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3 Functions of Random Variables
Expectations

▶ Suppose that we perform the same experiment independently for N times and get nu-
merical outcomes x1, x2, . . . , xN . Then the average outcome is m = 1

N

∑N
i xi

▶ In advance of performing the experiments, by knowing the distribution, we can expect
that there are NpX(x) outcomes will take value x. So the “expect average” should be
m ≈ 1

N

∑
x∈R xNpX(x) =

∑
x∈R xpX(x). This leads to the concept of expectation.

Definition: Expectation

A random variable X : Ω → R is said to be integrable if
∫
Ω
|X|dP < ∞. If so, then

its expectation is defined by

E(X) =

∫
Ω

XdP =

∫
R
xdPX =


∑

xi
xipX(xi) if X is discrete∫∞

−∞ xfX(x)dx if X is continuous

▶ Remark: a random variable may not have an expectation
(1) Consider the Cauchy random variable with PDF fX(x) =

1
π

λ
λ2+x2 . Take λ = 1,

E(X) =
1

π

∫ ∞

−∞
x

1

1 + x2
dx =

1

2π

∫ ∞

−∞
d(ln(1 + x2)) =

1

2π
ln(1 + x2)

∣∣∣∞
−∞

= ∞−∞

(2) Keep tossing a coin until H appears. If H appears at the kth time, then you get ¥2k

E(X) =
1

2
× 2 +

1

4
× 4 +

1

8
× 8 + · · · = ∞

Functions of Random Variables

▶ We call that a random variable X : Ω → R is a F -measurable function on Ω. If we further
consider a function g : R → R, then this gives us a new function g ◦X : Ω → R. Usually,
we denote this new function as Y = g(X). Note that Y = g(X) may not be a random
variable. To have so, we need to require that

∀B ∈ B(R) : g−1(B) ∈ B(R) ⇒ X−1(g−1(B)) ∈ F

▶ If g(X) is a random variable and its expectation exists, then

E(g(X)) =

∫
Ω

g(X)dP =

∫
R
g(x)dPX(x) =


∑

i g(xi)pX(xi) if X is discrete∫∞
−∞ g(x)fX(x)dx if X is continuous

▶ There are some useful expectations of functions
– Variance of X: var(X) = E((X − E(X))2).
– Kth Moments of X: E(Xk).
– Kth Central Moments of X: E((X − E(X))k).
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Multiple Random Variables and Independence

▶ Two random variables X and Y can assign values for the same sample space Ω. Essentially,
they are looking at the probability space from two different angles: one from σ(X) and
the other from σ(Y ).

▶ For any two Borel sets A,B ∈ B(R), {X ∈ A} and {Y ∈ B} are all events in F since
random variable are F -measurable. Therefore, it makes sense to consider a new measure
PXY : B(R)× B(R) → [0, 1] defined by

PXY (A,B) = P ({X ∈ A} ∩ {Y ∈ B}) = P ({ω ∈ Ω : X ∈ A, Y ∈ B})

▶ Recall that two events A,B ∈ F ⊆ 2Ω are independent if P (A ∩ B) = P (A)P (B).
Therefore, we can also talk about the independence of random variables as follows.

Definition: Independence of Random Variables

Two random variables X : Ω → R and Y : Ω → R are said to be independent if
for any two Borel sets A,B ∈ B(R), events {X ∈ A} and {Y ∈ B} are independent.

The case of n random variables is defined analogously.

▶ In fact, we have a more general definition of independence based on σ-field.

Definition: Independence of σ-Fields

Two σ-fields G,H ⊆ F are said to be independent if any two events A ∈ G and
B ∈ H are independent.

– Hence, two random variables X and Y are independent iff σ(X) and σ(Y ) are.

– We say a random variable X is independent of a σ-field G ⊆ F if σ(X) and G
are independent.

▶ Similar to the case of CDF, by considering A = (−∞, x] and B = (−∞, y], we can define
the joint CDF F : R2 → [0, 1] by

FXY (x, y) = PXY ((−∞, x], (−∞, y]) = P (X ≤ x, Y ≤ y)

▶ Clearly, if X and Y are independent, then we have FXY (x, y) = FX(x)FY (y). In fact, this
condition is necessary and sufficient for independence. It essentially comes from the fact
that any Borel set is measurable if and only if any set of form (−∞, a] is measurable.

▶ If we have an infinite sequence of random variables X1, X2, . . . defined on the same prob-
ability space, then we say they are independent if any finite collection of them are in-
dependent. Furthermore, if PXi

= PXj
,∀i, j, then we say X1, X2, . . . are Independent

Identically Distributed (i.i.d.).

▶ Think: what if X1 : Ω1 → R and X2 : Ω2 → R are defined for different sample space?
Well, we can just extend the sample space to Ω1 × Ω2 by P (A × B) = P1(A)P2(B) and
the random variables are modified to X1(ω1,−) = X1(ω1), where “−” can be anything in
Ω2. Clearly, X1 and X2 are independent if Ω1 ∩ Ω2 = ∅.
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Discrete Case: Joint Probability Mass Function

▶ If X : (Ω,F , P ) → {DX , 2
DX , PX} and Y : (Ω,F , P ) → {DY , 2

DY , PY } are discrete
random variables, then we can talk about the joint PMF by, for any x ∈ DX , y ∈ DY ,
we have

pXY (x, y) = P (X = x, Y = y)

▶ For any two sets A ∈ 2DX , B ∈ 2DY , we have

PXY (A,B) =P ({ω : X(ω) ∈ A, Y (ω) ∈ B}) = P (
⋃
xi∈A

⋃
yj∈B

{ω : X(ω) = xi, Y (ω) = yj})

=
∑
xi∈A

∑
yj∈B

pXY (xi, yj)

▶ For any value xi ∈ DX , we have

pX(xi) =P ({ω : X(ω) = xi}) = P ({ω : X(ω) = xi, Y (ω) ∈ DY })

=P (
⋃

yj∈DY

{ω : X(ω) = xi, Y (ω) = yj})

=
∑

yj∈DY

pXY (xi, yj)

▶ The PMF for new random variable (if it is) Z = g(X,Y ) can be computed by

pZ(z) = P (Z = z) = P ({ω : Z(ω) = g(X(ω), Y (ω)) = z})=
∑

(x,y)∈g−1({z})

pXY (x, y)

The expectation of Z = g(X,Y ) can be computed as

E(Z) =
∑
z∈DZ

zpZ(z) =
∑
z∈DZ

∑
(x,y)∈g−1({z})

zpXY (x, y) =
∑

(x,y)∈DX×DY

g(x, y)pXY (x, y)

Continuous Case: Joint Probability Density Function

▶ If X : (Ω,F , P ) → (R,B(R), PX) and Y : (Ω,F , P ) → (R,B(R), PY ) are continuous
random variables, then we can talk about the joint PDF, which is the function fXY :
R× R → [0, 1] such that

∀B ∈ B(R2) : P ((X,Y ) ∈ B) =

∫∫
B

fXY (x, y)dxdy

▶ Similar to the discrete case, we also have

– fX(x) =
∫
R fXY (x, y)dy and fY (y) =

∫
R fXY (x, y)dx

– E(g(X,Y )) =
∫∫

R2 g(x, y)fXY (x, y)dxdy

– If X and Y are independent, then fXY (x, y) = fX(x)fY (y)
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Computation of Functions

▶ Question:
Given random variable X : (Ω,F , P ) → (R,B(R), PX) with PDF fX and CDF FX , and
function g : R → R s.t. Y = g(X) is a random variable. What are fY and FY for Y ?

▶ Solution:
FY (y) = P (g(X) ≤ y) = P (g(X) ∈ (−∞, y]) = P (X ∈ g−1(−∞, y]) =

∫
g−1(−∞,y]

f(x)dx

▶ Example:
Let X ∼ N(0, 1), i.e., fX(x) = 1√

2π
e−

x2

2 and let Y = g(X) = X2. Then

P (Y ≤ y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y) = Φ(
√
y)− Φ(−√

y) = 2Φ(
√
y)− 1

Then differentiate to obtain

fY (y) = 2
d

dy
Φ(

√
y) =

1
√
y
Φ′(

√
y) =

1√
2πy

e−
1
2
y

Transformation of Random Vectors

▶ Let X = (X1, X2, . . . , Xn)
T be a random vector, where Xi : (Ω,F , P ) → (R,B(R), PXi

).
It can also be treated as a single random variable X : (Ω,F , P ) → (Rn,B(Rn), PX).

▶ Let us consider a transformation g : Rn → Rn. This gives us a new random vector
Y = g(X), where Y1 = g1(X1, X2, . . . , Xn), . . . , Yn = gn(X1, X2, . . . , Xn).

▶ Suppose that the joint PDF fX is given. How to determine the joint PDF fY of Y ?

▶ Here we assume that the transformation is invertible, i.e., g−1 exists, and g−1 is continuous
and has continuous derivatives. Then the solution is as follows.
Consider any C ∈ B(Rn). Then

P (Y ∈ C) = P ({ω : g(X(ω)) ∈ C}) = P (g(X) ∈ C) = P (X ∈ B),

where B = {x ∈ Rn : g(x) ∈ C}. Since g−1 exists, we assume X = h(Y ). Then

P (Y ∈ C) = P (X ∈ B) =

∫
B

fX(x)dx =

∫
C

fX(h(y))|det(J(h(y)))|dy

where J(h(y)) is the Jacobian matirx

J(h(y)) =


∂h1(y)
∂y1

∂h1(y)
∂y2

· · · ∂h1(y)
∂yn

∂h2(y)
∂y1

∂h2(y)
∂y2

· · · ∂h2(y)
∂yn... ... · · · ...

∂hn(y)
∂y1

∂hn(y)
∂y2

· · · ∂hn(y)
∂yn

 , h =


h1

h2
...
hn


Since the above is true for any C ∈ B(Rn), we conclude that

fY (y) = fX(h(y))det(J(h(y)))
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Independent v.s. Uncorrelated

▶ In some problems, we are interested in whether or not random variables X and Y have
some linear relation. For this requirement, we can use the covariance of X and Y :

cov(X,Y ) = E((X − E(X))(Y − E(Y ))) = E(XY )− E(X)E(Y )

▶ The correlation of X and Y is defined as

ρ(X,Y ) = E

[(
E(X − E(X))√

var(X)

)(
E(Y − E(Y ))√

var(Y )

)]
=

cov(X,Y )√
var(X)var(Y )

We say X and Y are uncorrelated if ρ(X,Y ) = 0, i.e., cov(X,Y ) = 0.

Properties of Expectations

▶ E(aX + bY ) = aE(X) + bE(Y ) .
Proof: Only consider the discrete case. Let Ax = {X = x} and By = {Y = y}. Then

(⋆) = E(
∑
x,y

(ax+by)1Ax∩By) =
∑
x,y

(ax+by)P (Ax∩By) =
∑
x,y

axP (Ax∩By)+
∑
x,y

byP (Ax∩By)

However, we have∑
y

P (Ax ∩By) = P (Ax ∩ (∪yBy)) = P (Ax ∩ Ω) = P (Ax) and
∑
x

P (Ax ∩By) = P (By)

Therefore, we have

(⋆) =
∑
x

ax
∑
y

P (Ax∩By)+
∑
y

by
∑
x

P (Ax∩By) = a
∑
x

xP (Ax)+b
∑
y

yP (By) = aE(X)+bE(Y )

▶ If X and Y are independent, then E(g(X)h(Y )) = E(g(X))E(h(Y )) .
Proof: Still for the discrete case.

E(g(X)h(Y ))=
∑
x,y

g(x)h(y)P (Ax∩By)=
∑
x,y

g(x)h(y)P (Ax)P (By)=
∑
x

g(x)P (Ax)
∑
y

h(y)P (By)

▶ (1) var(aX) = a2var(X);
(2) If X and Y are uncorrelated, the var(X + Y ) = var(X) + var(Y ).

▶ The above shows that independent implies uncorrelated. However, the converse is not
necessarily true because uncorrelated just means that X and Y do not have linear
relation. For example, consider X and Y with the following joint PMF

PXY (1, 1) = PXY (1,−1) = 0.25 and PXY (−1, 0) = 0.5

– X and Y are uncorrelated: cov(X,Y ) = E(XY )− E(X)E(Y ) = 0

– X and Y are dependent, however: P (X = 1, Y = 1) = 1
4
̸= P (X = 1)P (Y = 1) = 1
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