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11 Stochastic Systems and Controlled Markov Chains
Stochastic System Model

▶ The dynamic behavior of a (discrete-time) deterministic system is usually modeled by
an equation of the form xt+1 = ft(xt, ut), t = 0, 1, 2, . . . , where xt ∈ Rn is the state and
ut ∈ Rm is the input at time t. Usually there is an output yt ∈ Rp modeled by the
equation yt = ht(xt), t = 0, 1, 2, . . . .

▶ An obvious but important property of deterministic system is that the current state xt and
the input sequence ut, ut+1, . . . , ut+m determine the state xt+m independently of the past
values of state x0, . . . , xt−1 and input u0, . . . , ut−1, i.e., xt+m+1 = ft+m+1,t(xt, ut, . . . , ut+m).

▶ In practice, a system may have uncertainty, including noise for the dynamic, noise for
the observation and uncertainty in the initial condition. Therefore, a stochastic system
model is an equation of the form

Xt+1 = ft(Xt, Ut,Wt), Yt = ht(Xt, Vt), t = 0, 1, 2, . . .

▶ To make the stochastic system concrete, we need to specify
1. the dynamic equation ft and the observation equation ht for each t ≥ 0, and
2. the joint probability distribution of the primitive/basic random variables

X0,W0,W1, . . . , V0, V1, . . .

where X0 is the initial state, W0,W1, . . . are the input disturbances, and V0, V1, . . .
are the measurement noise. Usually, we assume they are mutually independent.

▶ Suppose that u0, u1, . . . are specified deterministic sequence of inputs. Then we have

X1 := f1(X0, u0,W0), X2 = f2(f1(X0, u0,W0), u1,W1), . . .

Therefore, Xt+1 is a random variable depends upon the input sequence u0:t = (u0, . . . , ut)
as well as the basic random variables X0,W0, . . . ,Wt. We call the stochastic process {Xt}
the state process. Similarly, we have the observation process {Yt}.

▶ Now, it remains to describe the control/action process {Ut}. In general, {Ut} is deter-
mined by a control strategy/control law/decision strategy

g = (g0, g1, . . . , gt, . . . ), where Ut = gt(Y0:t, U0:t−1)

Therefore, given a control strategy g, we can completely determine the state process {Xg
t }

and the observation process {Y g
t } by

Xg
1 =f0(X0, U0,W0) = f0(X0, g0(Y0),W0) = f0(X0, g0(h0(X0, V0)),W0) = f̃ g

0 (X0, V0,W0)

Y g
1 =h1(X1, V1) = h1(f̃0(X0, V0,W0), V1) = h̃g

1(X0, V0,W0, V1)

Xg
2 =f1(X1, U1,W1) = f̃ g

1 (X0,W0,W1, V0, V1)

Y g
2 =h̃g

2(X0,W0,W1, V0, V1, V2)

Therefore, we conclude that Xg
t = f̃ g

t−1(X0,W0,t−1, V0:t−1) and Y g
t = f̃ g

t (X0,W0,t−1, V0:t).
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Controlled Markov Chain

▶ For a stochastic system, the state-space is Rn in general. Recall that in finite Markov
chain, we assume a finite state-space S = {0, 1, . . . , I}. Furthermore, we assume process
{Xt} satisfies the Markov property, i.e.,

∀t ≥ 0,∀B ∈ B(Rn) : P (Xt+1 ∈ B | Xt = xt, . . . , X0 = x0) = P (Xt+1 ∈ B | Xt = xt)

Then under the time-homogeneous assumption, we can define the the matrix of transition
probability (MOTP) P = [Pij]i,j∈S, where Pij = P (Xt+1 = j | Xt = i). If we define the
state-distribution vector

πt = (πt(0), πt(1), . . . , πt(I)), where πt(i) = P (Xt = i)

Then the CK-Equation tells that that πt+1 = πtP.

▶ In a Markov chain, the MOTP P is invariant. In a controlled Markov chain (also
called Markov decision process), we assume that the MOTP depends on the control
action. Assume the action space U is finite, then for each u ∈ U , P(u) = [Pij(u)]i,j∈S is a
MOTP, where

Pij(u) = P (Xt+1 = j | Xt = i, ut = u)

▶ Hereafter, we assume the case of perfect observation, i.e., Yt = Xt,∀t. Then a control
strategy g = (g0, g1, . . . , gt, . . . ), in general, is in the form of

Ut = gt(X0:t, U0:t−1) = g̃t(X0:t)

Therefore, when g is fixed, we have the state process under control {Xg
t } defined by

P (Xt+1 = j | Xt = i, Ut = u) = P (Xt+1 = j | Xt = i, Ut = g̃t(X0:t) = u)

Compared with the general model of stochastic system, we do not need input disturbance
Wt because this information has been captured by the MOTP P(u).

▶ Note that, the above general form of control policy is both history dependent and time-
variant. We say a control strategy g = (g0, g1, . . . , gt, . . . ) is

– Markov if Ut = gt(Xt),∀t ≥ 0; and
– stationary if g0 = g1 = g2 = · · · .

Example of Controlled Markov Chain

▶ Consider a machine whose condition at time t is described by the state Xt which can take
the values 1 or 2 meaning it is in an operational or failed condition, respectively. If Xt = 1,
the there is a probability q > 0 to fail in the next period. Also, a failed machine continues
to remain failed. Then {Xt} is a Markov chain whose MOTP is P =

(
1− q q
0 1

)
.

▶ We now introduce two control actions: u1
k is the intensity of machine use at time t taking

values 0, 1 or 2, and u2
t is the intensity of machine maintenance effort taking values 0 or

1. The effects of these two control actions, intensity of machine use and maintenance, can
be modeled as a controlled MOTP P(u1

t , u
2
t ) =

(
1− q1(u

1
t ) + q2(u

2
t ) q1(u

1
t )− q2(u

2
t )

q2(u
2
t ) 1− q2(u

2
t )

)
.
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Finite Horizon Problem

▶ Given a controlled Markov chain, a Markov policy g determines the state process {Xk}
and the control process {Ut = gt(Xt)}. Clearly, different policies will lead to different
processes and one is interested in finding the best or optimal policy.

▶ To this end, one needs to compare different policies. This is done by specifying a cost
function, which is a sequence of real valued functions of the state and control,

ct(i, u), i ∈ S = {1, . . . , I}, u ∈ U , t ≥ 0

The interpretation is that ct(i, u) is the cost to be paid if at time t, Xt = i and Ut = u.

▶ The cost incurred by g up to the time horizon T is
∑T

t=0 ct(Xt, Ut). Note that this cost
is a random variable because Xt and Ut are. Then by fixing a Markov policy (MP)
g, this cost is just a random variable of the state process {Xt} and the expected total
cost of MP g is

Jg = Eg

(
T∑
t=0

ct(Xt, Ut)

)
= Eg

(
T∑
t=0

ct(Xt, gt(Xt))

)

Infinite Horizon Problem

▶ Note that the time horizon above is finite. In some applications, one is interested in the
infinite horizon when T → ∞. For this case, the above expected total cost usually is
meaningless because one can get Jg = ∞ for every g. There are two ways to treat the
infinite horizon problem.

▶ One approach is to consider the expected discounted cost

Jg = Eg

(
∞∑
t=0

βtct(Xt, Ut)

)

where 0 < β < 1 is a discount factor. Therefore, if ct is bounded, then Jg is finite. Since
the cost incurred at time t is weighted by βt, present costs are more important than future
costs. For example, in an economic context, β = (1 + r)−1, where r > 0 is the interest
rate.

▶ Another approach is to consider the average cost per unit time

Jg = lim
T→∞

1

T + 1
Eg

(
T∑
t=0

ct(Xt, gt(Xt))

)

▶ For the infinite horizon case, in addition to the assumption that P(u) is time-invariant,
hereafter, we also assume that the cost function ct is time-invariant. Furthermore, we
only consider stationary Markov policy g = (g, g, . . . ). Then by fixing the a stationary
MP g, the controlled Markov chain becomes a standard (autonomous) Markov chain Pg

defined by Pg
i,j = Pi,j(g(i)) = P (j | i, g(i)).
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Computation of Finite Horizon Cost

▶ Method 1: Forward Computation
As we mentioned earlier, for the case of finite horizon, we assume Markov policy g. One
can show that the state process {Xg

t } is then a (non-time-homogeneous) Markov chain,
where the one-step MOTP at time t is Pg

t , where [Pg
t ]i,j∈S = P (j | i, gt(i)). Its m-step

MOTP at time t is Pg
t · · ·P

g
t+m−1. Therefore, the probability distribution satisfies

πg
t+m = πg

tP
g
t · · ·P

g
t+m−1, where πg

t = (πg
t (0), . . . , π

g
t (I)) and πg

t (i) = P (Xg
t = i)

Based on the above, analysis, we can easily write cost Jg in terms of the MOTP Pg
t as:

Jg=Eg

(
T∑
t=0

ct(Xt, gt(Xt))

)
=

T∑
t=0

∑
i∈S

πg
t (i)ct(i, gt(i))=

T∑
t=0

π0

(
Pg
0 · · ·P

g
t−1

)ct(0, gt(0))
...

ct(I, gt(I))


︸ ︷︷ ︸

=:cgt

▶ Method 2: Backward Computation
Actually, it is more insightful to compute Jg by backward recursion. To this end, we
define the expected cost incurred during t, . . . , T when Xt = i, i.e.,

V g
t (i) = Eg

(
T∑
l=t

cl(Xl, gl(Xl)) | Xt = i

)
⇒ Jg =

∑
i∈S

π0(i)V
g
0 (i)

The functions V g
t (i) can be calculated by backward recursion as follows

V g
t (i) =Eg

(
T∑
l=t

cl(Xl, gl(Xl)) | Xt = i

)

=ct(i, gt(i)) + Eg

(
T∑

l=t+1

cl(Xl, gl(Xl)) | Xt = i

)
E(X|Y )=E(E(X|Y,Z)|Y )

= ct(i, gt(i)) + Eg

(
Eg

(
T∑

l=t+1

cl(Xl, gl(Xl)) | Xt+1, Xt = i

)
| Xi = i

)
Markov property

= ct(i, gt(i)) + Eg

(
Eg

(
T∑

l=t+1

cl(Xl, gl(Xl)) | Xt+1

)
| Xi = i

)
=ct(i, gt(i)) + Eg

(
V g
t+1(Xt+1) | Xi = i

)
=ct(i, gt(i)) +

∑
j∈S

P (j | i, gt(i))V g
t+1(j)

Note the terminal condition is V g
T (i) = cT (i, gT (i)). Put into the vector form, we have

V g
T = cgT

V g
t = cgt + Pg

tV
g
t+1

Jg = π0V
g
0

, where V g
t =

V g
t (0)
...

V g
t (I)

 and cgt =

ct(0, gt(0))
...

ct(I, gt(I))
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Computation of Infinite Horizon Expected Discount Cost

▶ Similar to the finite horizon case, we define the expected discount cost incurred during
t, . . . ,∞ when Xt = i, i.e.,

V g
t (i) = Eg

(
∞∑
l=t

βlc(Xl, Ul) | Xt = i

)

Under the assumptions that c(X, u) is time-invariant and g is a stationary MP, we have
the followings

V g
t (i) =Eg

(
∞∑
l=t

βlc(Xl, g(Xl)) | Xt = i

)

=Eg
(
βtc(Xt, g(Xl)) | Xt = i

)
+ Eg

(
∞∑

l=t+1

βlc(Xl, g(Xl)) | Xt = i

)

=βtc(i, g(i)) + Eg

(
Eg

(
∞∑

l=t+1

βlc(Xl, g(Xl)) | Xt+1, Xt = i

)
| Xt = i

)

=βtc(i, g(i)) + Eg

(
Eg

(
∞∑

l=t+1

βlc(Xl, g(Xl)) | Xt+1

)
| Xt = i

)
=βtc(i, g(i)) + Eg

(
V g
t+1(Xt+1) | Xt = i

)
=βtc(i, g(i)) +

∑
j∈S

P (j | i, g(i))V g
t+1(j) (⋆)

▶ According to the definition of V g
t (i), we have that

V g
t (i) = βtV g

0 (i) (⋆⋆)

Therefore, combining (⋆) and (⋆⋆), we have

βtV g
0 (i) = βtc(i, g(i)) +

∑
j∈S

P (j | i, g(i))βt+1V g
0 (i)

⇒V g
0 (i) = c(i, g(i)) + β

∑
j∈S

P (j | i, g(i))V g
0 (i)

▶ Put into the vector form, we need to solve equation

V g
0 = cg + βPgV g

0 , where V g
0 =

V g
0 (1)
...

V g
0 (I)

 , cg =

c(1, g(1))
...

c(I, g(I))


and the cost is

Jg =
∑
i∈S

π0(i)V
g
0 (i), where V g

0 = (I − βPg)−1cg

Actually, one can show that matrix I − βPg is always invertible.
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Computation of Average Cost Per Unit Time

▶ Note that Pg is actually a Markov chain because we assume that g is a stationary MP
and P(u) is time-homogeneous. Therefore, the Cesaro limit always exists

lim
T→∞

1

T + 1

T∑
t=0

(Pg)t =: Πg

Therefore, we have

Jg = lim
T→∞

1

T + 1
Eg

(
T∑
t=0

c(Xt, gt(Xt))

)
= lim

T→∞

1

T + 1

T∑
t=0

π0(Pg)tcg = π0Π
gcg

where we have cg = (c(1, g(1)), · · · , c(I, g(I)))T.

▶ As we have discussed previously, Πg may be initially state dependent in the sense that
Πg

i,j ̸= Πg
k,j. However, under the assumption that, Pg is irreducible, we know that

limT→∞
1

T+1

∑T
t=0(Pg)ti,j → πj, where π = (π0, . . . , πI) is the unique solution to π = πPg.

▶ Therefore, under the irreducible assumption, we know that Πg is initial state independent
and we have

Jg = π0Π
gcg = πcg

▶ What happens if Πg is not irreducible? For this case, you can compute the probability
of going to each irreducible component (SCC) and applies the above procedure for each
irreducible component induced sub-MC.
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