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4 Conditional Expectations
Conditional Probability: Discrete Case

▶ Let X : (Ω,F , P ) → (DX , 2
DX , PX) and Y : (Ω,F , P ) → (DY , 2

DY , PY ) be two random
variables with joint PMF pXY (x, y).

▶ When X takes value xi∈DX , the conditional probability that Y takes value yj∈DY is

P (Y = yj | X = xi) =
P (X = xi, Y = yj)

P (X = xi)
=

pXY (xi, yj)

pX(xi)
=: pY |X(yj | xi)

▶ Using this notation, for any B ∈ 2DY and A ∈ F , we have

P (Y ∈B | A)= P ({ω : Y (ω) = B,ω ∈ A})
P (A)

=
P (Y −1(B) ∩ A})

P (A)

If we take A as X = xi, then

P (Y ∈B | X=xi) =
P (Y ∈B,X = xi)

P (X = xi)
=

∑
yj∈B P (X=xi, Y =yj)

P (X = xi)
=
∑
yj∈B

pY |X(yj | xi)

If we take A ∈ 2DX , then

P (Y ∈B | X∈A)= P (Y ∈B,X∈A)
P (X∈A)

=

∑
xi∈A

∑
yj∈B pXY (xi, yj)∑

xi∈A pX(xi)

Note that the above is NOT equal to
∑

xi∈A
∑

yj∈B pY |X(yj | xi). Try to find a counter-
example by yourself.

Conditional Probability: Continuous Case

▶ For continuous random variable X : (Ω,F , P ) → (R,B(R), PX), let us consider

(⋆) = P (Y ∈ B | x < X ≤ x+∆x) =
P (Y ∈ B,X ∈ (x, x+∆x])

P (X ∈ (x, x+∆x])

Then take the limit as ∆x→ 0, we get

lim
∆x→0

(⋆) =

∫
B
fXY (x, y)∆xdy

fX(x)∆x
=

∫
B
fXY (x, y)dy

fX(x)
=

∫
B

fXY (x, y)

fX(x)
dy

Therefore, we define

fY |X(y | x) := fXY (x, y)

fX(x)

as the conditional PDF of Y given X.
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Conditional Expectation: Discrete Case

▶ Then given any xi ∈ DX , the distribution as well as the expectation of Y changes from

E(Y ) =
∑

yj∈DY

yjpY (yj) to E(Y | X = xi) =
∑

yj∈DY

yjpY |X(yj | xi)

Therefore, E(Y | X = xi) is the conditional expectation of Y given X = xi, which is a
real number.

▶ Therefore, it makes sense to consider a function ψ : R → R defined by:

∀x ∈ DX : ψ(xi) = E(Y | X = xi).

Hence, ψ(X) = E(Y | X) is called the conditional expectation of Y given X, which
is a new random variable E(Y | X)(ω) = E(Y | X = X(ω)).

▶ In fact, this new random variable E(Y | X) has the following properties

(1) it is measurable w.r.t. the σ-field σ(X) = {X−1(A) : A ∈ 2DX}
(2) for every xi ∈ DX , we have∫

{X=xi}
E(Y | X)dP =

∫
{X=xi}

Y dP

The first property holds because for any ω ∈ X−1({xi}), E(Y | X)(ω) has the same value.
The second property comes from the following calculation∫
{X=xi}

E(Y | X)dP =E(Y | X = xi)P (X = xi) =
∑

yj∈DY

yjP (Y = yj | X = xi)P (X = xi)

=
∑

yj∈DY

yjP (Y = yj, X = xi) =

∫
{X=xi}

Y dP

By denoting Z = E(Y | X), this can be further simplied as

E(Z1{X=x1}) = E(Y 1{X=x1})

▶ For example, E(1A | 1B)(ω) =


P (A | B) if ω ∈ B

P (A | Bc) if ω ̸∈ B

▶ The essence of conditioning or conditional expectation can be interpreted from the infor-
mation point of view. Suppose that X and Y are both defined on (Ω,F , P ) and are not
independent. Essentially, they are two perspectives of the probability space! Therefore,
observing something concrete event will of course give you more information. However,
just having the new perspective Y the thing itself will also give you new information!
This information is actually σ(Y ). This leads to the basic idea of our later development
that information is actually a sub σ-field G ⊆ F .

▶ Suppose that Ω = {1, 2, . . . , 6},F = 2Ω and P (k) = 1/6, ∀k, which is the model for die
toss. Then the information “whether an even number was thrown” is encoded as the
σ-field G = {∅, {2, 4, 6}, {1, 3, 5},Ω}.
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Properties of Conditional Expectation

▶ Let X : (Ω,F , P ) → (DX , 2
DX , PX) and Y : (Ω,F , P ) → (DX , 2

DX , PY ). Then

Theorem: Law of Total Expectation

E(Y ) = E(E(Y |X))

This theorem is also called the law of total expectation, the law of iterated expec-
tation (LIE), the tower rule, and the smoothing theorem.

Proof: We only prove the discrete case, but it holds for any random variable.

E(E(Y |X)) =
∑

xi∈DX

E(Y |X = xi)pX(xi) =
∑

xi∈DX

( ∑
yi∈DY

yjpY |X(yj | xi)

)
pX(xi)

=
∑

xi∈DX

∑
yi∈DY

yjpXY (xi, yj) =
∑

yi∈DY

yjpY (yj)

= E(Y )

▶ Let A1∪̇A2∪̇ · · · be a countable partition of Ω. Then E(X) =
∞∑
i=1

E(X | Ai)P (Ai) .

▶ Let X : (Ω,F , P ) → (DX , 2
DX , PX) and Y = h(X). Then E(Y | X) = h(X) .

Proof: It suffices to show that E(h(X) | X = xi) = h(xi) for any xi ∈ DX . First,

E(h(X) | X = xi) =
∑

yj∈DY

yjpY |X(yj | xj) =
∑

yj∈DY

yjP (Y = yj | X = xj)

Furthermore,
P (Y = yj | X = xj) =

{
1 if yj = h(xi)
0 otherwise

Therefore, we have E(h(X) | X = xi) = h(xi).

▶ Let X : (Ω,F , P ) → (DX , 2
DX , PX) and Y : (Ω,F , P ) → (DX , 2

DX , PY ). Then

E(g(X)Y | X) = g(X)E(Y | X)

Proof: It suffices to show that E(g(xi)Y | X = xi) = g(xi)E(Y | X = xi) for any
xi ∈ DX , which is obvious as g(xi) is just a constant.

3



AU7022 Stochastic Methods in Systems & Control Xiang Yin

Examples of Conditional Expectations

▶ Example of the Computation of E(X | Y)
A clinic has N people come to take COVID-19 vaccines, where N has the Poisson distri-
bution with parameter λ. Each person has probability p to be immune. Let K be the
total number of people get immune from the clinic. Find E(K | N).
We are given that

fN(n) =
λn

n!
e−λ, fK|N(k | n) =

(
n

k

)
pk(1− p)n−k

Therefore,
ψ(n) = E(K | N = n) =

∑
k

kfK|N(k | n) = pn

Thus, we have

E(K | N) = ψ(N) = pN and E(K) = E(E(K | N)) = pE(N) = pλ

Question: what is E(N | K)?

▶ Connection to Mean Square Error Estimation
Suppose that we are given X and Y with joint PDF fXY . We observe Y and want to
determine an estimate X̂ of X, where X̂ = h(Y ), so as to minimize E((X − X̂)2).
The solution is as follows.

E((X − X̂)2)

=E(((X − E(X | Y )) + (E(X | Y )− X̂))2)

=E((X − E(X | Y ))2) + E((E(X | Y )− X̂︸ ︷︷ ︸
=:g(Y )

)2) + 2E((X − E(X | Y ))(E(X | Y )− X̂︸ ︷︷ ︸
=:g(Y )

))

=E((X − E(X | Y ))2) + E(g2(Y )) + 2E((X − E(X | Y ))g(Y ))

For the last term of the above, have

E((X−E(X | Y ))g(Y )) = E(Xg(Y ))−E(E(X | Y )g(Y )) = 0

Therefore, E((X − X̂)2) is minimized when h(Y ) = E(X | Y ).
The above also has a nice geometric interpretation. Essentially, it says that (X − E(X |
Y )) and g(Y ) are orthogonal for any g(·). Therefore, the best estimate has to be X −
(X − E(X | Y )) = E(X | Y ).
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General Definition of Conditioning

▶ When an arbitrary event B ∈ F in the probability space is given, the expectation of the
random variable will be changed. Essentially, B induces a new probability measure

P (? | B) =
P (?, B)

P (B)
=

∫
B

1?
dP

P (B)

Definition: Conditioning on an Event

For any integrable random variable X : Ω → R and any event B ∈ F such that
P (B) ̸= 0, the conditional expectation of X given B is defined by

E(X | B) =
1

P (B)

∫
B

XdP

For example, for the indicator random variable 1A : Ω → {0, 1}, we have

E(1A | B) =
1

P (B)

∫
B

1AdP =
1

P (B)

∫
A∩B

dP =
1

P (B)
P (A ∩B) = P (A | B)

▶ Given a random variable X : Ω → R, recall that σ(X) = {X−1(B) : B ∈ B(R)} is the
its generated σ-field. For the discrete case, for each xi ∈ DX , {X = xi} is an event in
σ(X), and E(Y | X = xi) is the conditional expectation given {X = xi}. Therefore,
we can think E(Y | X) as a random variable whose generated σ-field is also σ(X).
Furthermore,

∫
{X=xi}E(Y | X)dP =

∫
{X=xi} Y dP suggests that, for any B ∈ 2DX , we

also have
∫
B
E(Y | X)dP =

∫
B
Y dP . We can generalize this requirement as follows.

Definition: Conditioning on an Random Variable

Let Y : Ω → R be an integrable random variable and X : Ω → R be an arbitrary
random variable. Then the conditional expectation of Y given X is as a new
random variable E(Y | X) such that it is σ(X)-measurable, and for any B ∈ σ(X)∫

B

E(Y | X)dP =

∫
B

Y dP

▶ In fact, we can replace σ(X) above by any σ-field G ⊆ F .

Definition: Conditioning on an σ-Field

Let X : Ω → R be an integrable random variable and G be a σ-field contained in
F . Then the conditional expectation of X given G is as a new random variable
E(Y | G) such that it is G-measurable, and for any B ∈ G∫

B

E(Y | G)dP =

∫
B

Y dP

▶ You may ask why E(Y | G) exists or it is unique. The answer is YES: E(Y | G) always
exists and unique due to the Radon-Nikodym Theorem, which will not be discussed here.
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More About the Conditional Expectation

Let (Ω,F , P ) be a probability space, G ⊆ F be a sub-σ-field and X,Y be random variables
with E(|X|), E(|Y |) <∞. Then the conditional expectations have the following properties:

▶ Linearity: E(aX + bY | G) = aE(X | G) + bE(Y | G).

▶ Independence: If X is independent of G, then E(X | G) = E(X) .

▶ Tower property: If H ⊆ G, then E(E(X | G) | H) = E(X | H).

▶ Taking out what is known-1: If X is G-measurable, then E(X | G) = X.

▶ Taking out what is known-2: If X is G-measurable, then E(XY | G) = XE(Y | G) .

▶ For G = {∅,Ω}, we have E(X | G) = E(X).
Proof: We take verify that, by taking E(X | G) to be constant random variable E(X),
it satisfies the requirements of conditional expectation. Specifically, we have

∫
Ω
E(X |

G)dP =
∫
Ω
E(X)dP = E(X) =

∫
Ω
XdP . Furthermore, such E(X | G) is uniqiue.

▶ E(E(X | G)) = E(X).
Proof: By taking Ω ∈ G, we have E(E(X | G)) =

∫
Ω
E(X | G)dP =

∫
Ω
XdP = E(X).

▶ If B ∈ G, then E(E(X | G) | B) = E(X | B).
Proof: E(E(X | G) | B) =

∫
B E(X|G)dP

P (B)
=

∫
B XdP

P (B)
= E(X | B).
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