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12 Finite Horizon Optimization & Imperfect Information
Stochastic Optimization with Perfect Information

▶ We consider a general stochastic system with perfect information, i.e.,

Xt+1 = ft(Xt, Ut,Wt), Yt = Xt

We assume the basic random variables X0,W0,W1, . . . ,Wt, . . . are independent.

▶ We consider a control law g := (g0, g1, . . . , gt, . . . ) with perfect record, i.e.,

Ut = gt(X0;t, U0,t−1) = g̃t(X0:t)

▶ Given a control law g, its cost is defined by

Jg = Eg

(
T−1∑
t=0

ct(Xt, Ut) + cT (XT )

)

where the ct(Xt, Ut) is called the immediate cost and cT (XT ) is the terminal cost.

▶ We denote X is the state space, U is the action space and G is the set of all control laws.
In particular, we denote GM the set of all Markov policies. We say a control law g∗ ∈ G
is optimal if

Jg∗ = J∗ := inf{Jg | g ∈ G},

where J∗ is called the minimum (expected) cost. Our objective is to find such g∗ ∈ G
to attain the minimum.

The Cost-To-Go Function

▶ Suppose that we restrict our attention is Markov policies GM , i.e., Ut = gt(Xt),∀t, then
we can define the cost-to-go at time t as

Vt(x) = Eg

(
T−1∑
l=t

cl(Xl, Ul) + cT (XT ) | Xt = x

)

Similar to our previous discussion for computing finite cost, we know that the cost-to-go
function can be computed resuively by{

VT (x) = cT (x)

Vt(x) = ct(x, gt(x)) + EWt (Vt+1(ft(x, gt(x),Wt)))
,

▶ Note that for a Markov policy, the above defined cost-to-go is a actually a function of
state x. For an arbitrary policy g, which may not be Markov, the cost-to-go at time t
due to g is defined by

Jg
t = Eg

(
T−1∑
l=t

cl(Xl, Ul) + cT (XT ) | Xg
t , X

g
t−1 . . . , X

g
1 , X0

)
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Dynamic Programming Algorithm

▶ We present the following main result for stochastic dynamic programming without proof.
It tells us it is sufficient to consider the Markov policies for the purpose of optimization
and the optimization problem can be solved stage-by-stage in a backwards manner.

Theorem: Optimality Condition for Perfect Information

Define the following functions recursively{
VT (x) := cT (x),∀x ∈ X

Vt(x) := infu∈U{ct(x, u) + EWt [Vt+1(ft(x, u,Wt))]},∀x ∈ X , t = 0, 1, . . . , T − 1

Then we have the following results

1. Let g ∈ G be arbitrary policy. Then we have

V (Xg
t ) ≤ Jg

t w.p.1 ∀t = 0, 1, . . . , T

In particular, we have EX0 [V0(X0)] ≤ Jg.

2. A Markov policy g ∈ GM is optimal if and only if the infimum is achieved at
gt(x), ∀x ∈ X , ∀t = 0, 1, . . . , T

▶ The above theorem suggests the following dynamic programming algorithm for solv-
ing the stochastic optimization problem. First, we compute functions VT (x). By solving
the optimization problem for t = T − 1, we obtain VT−1(x) and policy g∗T−1. We then
proceed to obtain g∗T−2, . . . , g

∗
1, g

∗
0 and VT−2(x), . . . , V1(x), V0(x). Furthermore, we have

Jg∗ = E(V0(X0)).

Stochastic Optimization with Imperfect Information

▶ Now we move to the case of imperfect information, i.e., we consider the following model

Xt+1 = ft(Xt, Ut,Wt), Yt = ht(Xt, Vt)

where X0,W0,W1, . . . , V0, V1, . . . are mutually independent with given PDF.

▶ We still assume that the controller has perfect recall. Then the information available to
the controller at time t is

It = (Y0:t, U0:t−1) = (Y0, Y1, . . . , Yt, U0, U1, . . . , Ut−1)

Then a control law under imperfect information g = (g0, g1, . . . , gT ) is of form Ut = gt(It).

▶ We still consider immediate cost ct(Xt, Ut) and terminal cost cT (XT ). Our objective is
still to find g ∈ G that minimizes

Jg = Eg

(
T−1∑
t=0

ct(Xt, Ut) + cT (XT )

)
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Information States

▶ For the perfect observation case, we use dynamic programming for actual state Xt. For
the imperfect observation setting, we do not know Xt due to the observation noise and the
output mapping. The basic idea is to use the notion of information states or beliefs.

Definition: Information States

A sequence Z0, Z1, . . . , ZT−1, ZT is called an information state for the above for-
mulated stochastic optimization problem if

(i) Zt = lt(It); and

(ii) Zt+1 = Tt(Zt, Yt+1, Ut); and

(iii) E (ct(Xt, Ut) | It = it, Ut = ut) = E (ct(Xt, Ut) | Zt = zt, Ut = ut).

▶ Intuitively, the above definition says that (i) the information state should be a function
of all information available It; (ii) the information state can be updated recursively using
the new information available Yt+1 and Ut; (iii) the information state should carry the
same information as the complete information It for the purpose of minimizing the cost.

Candidate of Information States

▶ How to choose information state, in particular a minimal one, in general, is not unique,
very difficult and problem-independent. For example It itself is an information state, but
not very interesting.

▶ Here we introduce a very widely used candidate of information state, which is the prob-
ability distribution of each state at time instant t, i.e.,

πt(x) = P (Xt = x | Y0:t, U0:t−1), x ∈ X

▶ One can verify the all three conditions of information states hold for πt(x). Clearly, it is
a function of It and the expected costs given Zt and It are the same. For the recursive
update, using formula P (A,C | B) = P (A | C,B)P (C | B), we have

πt+1(x) = PXt+1|Y0:t+1,U0:t(x | y0:t+1, u0:t) =
P (x, yt+1, ut | y0:t, u0:t−1)∑
x′ P (x′, yt+1, ut | y0:t, u0:t−1)

=
N

D

N =
∑
x̂t

P (x, yt+1, ut, x̂t | y0:t, u0:t−1) = 1{gt(u0:t−1,y0:t)=ut}
∑
x̂t

P (yt+1 | x)P (x | x̂t, ut)πt(x̂t)

⇒ πt+1(x) =

∑
x̂t
P (yt+1 | x)P (x | x̂t, ut)πt(x̂t)∑

x′
∑

x̂t
P (yt+1 | x′)P (x′ | x̂t, ut)πt(x̂t)

▶ The above formula of πt(x) has an important implication, i.e., πt(x) is independent of
the control law g. This property will be the basic for using DP for solving the imperfect
observation problem
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Implications of Policy Independent of πt(·)

▶ For time instant t = T − 1, where the last control decision is made, we have

Eg (cT−1(XT−1, UT−1) + cT (XT ) | Y0:T−1, U0:T−2) ,

which depends on πT−1(·) = P (XT−1 | Y0:T−1, U0:T−2)︸ ︷︷ ︸
which is independent of g

and gT−1

▶ For time instant t = T − 2, we have

Eg (cT−2(XT−2, UT−2) + cT−1(XT−1, UT−1) + cT (XT ) | Y0:T−2, U0:T−3)

=Eg (cT−2(XT−2, UT−2) + Eg (cT−1(XT−1, UT−1) + cT (XT ) | Y0:T−1, U0:T−2) | Y0:T−2, U0:T−3)

which depends on πT−2(·) = P (XT−2 | Y0:T−2, U0:T−3)︸ ︷︷ ︸
which is independent of g

, gT−1 and gT−2

▶ Therefore, we can conclude that the expected cost-to-go given all information we have
so far, i.e., Eg(

∑T−1
l=t cl(Xl, Ul) + CT (XT ) | It, Ut), only depends on the future part of

the policy, i.e., gt+1, gt+2, . . . , gT+1. This suggests the following main results for dynamic
programming under imperfect information.

Theorem: Optimality Condition under Imperfect Information

Define the following functions recursively{
VT (π) := E (cT (XT ) | πT = π)

Vt(π) := infu∈U{E (ct(Xt, u) + Vt+1(Tt(π, Yt+1, u)) | πt = π)}, t = 0, 1, . . . , T − 1

Then we have the following results

1. Let g ∈ G be arbitrary policy. Then we have

V (π) ≤ Jg
t w.p.1 ∀t = 0, 1, . . . , T

In particular, we have Jg ≥ EX0 [V0(X0)]

2. A separated Markov policy g ∈ GSM is optimal if and only if the infimum is
achieved at gt(π),∀π, ∀t = 0, 1, . . . , T , where GSM denotes the set of separated
control policies of form, ut = gt(πt).

▶ According to the above result, the finite-horizon stochastic optimization problem under
imperfect information can be solved as follows:

– Compute the optimal control decision u ∈ U for each information state π at each
time instant t = 0, 1, . . . , T by the dynamic programming equations

– start from the initial information state π0(x) = P (X0 = x) and choose an optimal
control decision u0 and make observation yt

– update the information state to π1 = Tt(π0, y1, u0) and then repeat the above steps
until the last time instant t = T .
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Example of Perfect Information: Gambler’s Strategy

▶ Let us consider the following gambling process. Initially, you have certain amount of
money. At each instant, we can bet an amount up to the money you have: you either
loss you bet or win the same amount. The game stops at at time T . Your objective is to
find a strategy g to maximize Eg(lnXT ).

▶ Formally, we have the following model

Xt+1 = Xt + Ut ·Wt

where P (Wt = 1) = p and P (Wt = −1) = 1− p, 0.5 < p < 1. The cost function is

CT (XT ) = lnXt and ct(Xt, Ut) = 0, t = 0, 1, . . . , T − 1

▶ We can write the dynamic programming equations by:{
VT (x) = ln x

Vt(x) = sup0≤u≤x{pVt+1(x+ u) + (1− p)Vt+1(x− u)}, t = 0, 1, . . . , T − 1

▶ For the above value functions, we conjecture that

Vt(x) = ln x+ At

It is clearly true for T and we assume the case of t+1, . . . , T . That is, for l = t+1, . . . , T ,
we can write

Vl(x) = ln x+ Al

Then for the case of t, we have

Vt(x) = sup
0≤u≤x

p [ln(x+ u) + At+1] + (1− p) [ln(x− u) + At+1]︸ ︷︷ ︸
=:Kt


Then take the derivative, we have

∂

∂u
Kt =

p

x+ u
− 1− p

x− u
⇒ u = (2p− 1)x

Therefore, by taking u∗ = (2p− 1)x, we have

Vt(x) =p [ln(x+ (2p− 1)x) + At+1] + (1− p) [ln(x− (2p− 1)x) + At+1]

= ln x+ At+1 + ln[2pp(1− p)1−p]︸ ︷︷ ︸
At

▶ By proofing the above conjecture, we actually find the optimal law g∗(x) = (2p − 1)x,
which is not only Markov but also stationary.
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Example of Perfect Information: Linear Quadratic Optimal Control

▶ Let us consider the following very simple linear dynamic system

Xt+1 = Xt + bUt +Wt

where we assume {Wt} is an i.i.d. sequence with zero mean and variance σ2

▶ We consider the following quadratic cost over T stages

X2
T +

T∑
t=0

(X2
t + rU2

t )

where r is a known non-negative weighting parameter. We assume no constraints on Xt

and Ut, i.e., both the state space and the decision space are R

▶ We apply the DP algorithm, and derive the optimal cost-to-go functions J∗
t and optimal

policy. We have

J∗
T (xT ) =x2

T

J∗
T−1(xT−1) =min

uT−1

{
E
(
x2
T−1 + ru2

T−1 + J∗
T (xT−1 + buT−1 +WT−1)

)}
=min

uT−1

{
E
(
x2
T−1 + ru2

T−1 + (xT−1 + buT−1)
2 + 2WT−1(xT−1 + buT−1) +W 2

T−1)
)}

=x2
T−1 + σ2 + min

uT−1

{
ru2

T−1 + (xT−1 + buT−1)
2)
}

Therefore, the optimal policy for the last stage is

g∗T−1(XT−1) = − b

r + b2
XT−1

and the optimal cost-to-go function is

J∗
T−1(XT−1) = PT−1X

2
T−1 + σ2, where PT−1 =

r

r + b2
+ 1

▶ We can now continue the DP algorithm to obtain J∗
T−2 from J∗

T−1. An important obser-
vation is that J∗

T−1 is quadratic (plus an inconsequential constant term), so with a similar
calculation we can derive g∗T−2 and J∗

T−2 in closed form, as a linear and a quadratic
function of XT−2, respectively. This gives us the following equations

g∗t (Xt) =− bPt+1

r + b2Pt+1

Xt

J∗
t (Xt) =PtX

2
t + σ2

T−1∑
l=t

Pt+1

where Pt can be computed backwards recursively by

Pt =
rPt+1

r + b2Pt+1

+ 1 with PT = 1
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Example of Imperfect Information: Sequential Hypothesis

▶ We consider the following sequential hypothesis problem. Suppose that a parameter H
is either 0 or 1 with prior information that P (H = 0) = p. At each instant, we can
decide either to make an observation or make a guess. Each observation Yt = H +Nt is
assumed to be the true value of H adding a noise and we need to pay a constant cost c for
each observation. Once we make a guess, we stop the process and if we guess the value
incorrectly, we pay a cost K. You have to make a guess up to instant T . The objective
is to obtain an optimal sequential hypothesis strategy with minimum cost.

▶ Formally, we have the following model

Ht+1 = Ht, Yt = H0 +Nt, with H0 ∈ {0, 1} and P (H0 = 0) = p

and U = {0, 1, continue} and ct(Ht, Ut) =

{
1{Ut ̸=H0} ·K if Ut = 0, 1

c if Ut = cont. .

▶ Since there are only two possible states, we can choose our information state as:

πt = P (H = 0 | Y0:t, U0:t−1 = (cont., . . . , cont.))

This information state can be updated by

πt+1 = P (H=0 | Y0:t+1) =
P (Yt+1,H=0 | Y0:t)

P (Yt+1 | Y0:t)
=

P (Yt+1 | H=0)πt
P (Yt+1 | H=0)πt + P (Yt+1 | H=1)(1− πt)

▶ The dynamic programming equation is as follows:

VT (π) =min{K(1− π)︸ ︷︷ ︸
UT=0

, Kπ︸︷︷︸
UT=1

}

Vt(π) =min{K(1− π)︸ ︷︷ ︸
Ut=0

, Kπ︸︷︷︸
Ut=1

, c+ E(Vt+1(πt+1) | π)︸ ︷︷ ︸
Ut=cont.

}

▶ To see the above solution intuitively, let us consider the following special cases:

– T = 0: since we need to make a guess immediately, we simple guess H = 0 if p ≥ 0.5.
– c = 0: since there is no observation cost, we will continue until the last instant T

and guess H = 0 if π ≥ 0.5.
– K = 0: since there is no guessing cost, we just randomly make a guess initially.
– Nt = 0: since we can get precise value of H by making an observation, we know

that E(V1(π1) | p) = 0. Therefore, if c ≤ min{K(1 − p), Kp}, then we make one
observation and use the observed value to guess. Otherwise, we directly guess H
with higher probability.
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