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2 Random Variables
What We Need for Random Variables

▶ In many problems, we are not just interested in the experiment itself, but rather the
consequence of the random outcome. Therefore, it makes sense to assign each outcome a
real value via a random variable X : Ω → R.

▶ For example for the experiment where a fair coin is tossed twice, we may have X(HH) =
2, X(HT ) = X(TH) = 1, X(TT ) = 0 or W (HH) = 4,W (HT ) = W (TH) = W (TT ) = 0.

▶ What if we want to describe the distribution of possible values of X? Two approaches

(1) f(x) =probability that X is equal to x; this is OK for the above example, e.g.,
f(2) = 1

4
, but in general not appropriate;

(2) a more appropriate way is to use the distribution function F : R → [0, 1] that
describes “probability that X does not exceed x”. Formally, for any x ∈ R, we have

F (x) = P (A(x)), where A(x) = {ω ∈ Ω : X(w) ≤ x}

▶ However, P is a function defined on F ; this requires that A(x) has to belong to F .
Otherwise, this does not make any sense! Here we provide a general definition requiring
that Borel set of R is measurable under X; we will see later that it is equivalent to A(x).

Definition: F-Measurable & Random Variables

A function X : Ω → R is said to be F-measurable if for any Borel set B ∈ B(R), we
have {X ∈ B} ∈ F , where {X ∈ B} is the abbreviation of event {ω ∈ Ω : X(w) ∈ B}
or X−1(B), which is the pre-image of Borel set B. If (Ω,F , P ) is a probability space,
then such a F -measurable function X is called a random variable.

What is a Borel Set

Definition: Borel σ-field & Borel Set

The Borel σ-field B(R) is the unique smallest σ-field containing all subsets of the form
(a, b] ⊆ R = (−∞,∞). An element in B(R) is a Borel set.

▶ The reason why we consider B(R) is that there does not exist a probability measure for
2R. Therefore, we compromise and consider a smaller σ-field that contains certain “nice”
subsets of the sample space R. These “nice” subsets are the intervals.

▶ If F and G are two σ-fields, then F ∩G is also a σ-field. Then for any collections of events
F ⊆ 2Ω, there exists a unique smallest σ-field containing F denoted by σ(F).

▶ One of the most important properties of B(R) is that (a, b), [a, b], {a}, (−∞, b], (−∞, b),
(a,∞), [a,∞) and their unions are all Borel sets. For example,

(a, b) =
⋃
n≥1

(a, b− 1

n
], [a, b] =

⋂
n≥1

(a− 1

n
, b] and {a} =

⋂
n≥1

(a− 1

n
, a].
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Examples of Random Variable

▶ Example 1: A Valid Random Variable
Consider the following probability space (Ω,F , P ), where

– Ω = {ω : |ω2| ≤ 100} ⊆ C
– F = {∅,Ω, A,B,C,A ∪B,B ∪ C,C ∪ A}
– A = {ω : |ω2| ≤ 1}, B = {ω : 1 < |ω2| ≤ 4} and C = {ω : 4 < |ω2| ≤ 100}
– P (A) = 1

9
, P (B) = 3

9
and P (C) = 5

9

Now, consider a function X : Ω → R defined by X(ω) =


10 if ω ∈ A

5 if ω ∈ B

1 if ω ∈ C

.

This is a random variable. For example, if we consider {5, 10} ∈ B(R), then we have
X−1({5, 10}) = A∪B ∈ F . If we consider {1} ∈ B(R), then we have X−1({1}) = C ∈ F .

▶ Example 2: Not A Valid Random Variable
Consider the following probability space (Ω,F , P ), where

– F = {∅,Ω, A,B,C ′ ∪D,A ∪B,A ∪ C ′ ∪D,B ∪ C ′ ∪D}
– D = {ω : |(ω − 5i)2| ≤ 1}, C ′ = C \D and P (D) is arbitrary

Now, consider a function X : Ω → R same as the above and X(ω) = 2 if ω ∈ D.
This is a NOT random variable� since for {2} ∈ B(R), we have X−1({2}) = D /∈ F .

More About Random Variables

▶ For any random variable X : Ω → R, it provides a probability measure (also called the
probability law) PX : B(R) → [0, 1] defined by: for any Borel set B ∈ B(R), we have

PX(B) := P (X ∈ B) = P (X−1(B)) = P ({ω ∈ Ω : X(ω) ∈ B})

Essentially, the probability law can be seen as the composition of P−1(·) with the inverse
image X−1(·), i.e., PX(·) = P ◦X−1(·).

▶ Moreover, X may not take value in the entire R but just a subset Y = {X(ω) ∈ R : ω ∈
Ω} ⊆ R. Therefore, we also do not need to measure the entire Borel sets B(R). In fact,
we just need to consider a smaller σ-field Y = {X(A) : A ∈ F} ⊆ B(R).

▶ Therefore, in some textbooks, you will see a random variable on probability space
(Ω,F , P ) is defined as a function

X : (Ω,F , P ) → (Y,Y , PX)

▶ The above notation is particular useful when we handle discrete random variable with
countable values Y . In this case, it suffices to consider Y = 2Y . In the above Example 1,
we have Y = {1, 5, 10} and Y = 2Y = {∅, {1}, {5}, {10}, {1, 5}, {5, 10}, {1, 10}, {1, 5, 10}}.

▶ If we look from the other direction, we define σ(X) = {X−1(B) : B ∈ B(R)} as the
σ-field generated by random variables, which is the smallest σ-field X needed to be
measurable.
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Cumulative Distribution Function (CDF)

▶ Now, let us summarize what we have so far:
– First, we need to have a probability space (Ω,F , P ).
– Then we have a random variable X : Ω → R that is F -measurable, which induces a

new measure PX : B(R) → [0, 1].
– Therefore, it makes sense to discuss PX(B) = P (X ∈ B) for any Borel set B ∈ B(R).

▶ In fact, ∀B ∈ B(R) : X−1(B) ∈ F if and only if ∀a ∈ R : X−1((−∞, a]) ∈ F .

▶ To describe how a random variable looks like, it it useful to consider a particular Borel
set B = (−∞, a], which leads to the definition of the cumulative distribution function.

Definition: Cumulative Distribution Function (CDF)

The cumulative distribution function of a random variable X : Ω → R is a function
FX : R → [0, 1] defined by:

∀x ∈ R : FX(x) = P (X ≤ x) = P ({ω ∈ Ω : X(ω) ≤ x}) = PX((−∞, x])

▶ Example 1: Constant Variables

Let c ∈ R and define X : Ω → R by ∀ω ∈ Ω : X(ω) = c,. So FX(x) =

{
0 if x < c

1 if x ≥ c
.

▶ Example 2: Indicator Functions

Let A ∈ F be an event and define 1A : Ω → R by 1A(ω) =

{
1 if ω ∈ A

0 if ω ̸∈ A
. What is F1A

?

Properties of Cumulative Distribution Function

(P1) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.
Proof: Let Bn = {ω ∈ Ω : X(ω) ≤ −n} = {X ≤ −n}. The sequence B1, B2, . . .
is decreasing as ∅ as the limit. Thus, we have P (Bn) → P (∅) = 0.

(P2) FX is non-decreasing, i.e., ∀x < y : FX(x) ≤ FX(y).
Proof: Let A(x) = {X ≤ x} and A(x, y) = {x < X ≤ y}. Then we can write
A(y) = A(x)∪̇A(x, y). Therefore, P (A(y)) = P (A(x)) + P (A(x, y)), which gives
FX(y) = FX(x) + P (A(x, y)) ≥ FX(x).

(P3) FX is right-continuous, i.e., limx↓x0 F (x) = F (x0).
Proof: leave as a homework.

▶ In many problems, we can just work on the CDF of a random variable because the
probability law PX is uniquely specified by its CDF FX(·)

▶ Also, FX(·) is a CDF for some random variable if and only if it satisfies the above three
conditions.
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Discrete Random Variable

▶ Depending on whether X takes value in countable set or uncountable set, random variables
can be classified as discrete random variables and continuous random variables.

Definition: Discrete Random Variable

A random variable X is said to be discrete if there exists a (finite or infinite) sequence
of distinct real numbers x1, x2, . . . such that for any Borel set B ∈ B(R) we have

P (X ∈ B) =
∑
xi∈B

P (X = xi)

▶ Let us discuss the implications of the above definition:

1. If X is discrete, then set D = {x ∈ R : P (X = x) ̸= 0} must be countable.
2. In fact, we further have

∑
x∈D P (X = x) = 1.

3. It is useful to define pX(x) = P (X = x) as the probability mass function (PMF).
4. Therefore, a discrete random variable can be written as X : (Ω,F , P ) → (D, 2D, PX).

▶ The above implications actually comes from the Borel–Cantelli lemma saying that
∞∑
n=1

P (En) < ∞ ⇒ P

(
lim sup
n→∞

En

)
= 0, where lim sup

n→∞
En =

∞⋂
n=1

∞⋃
k≥n

Ek

Examples of Discrete Random Variables

▶ The Uniform Random Variable:
Let X : (Ω,F , P ) → (D, 2D, PX), where D = {x1, x2, . . . , xn}, such that

∀i = 1, . . . , n : pX(xi) = P (X = xi) =
1

n

▶ The Bernoulli Random Variable:
Let X : (Ω,F , P ) → ({0, 1}, 2{0,1}, PX) such that

∀i = 0, 1 : pX(i) = P (X = i) = (1− p)1−ipi ,

i.e., pX(0) = 1− p and pX(1) = p for some 0 < p < 1.

▶ The Geometric Random Variable with Parameter p:
Let X : (Ω,F , P ) → (N+,N+, PX) such that

∀n = 1, 2, · · · : pX(n) = P (X = n) = (1− p)n−1p

▶ The Possion Random Variable with Parameter λ:
Let X : (Ω,F , P ) → (N0, 2

N0 , PX) such that

∀n = 0, 1, 2, · · · : pX(n) = P (X = n) =
λn

n!
e−λ

Note that
∑∞

n=0
λn

n!
= eλ, so

∑∞
n=0 P (X = n) = 1.
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Continuous Random Variable

▶ Depending on whether X takes value in countable set or uncountable set, random variables
can be classified as discrete random variables and continuous random variables.

Definition: Continuous Random Variable

A random variable X is said to be (absolutely) continuous if there exists an inte-
grable function fX : R → R such that

∀B ∈ B(R) : P (X ∈ B) = PX(B) =

∫
B

fX(x)dx =

∫
R
1B(x)fX(x)dx

▶ The above function fX : R → R is called the probability density function (PDF) and
it has the following properties

1.
∫
R fX(x)dx = P (X ∈ R) = PX(R) = 1, so fX is non-negative almost everywhere.

2. For any {a} ∈ B(R), we have P (X = a) = PX({a}) =
∫
{a} f(x)dx = 0.

3. A random variable is continuous iff every countable set has probability zero.
4. If ∀x ∈ R : P (X = x) = 0, then this does not mean that it is absolutely continuous.

Counter-example: the Cantor random variable.
5. PDF and CDF can be related by: FX(a) = PX((−∞, a]) =

∫ a

−∞ fX(x)dx. Then by
the Lebniz’s Rule, we also have d

da
FX(a) =

d
da

∫ a

−∞ fX(x)dx = fX(a).
6. For continuous random variable, we have limx↓x0 F (x) = F (x0) = limx↑x0 F (x).

(proof this as a homework)

Examples of Continuous Random Variables

▶ The Uniform Random Variable with Interval [a,b]:

fX(x) =

{
1

b−a
if a ≤ x ≤ b

0 otherwise ⇒ FX(x) =


0 if x < a

x−a
b−a

if a ≤ x < b

1 if b ≤ x

▶ The Exponential Random Variable with Parameter λ:

fX(x) =

{
λe−λx if x ≥ 0
0 otherwise ⇒ FX(x) =

{
1− e−λx if x ≥ 0

0 if x < 0

▶ The Gaussian Random Variable N(µ, σ2):

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

▶ The Cauchy Random Variable with Parameter λ:

fX(x) =
1

π

λ

λ2 + x2
⇒ FX(x) =

1

π
arctan

(x
λ

)
+

1

2
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Binomial Random Variable/Poisson Random Variable/Exponential Random
Variable

▶ Suppose that we take a sequence of n independent experiments asking a yes–no question:
success (with probability p) or failure (with probability q = 1 − p). Then the number
of successes satisfies the binomial distribution. Note that, when n = 1, the binomial
distribution is actually a Bernoulli distribution.

▶ The PMF of a binomial random variable X : (Ω,F , P ) → ({0, 1, . . . , n}, 2{0,1,...,n}, PX) is

∀k = 0, 1, . . . , n : pX(k) = P (X = k) =

(
n

k

)
pk(1− p)n−k

▶ Poisson distribution describes random variable k based on the following assumptions:

– k = 0, 1, 2 . . . is the number of times an event occurs in an interval
– The occurrence of one event does not affect the probability that a second event will

occur. That is, events occur independently.
– The average rate at which events occur is independent of any occurrences.
– Two events cannot occur at exactly the same instant; instead, at each very small

sub-interval exactly one event either occurs or does not occur.

In fact, the Poisson distribution can be seen as the limit of the binomial distribution.
Suppose that you divide the interval into n same sub-intervals and the probability that
something happens in each interval is p. Then the probability that something happens in
k intervals is actually

PX(X = k) =

(
n

k

)
pk(1− p)n−k

If we want to count the totally number of occurrences of something in the entire interval,
we can compute

PX(X = k) = lim
n→∞

(
n

k

)
pk(1− p)n−k

However, when we increase n to get more smaller intervals, the probability p should go to
zero. So what is p? Note that, for any X ∼ B(n, p), we have E(X) = np, which should
be a fixed number not matter how many sub-intervals we divide. Therefore, we choose
this expectation as the “rate” λ so that p = λ/n. This gives

lim
n→∞

(
n

k

)
(
λ

n
)k(1− λ

n
)n−k = lim

n→∞

n(n− 1)(n− 2) · · · (n− k + 1)

k!

λk

nk

(
1− λ

n

)n−k

=
λk

k!
· n
n
· n− 1

n
· n− k + 1

n

(
1− λ

n

)−k

︸ ︷︷ ︸
→1

·
(
1− λ

n

)n

︸ ︷︷ ︸
→e−λ

=
λk

k!
e−λ

▶ If one is interested in random variable X=“the time between two successive events”, then
this is the exponential distribution. This can be derived by

F (t) = 1− P (X ≥ t) = 1− (λt)0

0!
e−λt ⇒ f(x) = F ′(t) = − d

dt
P (X ≥ t) = λe−λt
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