
AU7022 Stochastic Methods in Systems & Control Xiang Yin

14 Model-Free Stochastic Control for Unknown Systems
Need Model-Free Methods with Unknown Dynamics

▶ Recall that, in the Markov decision problem (infinite horizon discounted case), we have a
controlled Markov chain {P(u)}u∈U over a finite state space S = {0, 1, . . . , I} with initial
distribution π0 ∈ [0, 1]I . For any given policy g ∈ GSM , the value of state x ∈ S under
policy g is defined by

V g(x) = Eg

(
∞∑
t=0

βtc(Xt, g(Xt)) | X0 = x

)
,

which can be computed according to the Bellman Equation
V g = cg + βPgV g.

Then we can improve policy gn to gn+1 by the following policy improvement procedure
gn+1 = argmin

g∈G
{cg + βPgV gn}.

▶ To implement the policy evaluation and the policy improvement, we need to know the
underlying actual dynamic of the system, i.e., transition probability matrices {P(u)}u∈U .
However, this model information may be unknown a priori in many problems and one has
to learn (estimate) the transition probability based on the sample data (simulations).

▶ Let us first consider the policy evaluation problem. Assume that the system starts from
state x ∈ S. Under a given policy g ∈ GSM , the state trajectory of the system is a
stochastic process {Xg

t }. Therefore, the discounted cost incurred from state x is also a
randomly variable

Cg(x) =
∞∑
t=0

βtc(Xg
t , g(X

g
t)).

To evaluate policy g, we essentially want to compute the expected value of the cost
random variable from each state x ∈ S, i.e., V g(x) = E(C(x)). This can be done either
analytically by knowing Pg, which is the case of Bellman equation, or using a simulation-
based approach by estimating from a set of samples of Cg(x), say c̄ = (c1, c2, . . . , cn).
Then we can compute the sample mean 1

n

∑n
i=1 ci. When n → ∞, this estimated value c̄

will converge to E(Cg(x)) with probability one.

▶ For each time of sampling i = 1, . . . , n, we can just simulate the system from state x ∈ S
following policy g, which gives us an infinite sequence of states

xi = (x0, x1, x2, . . .), where x0 = x.

Then we have ci =
∑∞

t=0 β
tc(xt, g(xt)). In the context of reinforcement learning, each

simulated trajectory xi is also referred to as an episode. Theoretically, it needs to be
infinitely long, but a large enough finite horizon is usually sufficient in practice.

▶ Note that here we assume that the cost structure c(x, u) is completely known. This setting
is without loss of generality and we can extend to the case where c(x, u) is unknown or
is even a random variable. (Think how? Hint: We can put the unknown information of
c(x, u) into the transition probability by extending the state-space.)

1

AU7022 Stochastic Methods in Systems & Control Xiang Yin

From State Values to Action Values

▶ Note that, even if we estimate the state value V gn(x) from data, it is still not sufficient
for the purpose of policy improvement since Pg also needs the information of transition
probability. To address this issue, for each pair of state x ∈ S and action u ∈ U , we
investigate the state-action value (or simply, action value)

Qg(x, u) = Eg

(
∞∑
t=0

βtc(Xt, Ut) | X0 = x, U0 = u

)
.

That is, starting from state x ∈ S, we force the system to first take action u ∈ U and
then play policy g. Then Qg(x, u) is the expected discounted cost by doing so.

▶ The state value and the action value have the following relation

Qg(x, u) = c(x, u) + β
∑
x′∈S

P (x′ | x, u)V g(x′).

Recall that the policy improvement procedure in terms of state value is

gn+1(x) = argmin
u∈U

{c(x, u) + β
∑
x′∈S

P (x′ | x, u)V gn(x′)}.

Therefore, the policy improvement can be expressed directly in terms of action value by

gn+1(x) = argmin
u∈U

Qg(x, u).

▶ Therefore, instead of estimating the state value V g(x) from the sample trajectories, we
can estimate the action value Qg(x, u) as follows

– Simulate the system from state x by first taking action u and then following policy g.
This gives us an episode xi = (x0, x1, x2, . . . , xT , . . .), which is an infinite sequence
of states with cost ci =

∑∞
t=0 β

tc(xt, g(xt))

– Repeat the above procedure for K episodes (x1, . . . ,xK). Then we can estimate the
action value by Qg(x, u) ≈ 1

n

∑n
i=1 ci.

▶ The above discussion serves as the basis for all model-free decision making algorithms.
The basic idea is very simple: if we do not have model information to precisely compute
values, then we can use data (simulated sample trajectories) to estimate them. This gives
the most basic form of model-free policy iteration algorithm.

Naive Model-Free Policy Iteration Algorithm (Monte Carlo Based)

Step 1 Start with arbitrary stationary Markov policy g0 ∈ GSM

Step 2 For each state-action pair (x, u) ∈ S × U , estimate the action value
Qgn(x, u) by simulating the system from (x, u) for many episodes.

Step 3 Improve policy gn to a new policy gn+1 by gn+1(x) = argminu∈U Qgn(x, u).

Step 4 Repeat Steps 2 and 3 until the policy cannot be improved.

2

AU7022 Stochastic Methods in Systems & Control Xiang Yin

Challenges in Model-Free Policy Iteration

▶ The above naive model-free policy iteration algorithm is, in fact, very inefficient and even
not practical. Here, we discuss some of the major challenges and how to overcome them.

▶ Waste of Information in Data: One major inefficiency of the above procedure is that
it does not make fully use of the simulated data

xi = (x0
u0−→ x1

u1−→ x2
u2−→ · · · uT−1−−−→ xT

uT−→ · · ·)

in each episode. Previously, we only use xi to estimate the value for the first action
Qg(x0, u0). However, this episode data also provides us the information of Qg(x1, u1),
Qg(x2, u2), . . . , but we do not make use of these information at all!
Note that a state-action pair (x, u) may appear multiple times in each episode xi, for
example (x, u) = (xi1 , ui1) = (xi2 , ui2) = · · · . Depending on whether we estimate Qg(x, u)
for only once or for multiple times, we have two different approaches to make better use
of the information in data:

– First-Visit Method: for each (x, u), we only put trajectory (xi1

ui1−−→ xi1+1

ui1+1−−−→
· · ·) to the estimation data for Qg(x, u) once.

– Every-Visit Method: for each (x, u), we put all trajectories starting from (x, u),
i.e., (xi1

ui1−−→ xi1+1

ui1+1−−−→ · · ·), (xi2

ui2−−→ xi2+1

ui2+1−−−→ · · ·), and so forth, to the
estimation data for Qg(x, u).

The main difference between the above two methods is that (i) first-visit estimator is
unbiased, while (ii) every-visit estimator is asymptotically unbiased.

▶ Waste of Time for Update: in the naive model-free algorithm, we need to wait for a
long time to update the policy because

– To perform estimations for each action value, we need to generate many episodes.
– To obtain each episode, we need to generate the entire (very long) sample trajectory.

To address the first issue, our approach is to use the so called generalized policy
iteration, i.e., we will improve the policy based on the value of each single sample
trajectory rather than the mean of all sample trajectories. To address the second issue,
we need to make the estimation procedure recursive or incremental, which leads to
the well-known temporal difference learning.

▶ State Initialization: in the naive model-free algorithm, to estimate Qg(x, u), we have
to reset the system from state x each time when we want to generate an episode. This
may be very inefficient or even infeasible in many cases. For example, we may need to
physically move a robot to a location each time. An ideal approach is that, if we can keep
running an infinite sequence in which each pair (x, u) occurs infinite number of times,
then we will still obtain sufficient statistic information for each Qg(x, u).
This issue can be resolved by using the so called ϵ-greedy randomized policy. Specif-
ically, suppose that we have the estimated action value Q(x, u) for all state-action pairs.
Previously, the action value induces a greedy policy by g(x) = argminu∈U Q(x, u). Here
we relax this by allowing g(x) to be probability distribution over all actions U , i.e.,∑

u∈U g(u | x) = 1, ∀x ∈ S, where we allow a very small probability ϵ > 0 for those
non-greedy actions for the purpose of getting data.

3

AU7022 Stochastic Methods in Systems & Control Xiang Yin

Generalized Policy Iteration without Re-start

▶ In policy iteration, one needs to first evaluate the policy and then improve it. In terms
of the simulation-based approach, the policy evaluation is done by estimating the action-
value V g(x, u) from a set of episodes from (x, u). One may ask “can we improve the
policy immediately after each episode”. Then by alternating between policy evaluation
and improvement more frequently, one may have better convergence performance.

▶ The above idea is actually widely used in the stochastic optimization problem

min
w

J(w) = E(f(w,X)),

where X is a random variable. When the distribution of X is known and computable, we
can use the gradient descent (GD) method to seek for the optimal value w∗ iteratively by

wk+1 = wk − αk∇wE(f(wk, X)) = wk − αkE(∇wf(wk, X)).

When the distribution of X is unknown or very difficult to compute, we can take n i.i.d.
samples (x1, . . . , xn) of random variable X and use the estimated gradient. This leads to
the bath gradient descent (BGD) method

wk+1 = wk − αk

(
1

n

n∑
i=1

∇wE(f(wk, xi))

)
.

The stochastic gradient descent (SGD) method is to simply update the optimal value
immediately after each sample x of X

wk+1 = wk − αk∇wE(f(wk, xi)).

Conceptually, the above algorithm is very simple, but one may ask whether it works
because ∇wE(f(wk, xi)) may be not even closed to the actual gradient since it is just one
sample. However, the nice property of SDG is that it will still converge to the optimal
point when the iteration goes to infinite.

▶ We can apply the above technique to simulation-based policy improvement as follows.

– We use Q(x, u) as a set to store all sampled values of Q(x, u)�
– Starting from (x, u), we use the current policy to generate an episode x which will

contribute estimation to different (x, u)�
– We update the estimation of Q(x, u) by taking average[Q(x, u)]�
– Then we update the policy by g(x) = argminu∈U Q(x, u)�

To ensure the correctness of the above procedure, we need to make sure that all state-
action pairs initialized can be selected infinitely often. Otherwise, Q(x, u) will not con-
verge to the optimal value. This method is usually referred to as the exploring start
method.

▶ An alternative approach is to use every visit method to collect estimations for each Q(x, u),
but we need to ensure that each (x, u) appears infinitely many times in a single episode x.
This can be done by changing g(x) = argminu∈U Q(x, u) to the ϵ-greedy policy. Then
this method avoids the initialization for each episode since we can collect infinite data
(because we use every visit method) for all actions (because we use randomized policy).

4

AU7022 Stochastic Methods in Systems & Control Xiang Yin

Recursive Estimation of Expected Value

▶ The above approach helps us to perform update after each episode without waiting for
the completion of all episodes. However, this still needs to wait for the completion of a
single episode, which might still be very long. A natural question is that “can we update
the policy immediately whenever we move a single step in each episode”. This is actually
the idea of temporal difference learning. Before this, let us recall how we do incremental
estimation for the expected value of a random variable.

▶ Suppose that there is a random variable X and we want to estimate its expectation E(X).
A direct approach is to get n i.i.d. samples x = (x1, . . . , xn) and take

E(X) ≈ x̂n :=
1

n

n∑
i=1

xi.

Actually, the estimation x̂n for n samples can be computed based on the estimation x̂n−1

for the first n− 1 samples and the last sample xn by

x̂n︸︷︷︸
new est.

=
1

n

(
n−1∑
i=1

xi + xn

)
=

1

n
((n− 1)x̂n−1 + xn) = x̂n−1︸︷︷︸

current est.

+
1

n
(xn − x̂n−1︸ ︷︷ ︸

est. error

).

Clearly, the last term xn− x̂n−1 is the error between the observed value and the estimated
value. Here, weight 1

n
for the error is decreasing over time because each single observation

should have less and less effect when we have sufficient previous data.

▶ The above derivation can actually be generalized by changing weight 1/n to an arbitrary
time-varying sequence of weights {αn}, and we write

x̂n = x̂n−1 + αn(xn − x̂n−1).

It is known that, if weight sequence {αn} is selected such that

1.
∑∞

i=1 α
2
i < ∞; and

2.
∑∞

i=1 αi = ∞,

then x̂n will still converge to the expected value E(X) when n goes to infinity.

▶ Intuitively, the first condition says that αn will converge to zero. This ensures that the
estimated value will be stable in the end since

x̂n − x̂n−1 = αn(xn − x̂n−1) → 0.

The second condition says that αn will not converge to zero too fast. To see this, we write

x̂∞ − x̂1 =
∞∑
i=1

αi(x̂i−1 − xi).

Therefore, if
∑∞

i=1 αi < ∞, then x̂∞ − x̂1 may be bounded, which means that the esti-
mation process may not be able to compensate the initial error! The proof of the above
procedure can be considered as a special case of the Robbins-Monro algorithm.

5

AU7022 Stochastic Methods in Systems & Control Xiang Yin

Incremental Estimation of State Values

▶ Before we go to the incremental estimation of action value, let us first consider how to
estimate state value V g(x) under a given policy g. Under policy g, we can simulate the
system to generate an episode, which is an infinite sequence

x = (x0
u0−→ x1

u1−→ x2
u2−→ · · · uT−1−−−→ xT

uT−→ · · ·).

We define ci = c(xi−1, ui−1). Note that, our purpose is not to estimate V g(x) after the
entire x. Instead, we want to do this at each time instant t = 0, 1, 2, Now suppose
that V g

t (x) is our estimate for state value of x at instant t. Then for the next instant,
by applying an action, we have a new cost ct+1 and go to a new state xt+1. Using this
information, we can update the state value of xt = x as follows

Vt+1(xt)︸ ︷︷ ︸
new estimate

= Vt(xt)︸ ︷︷ ︸
current estimate

+αt(xt)

 TD target︷ ︸︸ ︷
(ct+1 + βVt(xt+1))−Vt(xt)︸ ︷︷ ︸

TD error

 .

For those x ̸= xt, we will keep the estimation unchanged, i.e., Vt+1(x) = Vt(x).

▶ The reason why we call v̄t := ct+1 + βVt(xt+1) target can be seen by Vt+1(xt) − v̄t =
(1− αt)(Vt(xt)− v̄t). Since 1− αt < 1, Vt+1(xt) is more closer to v̄t than Vt(xt). Also, we
call v̄t − Vt(xt) the TD error, since the part is zero when Vt = V g.

▶ By the TD algorithm, we have Vt converges to V g as t → ∞ if
∑∞

t=1 αt(x) = ∞ and∑∞
t=1 α

2
t (x) < ∞ for all x ∈ S, where αt(x) = 0 when x is not visited at instant t.

SARSA Algorithm

▶ As we have discussed before, only estimating the state value is not sufficient for the
purpose of policy improvement. To do so, we need to estimate the action value Q(x, u).
This can be done similarly. Suppose that the data in the entire episode is

x = (x0, u0, c1, x1, u1, c2, x2, u2, . . .).

Then at each instant t, we use the one-step data (xt, ut, ct+1, xt+1, ut+1) to estimate the
action value Q(xt, ut) by:

Qt+1(xt, ut) = Qt(xt, ut) + αt(xt, ut) [(ct+1 + βQt(xt+1, ut+1))−Qt(xt, ut)] .

The convergence condition is similar to the previous case for state value.

▶ Then using the above idea with the ϵ-greedy technique, we can provide an algorithm
called SARSA because we use the information of State-Action-Reward-State-Action.

– Simulate the system under policy gt and obtain a new data (xt, ut, ct+1, xt+1, ut+1).
– Update Qt(xt, ut) to Qt+1(xt, ut) based on the above update equation.
– Update policy gt to gt+1 by

gt(u | xt) =

{
1− ϵ(|U|−1)

|U| if u = argminu Qt+1(xt, u)
ϵ
|U| otherwise .

6

AU7022 Stochastic Methods in Systems & Control Xiang Yin

Q-Learning Algorithm

▶ The SARSA algorithm is essentially based on the (action value version) Bellman equation
such that we first estimate the value of a policy and then improve it. One may think “can
we estimate the optimal value among all policies directly from data”. This essentially
requires us to solve the Bellman optimality equation from sample data. Specifically, we
can write the Bellman optimality equation in terms of action value by

Q(x, u) = c(x, u) + β
∑
x′∈S

P (x′ | x, u)min
u

Q(x′, u).

▶ Now, still suppose that the data in the entire episode is

x = (x0, u0, c1, x1, u1, c2, x2, u2, . . .).

Then at each instant t, we use the one-step data (xt, ut, ct+1, xt+1) (without ut+1) to
estimate the action value Q(xt, ut) by:

Qt+1(xt, ut) = Qt(xt, ut) + αt(xt, ut)

[
(ct+1 + βmin

u∈U
Qt(xt+1, u))−Qt(xt, ut)

]
.

▶ Then by replacing the update equation in SARSA by the above equation, we get the
on-policy version of the Q-learning algorithm. The reason why we call this on-policy
is because we also use the target policy (the optimal one we are looking for) to generate
behavior x. This is also why we need to use ϵ-greedy policy; otherwise, the target policy
cannot be used as a behavior policy (the actual applied one to generate data).

▶ Compared with SARSA, a major advantage of Q-learning is that it also supports the
case of off-policy execution. Particularly, in SARSA, given (xt, ut), we note that ct+1

and xt+1 are independent of the underlying behavior policy, but ut+1 is determined by
the behavior policy. However, in Q-learning, we do not actually use the information of
ut+1. Therefore, the episode data x can be generated by an arbitrary behavior policy
and we can use this data to learn Qt(x, u), which corresponds to a different target policy.
For this case, there is no need to use ϵ-greedy policy for exploration because data x is
generated differently. Instead, we can just focus on incrementally updating the action
value Q(x, u) along the episode data. When the entire estimation is done, we can decode
a deterministic policy for Q(x, u) directly by g(x) = argminu∈U Q(x, u).

7

