjoint if $A \cap B=\emptyset$.
- The empty set \emptyset is the impossible event and the set Ω is the certain event.
- However, not an arbitrary subset of the sample space needs to be an event; we only want consider those events in whose occurrences we may be interested. In fact, we may have problem if we do not define events carefully!
- Let \mathcal{F} be the collection of all events. Apparently we have $\mathcal{F} \subseteq 2^{\Omega}$, but what else do we need? The answer is σ-field defined as follows:

Definition: σ-Field

Let $\mathcal{F} \subseteq 2^{\Omega}$ be a set of subsets of Ω. We say that \mathcal{F} is a σ-field on Ω if it satisfies the following conditions:

1. $\emptyset \in \mathcal{F}$;
2. if $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
3. if $A_{1}, A_{2}, \cdots \in \mathcal{F}$, then $\bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$.

- For example, for any $\Omega, \mathcal{F}=\{\emptyset, \Omega\}, \mathcal{F}=\left\{\emptyset, A, A^{c}, \Omega\right\}$ and $\mathcal{F}=2^{\Omega}$ are all σ-fields.
- For σ-field \mathcal{F}, if $A, B \in \mathcal{F}$, then $A \cap B, A \backslash B \in \mathcal{F}$.

Proof: $A \cap B=\left(A^{c} \cup B^{c}\right)^{c}$ and $A \backslash B=A \cap B^{c}$.

- If $\mathcal{F}_{1}, \mathcal{F}_{2}$ are σ-fields, then $\mathcal{F}_{1} \cap \mathcal{F}_{2}$ is also a σ-field. (Try to proof as a homework)
- However, $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ may not be a σ-field. Consider $\mathcal{F}_{1}=\left\{\emptyset, A, A^{c}, \Omega\right\}, \mathcal{F}_{2}=\left\{\emptyset, B, B^{c}, \Omega\right\}$.
- Question: How \mathcal{F} looks like if $\Omega=\mathbb{R}$ or $\Omega=[a, b]$?

What We Need for Probability

- Suppose that we perform the experiment for N times and denote by $N(A)$ the number of times event A occurs, then we have $P(A) \approx \frac{N(A)}{N}$.
- Clearly $N(\emptyset)=0$ and $N(\Omega)=N$. Furthermore, if A and B are disjoint events, then $N(A \cup B)=N(A) \cup N(B)$. This suggests that P should be countably additive.

Definition: Probability Measure and Probability Space

Let Ω be a sample space and $\mathcal{F} \subseteq 2^{\Omega}$ be a σ-filed on Ω. A function $P: \mathcal{F} \rightarrow[0,1]$ is said to be a probability measure on (Ω, \mathcal{F}) if it satisfies the following conditions:

1. $P(\emptyset)=0, P(\Omega)=1 ;$
2. for any events $A_{1}, A_{2}, \cdots \in \mathcal{F}$ such that $\forall i \neq j: A_{i} \cap A_{j}=\emptyset$, we have

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Then 3 -tuple (Ω, \mathcal{F}, P) is said to be a probability space if $\mathcal{F} \subseteq 2^{\Omega}$ is a σ-filed on Ω and P is a probability measure on (Ω, \mathcal{F}).

- Remark (Atom)

Sometimes it is not convenient to list all events in \mathcal{F}. But since \mathcal{F} is a σ-field, if $A, B \in \mathcal{F}$, then we must have $A \cup B \in \mathcal{F}$. Therefore, it suffices to list A and B. Given (Ω, \mathcal{F}, P), we say $A \in \mathcal{F}$ is an atom if $P(A)>0$ and $\forall B \subset A: P(B)<P(A) \Rightarrow P(B)=0$. For example, for $\mathcal{F}=\{\emptyset, \Omega, A, B, C, A \cup B, B \cup C, A \cup C\}$, atoms are A, B and C.

Properties of Probability Space

- For any $A \in \mathcal{F}$, we have $P\left(A^{c}\right)=1-P(A)$.

Proof: (i) $P\left(A \cup A^{c}\right)=P(\Omega)=1$; (ii) $P\left(A \cup A^{c}\right)=P(A)+P\left(A^{c}\right)$ since $A \cap A^{c}=\emptyset$.

- If $A_{1}, A_{2} \in \mathcal{F}$ and $A_{1} \subseteq A_{2}$, then $P\left(A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2} \backslash A_{1}\right) \geq P\left(A_{1}\right)$.

Proof: Because A_{1} and $A_{2} \backslash A_{1}$ are disjoint.

- For $A_{1}, A_{2} \in \mathcal{F}$, we have $P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right)$.

Proof: $P\left(A_{1} \cup A_{2}\right)=P\left(A_{1} \cup\left(A_{2} \backslash A_{1}\right)\right)=P\left(A_{1}\right)+P\left(A_{2} \backslash A_{1}\right)=P\left(A_{1}\right)+P\left(A_{2} \backslash\left(A_{1} \cap A_{2}\right)\right)$

- For $A_{1}, A_{2} \ldots, A_{n} \in \mathcal{F}$, we have
$P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots+(-1)^{n+1} P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)$
Proof: Leave as a homework (Hint: by induction)
- For any sequence of events $A_{1}, A_{2}, \cdots \in \mathcal{F}$, we have

$$
P\left(\bigcup_{k=1}^{\infty} A_{k}\right)=P\left(\lim _{n \rightarrow \infty} \bigcup_{k=1}^{n} A_{k}\right)=\lim _{n \rightarrow \infty} P\left(\bigcup_{k=1}^{n} A_{k}\right) \text {; the same for } \cap
$$

Conditional Probability

- Suppose that we perform an experiment N times. Then the conditional probability for "if B occurs, then the probability of A is p " can be counted as $\frac{N(A \cap B)}{N(B)}=\frac{N(A \cap B) / N}{N(B) / N} \approx$ $\frac{P(A \cap B)}{P(B)}$. This motivates the define conditional probability.

Definition: Conditional Probability

If $P(B)>0$, then the conditional probability that A occurs given that B occurs is

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$P(A)$ is the prior probability of $A ; P(A \mid B)$ is the posterior probability of A given B.

- Law of Total Probability \& Bayes' Rule

Let $A_{1} \dot{\cup} A_{2} \dot{\cup} \ldots \dot{\cup} A_{n}=\Omega$ be a partition of Ω and $A_{i} \in \mathcal{F}$. Then for any $B \in \mathcal{F}$, we have

$$
P(B)=P(B \cap \Omega)=P\left(B \cap\left(A_{1} \cup A_{2} \cup \ldots A_{n}\right)\right)=\sum_{i=1}^{n} P\left(B \cap A_{i}\right)=\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)
$$

This also leads to the well-known the Bayes' Rule

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{i=1}^{n} P\left(B \mid A_{i}\right) P\left(A_{i}\right)} \quad \text { or } \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

Independence

- In general $P(A \mid B)$ changes when B changes unless A does not depend on B. Let us consider the follows equivalence

$$
P(A \mid B)=P\left(A \mid B^{c}\right) \Leftrightarrow \frac{P(A \cap B)}{P(B)}=\frac{P\left(A \cap B^{c}\right)}{P\left(B^{c}\right)} \Leftrightarrow \frac{P(A \cap B)}{P(B)}=\frac{P(A)-P(A \cap B)}{1-P(B)} \Leftrightarrow P(A \cap B)=P(A) P(B)
$$

Definition: Independence

We say two events $A, B \in \mathcal{F}$ are (statistically) independent if $P(A \cap B)=P(A) P(B)$.
A set of events $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$ are said to be mutually independent if

$$
\forall\left\{k_{1}, k_{2}, \ldots, k_{l}\right\} \subseteq\{1,2, \ldots, n\}: P\left(A_{k_{1}} \cap A_{k_{2}} \cap \cdots \cap A_{k_{l}}\right)=\prod_{i=1}^{l} P\left(A_{k_{i}}\right)
$$

- Remark: Pairwise independence does not imply mutual independence

Let $\Omega=\{1,2, \ldots, 7\}, \mathcal{F}=2^{\Omega}, P(\{1\})=P(\{2\})=\cdots=P(\{6\})=\frac{1}{8}, P(\{7\})=\frac{1}{4}$.
Consider $A=\{1,2,7\}, B=\{3,4,7\}, C=\{5,6,7\}$, so $P(A)=P(B)=P(C)=\frac{1}{2}$. However, these three events are
(1) pairwise independent, since $P(A \cap B)=P(B \cap C)=P(A \cap C)=\frac{1}{4}$;
(2) not mutually independent, since $P(A \cap B \cap C)=\frac{1}{4} \neq P(A) P(B) P(C)=\frac{1}{8}$.

Examples for Conditional Probability \& Independence

- Example 1

There are two kinds of COVID-19 vaccines distributed randomly:

- 70% are the α-vaccines and 30% are the β-vaccines.
- The effectiveness of the α-vaccine is 90% and that of the β-vaccine is 50%.

The experiment is that a person takes a vaccine randomly and waits for the effectiveness.

Then the sample space is $\Omega=\{C+, C-, U+, U-\}$.
Let $A=\{C+, U+\}$ be the event that he becomes immune and $B=\{U+, U-\}$ be the event that he takes the β-vaccine. Then we have

$$
P(A)=P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)=0.5 \times 0.3+0.9 \times 0.7=0.78
$$

If the vaccine fails, then the probability that he took the β-vaccine is

$$
P\left(B \mid A^{c}\right)=\frac{P\left(B \cap A^{c}\right)}{P\left(A^{c}\right)}=\frac{0.3 \times 0.5}{1-0.78}=68.2 \%
$$

Since $P(A \cap B)=0.5$ and $P(A)=0.78$, events A and B are clearly dependent.

- Example 2

Choose a card randomly from a pack of 52 cards. Then we have

$$
P(\mathrm{~A})=\frac{4}{52}, \quad P(\boldsymbol{\rho})=\frac{1}{4} \quad \text { and } \quad P(\boldsymbol{A})=\frac{1}{52}
$$

So we conclude that the suit of the choose card is independent of its rank.

