3 Functions of Random Variables

Expectations

- Suppose that we perform the same experiment independently for N times and get numerical outcomes $x_{1}, x_{2}, \ldots, x_{N}$. Then the average outcome is $m=\frac{1}{N} \sum_{i}^{N} x_{i}$
- In advance of performing the experiments, by knowing the distribution, we can expect that there are $N p_{X}(x)$ outcomes will take value x. So the "expect average" should be $m \approx \frac{1}{N} \sum_{x \in \mathbb{R}} x N p_{X}(x)=\sum_{x \in \mathbb{R}} x p_{X}(x)$. This leads to the concept of expectation.

Definition: Expectation

A random variable $X: \Omega \rightarrow \mathbb{R}$ is said to be integrable if $\int_{\Omega}|X| d P<\infty$. If so, then its expectation is defined by

$$
E(X)=\int_{\Omega} X d P=\int_{\mathbb{R}} x d P_{X}= \begin{cases}\sum_{x_{i}} x_{i} p_{X}\left(x_{i}\right) & \text { if } X \text { is discrete } \\ \int_{-\infty}^{\infty} x f_{X}(x) d x & \text { if } X \text { is continuous }\end{cases}
$$

- Remark: a random variable may not have an expectation

(1) Consider the Cauchy random variable with PDF $f_{X}(x)=\frac{1}{\pi} \frac{\lambda}{\lambda^{2}+x^{2}}$. Take $\lambda=1$,

$$
E(X)=\frac{1}{\pi} \int_{-\infty}^{\infty} x \frac{1}{1+x^{2}} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d\left(\ln \left(1+x^{2}\right)\right)=\left.\frac{1}{2 \pi} \ln \left(1+x^{2}\right)\right|_{-\infty} ^{\infty}=\infty-\infty
$$

(2) Keep tossing a coin until H appears. If H appears at the k th time, then you get $¥ 2^{k}$

$$
E(X)=\frac{1}{2} \times 2+\frac{1}{4} \times 4+\frac{1}{8} \times 8+\cdots=\infty
$$

Functions of Random Variables

- We call that a random variable $X: \Omega \rightarrow \mathbb{R}$ is a \mathcal{F}-measurable function on Ω. If we further consider a function $g: \mathbb{R} \rightarrow \mathbb{R}$, then this gives us a new function $g \circ X: \Omega \rightarrow \mathbb{R}$. Usually, we denote this new function as $Y=g(X)$. Note that $Y=g(X)$ may not be a random variable. To have so, we need to require that

$$
\forall B \in \mathcal{B}(\mathbb{R}): g^{-1}(B) \in \mathcal{B}(\mathbb{R}) \Rightarrow X^{-1}\left(g^{-1}(B)\right) \in \mathcal{F}
$$

- If $g(X)$ is a random variable and its expectation exists, then

$$
E(g(X))=\int_{\Omega} g(X) d P=\int_{\mathbb{R}} g(x) d P_{X}(x)=\left\{\begin{array}{cl}
\sum_{i} g\left(x_{i}\right) p_{X}\left(x_{i}\right) & \text { if } X \text { is discrete } \\
\int_{-\infty}^{\infty} g(x) f_{X}(x) d x & \text { if } X \text { is continuous }
\end{array}\right.
$$

- There are some useful expectations of functions
- Variance of $X: \operatorname{var}(X)=E\left((X-E(X))^{2}\right)$.
- Kth Moments of $X: E\left(X^{k}\right)$.
- Kth Central Moments of $X: E\left((X-E(X))^{k}\right)$.

Multiple Random Variables and Independence

- Two random variables X and Y can assign values for the same sample space Ω. Essentially, they are looking at the probability space from two different angles: one from $\sigma(X)$ and the other from $\sigma(Y)$.
- For any two Borel sets $A, B \in \mathcal{B}(\mathbb{R}),\{X \in A\}$ and $\{Y \in B\}$ are all events in \mathcal{F} since random variable are \mathcal{F}-measurable. Therefore, it makes sense to consider a new measure $P_{X Y}: \mathcal{B}(\mathbb{R}) \times \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ defined by

$$
P_{X Y}(A, B)=P(\{X \in A\} \cap\{Y \in B\})=P(\{\omega \in \Omega: X \in A, Y \in B\})
$$

- Recall that two events $A, B \in \mathcal{F} \subseteq 2^{\Omega}$ are independent if $P(A \cap B)=P(A) P(B)$. Therefore, we can also talk about the independence of random variables as follows.

Definition: Independence of Random Variables

Two random variables $X: \Omega \rightarrow \mathbb{R}$ and $Y: \Omega \rightarrow \mathbb{R}$ are said to be independent if for any two Borel sets $A, B \in \mathcal{B}(\mathbb{R})$, events $\{X \in A\}$ and $\{Y \in B\}$ are independent.

The case of n random variables is defined analogously.

- In fact, we have a more general definition of independence based on σ-field.

Definition: Independence of σ-Fields

Two σ-fields $\mathcal{G}, \mathcal{H} \subseteq \mathcal{F}$ are said to be independent if any two events $A \in \mathcal{G}$ and $B \in \mathcal{H}$ are independent.

- Hence, two random variables X and Y are independent iff $\sigma(X)$ and $\sigma(Y)$ are.
- We say a random variable X is independent of a σ-field $\mathcal{G} \subseteq \mathcal{F}$ if $\sigma(X)$ and \mathcal{G} are independent.
- Similar to the case of CDF, by considering $A=(-\infty, x]$ and $B=(-\infty, y]$, we can define the joint CDF $F: \mathbb{R}^{2} \rightarrow[0,1]$ by

$$
F_{X Y}(x, y)=P_{X Y}((-\infty, x],(-\infty, y])=P(X \leq x, Y \leq y)
$$

- Clearly, if X and Y are independent, then we have $F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)$. In fact, this condition is necessary and sufficient for independence. It essentially comes from the fact that any Borel set is measurable if and only if any set of form $(-\infty, a]$ is measurable.
- If we have an infinite sequence of random variables X_{1}, X_{2}, \ldots defined on the same probability space, then we say they are independent if any finite collection of them are independent. Furthermore, if $P_{X_{i}}=P_{X_{j}}, \forall i, j$, then we say X_{1}, X_{2}, \ldots are Independent Identically Distributed (i.i.d.).
- Think: what if $X_{1}: \Omega_{1} \rightarrow \mathbb{R}$ and $X_{2}: \Omega_{2} \rightarrow \mathbb{R}$ are defined for different sample space? Well, we can just extend the sample space to $\Omega_{1} \times \Omega_{2}$ by $P(A \times B)=P_{1}(A) P_{2}(B)$ and the random variables are modified to $X_{1}\left(\omega_{1},-\right)=X_{1}\left(\omega_{1}\right)$, where "-" can be anything in Ω_{2}. Clearly, X_{1} and X_{2} are independent if $\Omega_{1} \cap \Omega_{2}=\emptyset$.

Discrete Case: Joint Probability Mass Function

- If $X:(\Omega, \mathcal{F}, P) \rightarrow\left\{D_{X}, 2^{D_{X}}, P_{X}\right\}$ and $Y:(\Omega, \mathcal{F}, P) \rightarrow\left\{D_{Y}, 2^{D_{Y}}, P_{Y}\right\}$ are discrete random variables, then we can talk about the joint PMF by, for any $x \in D_{X}, y \in D_{Y}$, we have

$$
p_{X Y}(x, y)=P(X=x, Y=y)
$$

- For any two sets $A \in 2^{D_{X}}, B \in 2^{D_{Y}}$, we have

$$
\begin{aligned}
P_{X Y}(A, B)= & P(\{\omega: X(\omega) \in A, Y(\omega) \in B\})=P\left(\bigcup_{x_{i} \in A} \bigcup_{y_{j} \in B}\left\{\omega: X(\omega)=x_{i}, Y(\omega)=y_{j}\right\}\right) \\
& =\sum_{x_{i} \in A} \sum_{y_{j} \in B} p_{X Y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

- For any value $x_{i} \in D_{X}$, we have

$$
\begin{aligned}
p_{X}\left(x_{i}\right) & =P\left(\left\{\omega: X(\omega)=x_{i}\right\}\right)=P\left(\left\{\omega: X(\omega)=x_{i}, Y(\omega) \in D_{Y}\right\}\right) \\
& =P\left(\bigcup_{y_{j} \in D_{Y}}\left\{\omega: X(\omega)=x_{i}, Y(\omega)=y_{j}\right\}\right) \\
& =\sum_{y_{j} \in D_{Y}} p_{X Y}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

- The PMF for new random variable (if it is) $Z=g(X, Y)$ can be computed by

$$
p_{Z}(z)=P(Z=z)=P(\{\omega: Z(\omega)=g(X(\omega), Y(\omega))=z\})=\sum_{(x, y) \in g^{-1}(\{z\})} p_{X Y}(x, y)
$$

The expectation of $Z=g(X, Y)$ can be computed as

$$
E(Z)=\sum_{z \in D_{Z}} z p_{Z}(z)=\sum_{z \in D_{Z}} \sum_{(x, y) \in g^{-1}(\{z\})} z p_{X Y}(x, y)=\sum_{(x, y) \in D_{X} \times D_{Y}} g(x, y) p_{X Y}(x, y)
$$

Continuous Case: Joint Probability Density Function

- If $X:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$ and $Y:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{Y}\right)$ are continuous random variables, then we can talk about the joint PDF, which is the function $f_{X Y}$: $\mathbb{R} \times \mathbb{R} \rightarrow[0,1]$ such that

$$
\forall B \in \mathcal{B}\left(\mathbb{R}^{2}\right): P((X, Y) \in B)=\iint_{B} f_{X Y}(x, y) d x d y
$$

- Similar to the discrete case, we also have
$-f_{X}(x)=\int_{\mathbb{R}} f_{X Y}(x, y) d y$ and $f_{Y}(y)=\int_{\mathbb{R}} f_{X Y}(x, y) d x$
$-E(g(X, Y))=\iint_{\mathbb{R}^{2}} g(x, y) f_{X Y}(x, y) d x d y$
- If X and Y are independent, then $f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)$

Computation of Functions

- Question:

Given random variable $X:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$ with $\operatorname{PDF} f_{X}$ and $\operatorname{CDF} F_{X}$, and function $g: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $Y=g(X)$ is a random variable. What are f_{Y} and F_{Y} for Y ?

- Solution:

$F_{Y}(y)=P(g(X) \leq y)=P(g(X) \in(-\infty, y])=P\left(X \in g^{-1}(-\infty, y]\right)=\int_{g^{-1}(-\infty, y]} f(x) d x$

- Example:

Let $X \sim N(0,1)$, i.e., $f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$ and let $Y=g(X)=X^{2}$. Then

$$
P(Y \leq y)=P\left(X^{2} \leq y\right)=P(-\sqrt{y} \leq X \leq \sqrt{y})=\Phi(\sqrt{y})-\Phi(-\sqrt{y})=2 \Phi(\sqrt{y})-1
$$

Then differentiate to obtain

$$
f_{Y}(y)=2 \frac{d}{d y} \Phi(\sqrt{y})=\frac{1}{\sqrt{y}} \Phi^{\prime}(\sqrt{y})=\frac{1}{\sqrt{2 \pi y}} e^{-\frac{1}{2} y}
$$

Transformation of Random Vectors

- Let $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{\mathrm{T}}$ be a random vector, where $X_{i}:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X_{i}}\right)$. It can also be treated as a single random variable $\underline{X}:(\Omega, \mathcal{F}, P) \rightarrow\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right), P_{\underline{X}}\right)$.
- Let us consider a transformation $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. This gives us a new random vector $\underline{Y}=g(\underline{X})$, where $Y_{1}=g_{1}\left(X_{1}, X_{2}, \ldots, X_{n}\right), \ldots, Y_{n}=g_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
- Suppose that the joint PDF $f_{\underline{X}}$ is given. How to determine the joint PDF $f_{\underline{Y}}$ of \underline{Y} ?
- Here we assume that the transformation is invertible, i.e., g^{-1} exists, and g^{-1} is continuous and has continuous derivatives. Then the solution is as follows.

Consider any $C \in \mathcal{B}\left(\mathbb{R}^{n}\right)$. Then

$$
P(\underline{Y} \in C)=P(\{\omega: g(\underline{X}(\omega)) \in C\})=P(g(\underline{X}) \in C)=P(\underline{X} \in B),
$$

where $B=\left\{\underline{x} \in \mathbb{R}^{n}: g(\underline{x}) \in C\right\}$. Since g^{-1} exists, we assume $\underline{X}=h(\underline{Y})$. Then

$$
P(\underline{Y} \in C)=P(\underline{X} \in B)=\int_{B} f_{\underline{X}}(\underline{x}) d \underline{x}=\int_{C} f_{\underline{X}}(h(\underline{y}))|\operatorname{det}(J(h(\underline{y})))| d \underline{y}
$$

where $J(h(\underline{y}))$ is the Jacobian matirx

$$
J(h(\underline{y}))=\left[\begin{array}{cccc}
\frac{\partial h_{1}(y)}{\partial y_{1}} & \frac{\partial h_{1}(y)}{\partial y_{2}} & \cdots & \frac{\partial h_{1}(y)}{\partial y_{n}} \\
\frac{\partial h_{2}(y)}{\partial y_{1}} & \frac{\partial h_{2}(y)}{\partial y_{2}} & \cdots & \frac{\partial h_{2}(y)}{\partial y_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial h_{n}(y)}{\partial y_{1}} & \frac{\partial h_{n}(y)}{\partial y_{2}} & \cdots & \frac{\partial h_{n}(y)}{\partial y_{n}}
\end{array}\right], h=\left[\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{n}
\end{array}\right]
$$

Since the above is true for any $C \in \mathcal{B}\left(\mathbb{R}^{n}\right)$, we conclude that

$$
f_{\underline{Y}}(\underline{y})=f_{\underline{X}}(h(\underline{y})) \operatorname{det}(J(h(\underline{y})))
$$

Independent v.s. Uncorrelated

- In some problems, we are interested in whether or not random variables X and Y have some linear relation. For this requirement, we can use the covariance of X and Y :

$$
\operatorname{cov}(X, Y)=E((X-E(X))(Y-E(Y)))=E(X Y)-E(X) E(Y)
$$

- The correlation of X and Y is defined as

$$
\rho(X, Y)=E\left[\left(\frac{E(X-E(X))}{\sqrt{\operatorname{var}(X)}}\right)\left(\frac{E(Y-E(Y))}{\sqrt{\operatorname{var}(Y)}}\right)\right]=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

We say X and Y are uncorrelated if $\rho(X, Y)=0$, i.e., $\operatorname{cov}(X, Y)=0$.

Properties of Expectations

- $E(a X+b Y)=a E(X)+b E(Y)$

Proof: Only consider the discrete case. Let $A_{x}=\{X=x\}$ and $B_{y}=\{Y=y\}$. Then $(\star)=E\left(\sum_{x, y}(a x+b y) \mathbf{1}_{A_{x} \cap B_{y}}\right)=\sum_{x, y}(a x+b y) P\left(A_{x} \cap B_{y}\right)=\sum_{x, y} a x P\left(A_{x} \cap B_{y}\right)+\sum_{x, y} b y P\left(A_{x} \cap B_{y}\right)$

However, we have
$\sum_{y} P\left(A_{x} \cap B_{y}\right)=P\left(A_{x} \cap\left(\cup_{y} B_{y}\right)\right)=P\left(A_{x} \cap \Omega\right)=P\left(A_{x}\right)$ and $\sum_{x} P\left(A_{x} \cap B_{y}\right)=P\left(B_{y}\right)$
Therefore, we have
$(\star)=\sum_{x} a x \sum_{y} P\left(A_{x} \cap B_{y}\right)+\sum_{y} b y \sum_{x} P\left(A_{x} \cap B_{y}\right)=a \sum_{x} x P\left(A_{x}\right)+b \sum_{y} y P\left(B_{y}\right)=a E(X)+b E(Y)$

- If X and Y are independent, then $E(g(X) h(Y))=E(g(X)) E(h(Y))$.

Proof: Still for the discrete case.
$E(g(X) h(Y))=\sum_{x, y} g(x) h(y) P\left(A_{x} \cap B_{y}\right)=\sum_{x, y} g(x) h(y) P\left(A_{x}\right) P\left(B_{y}\right)=\sum_{x} g(x) P\left(A_{x}\right) \sum_{y} h(y) P\left(B_{y}\right)$

- (1) $\operatorname{var}(a X)=a^{2} \operatorname{var}(X)$;
(2) If X and Y are uncorrelated, the $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$.
- The above shows that independent implies uncorrelated. However, the converse is not necessarily true because uncorrelated just means that X and Y do not have linear relation. For example, consider X and Y with the following joint PMF

$$
P_{X Y}(1,1)=P_{X Y}(1,-1)=0.25 \text { and } P_{X Y}(-1,0)=0.5
$$

- X and Y are uncorrelated: $\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=0$
- X and Y are dependent, however: $P(X=1, Y=1)=\frac{1}{4} \neq P(X=1) P(Y=1)=\frac{1}{8}$

