8 Parameter Estimations and Sufficient Statistics

A General Model for Statistics

- Many problems have the following common structure. A continuous signal $\{x(t): t \in \mathbb{R}\}$ is measured at t_{1}, \ldots, t_{n} producing vector $x=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=x\left(t_{i}\right)$. The vector x is a realization of a random vector or a random process $X=\left(X_{1}, \ldots, X_{n}\right)$ with a joint distribution which is of known form but depends on some unknown parameters $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$. The estimation theory aims to estimate these unknown parameters θ based on the observed realization x.
- Formally, the above problem has the following ingredients:
- $X=\left(X_{1}, \ldots, X_{n}\right)$ is a vector of random measurements or observations taken over the course of the experiment
- \mathcal{X} is sample or measurement space of realizations x of X, e.g., $\mathcal{X}=\mathbb{R} \times \cdots \times \mathbb{R}$
$-\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ is an unknown parameter vector of interest
$-\Theta$ is parameter space for the experiment
- $P_{\theta}: \mathcal{B}\left(\mathbb{R}^{n}\right) \rightarrow[0,1]$ is a probability measure such that, for any Borel set or event B, we have

$$
P_{\theta}(B)=\text { probability of event } B \subseteq \mathcal{X}= \begin{cases}\int_{B} f(x ; \theta) d x & \text { if } X \text { is continuous } \\ \sum_{x \in B} p(x ; \theta) & \text { if } X \text { is discrete }\end{cases}
$$

Such $\left\{P_{\theta}\right\}_{\theta \in \Theta}$ is called the statistical model of the experiment.
The probability model also induces the joint C.D.F. associated with X

$$
F(x ; \theta)=P_{\theta}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right),
$$

which is assumed to be known for each $\theta \in \Theta$. We denote by $E_{\theta}(X)$ the expectation of random variable X given $\theta \in \Theta$.

Parametric Statistics (Estimation Theory)

- The basic estimation problem is as follows. The observations $X=\left(X_{1}, \ldots, X_{n}\right)$ is actually generated by a true parameter $\theta_{0} \in \Theta$. In case X_{i} are i.i.d., we have $X_{i} \sim P_{\theta_{0}}(\cdot)$. Then we want to find an estimator $\hat{\theta}: X \rightarrow \Theta$ such that the estimate $\hat{\theta}\left(X_{1}, \ldots, X_{n}\right)$ approximates θ_{0} "optimally".
- The question is that how to describe whether $\hat{\theta}$ is a good estimator. Depending on whether or not we have prior knowledge about the distribution θ, we will discuss two different approaches: Bayesian estimation and non-random estimation.

Definition of Sufficient Statistics

- Let us consider an i.i.d. observations $X=\left(X_{1}, \ldots, X_{n}\right)$ with distribution P_{θ} from the family $\left\{P_{\theta}: \theta \in \Theta\right\}$. Imagine that there are two people A and B, and that
- A observes the entire sample $\left(X_{1}, \ldots, X_{n}\right)$;
- B observes only a smaller vector $T=T\left(X_{1}, \ldots, X_{n}\right)$ which is a function of the sample. In this case, function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \leq n$. is called a statistic.

Clearly, A has more information about the distribution of the data and, in particular, about the unknown parameter θ. However, in some cases, for some choices of function T (called sufficient statistics) B will have as much information about θ as A has.

- To see this more clearly, for observations $X=\left(X_{1}, \ldots, X_{n}\right)$ and statistic $T(X)$, the conditional probability

$$
f_{X \mid T(X)}(x \mid t, \theta)=P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n} \mid T(X)=t\right)
$$

is, typically, a function of both t and θ. For some choices of statistic T, however, $f_{X \mid T(X)}(x \mid t, \theta)$ can be θ-independent.

- To see the above argument, let us consider consider the case $X=\left(X_{1}, \ldots, X_{n}\right)$, a sequence of n Bernoulli trials with success probability parameter θ and the statistic $T(X)=X_{1}+$ $\cdots+X_{n}$ the total number of successes. Then

$$
P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}=\theta^{t}(1-\theta)^{n-t},
$$

where $t=T\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots x_{n}$. Therefore, if $\sum_{i=1}^{n} x_{i} \neq t$, then we know that the statistic is incompatible with the observation. Otherwise, we have

$$
f_{X \mid T(X)}(x \mid t, \theta)=\frac{f_{X}(x \mid \theta)}{f_{T(X)}(t \mid \theta)}=\frac{P_{\theta}\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)}{P_{\theta}(T(X)=t)}=\frac{\theta^{t}(1-\theta)^{n-t}}{\binom{n}{t} \theta^{t}(1-\theta)^{n-t}}=\binom{n}{t}^{-1}
$$

which does not depend on the parameter θ. This means that all information about θ in X has been summarized by $T(X)$. This motivates the following definition.

Definition: Sufficient Statistics

A statistic $T=T(X)$ is said to be sufficient for parameter θ if

$$
P_{\theta}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n} \mid T(X)=t\right)=G(x, t)
$$

where $G(\cdot, \cdot)$ is a function that does not depend on θ. Equivalent, we have
$-p(x \mid t, \theta)=P_{\theta}(X=x \mid T(X)=t)=G(x, t)$ if X is discrete;

- $f(x \mid t, \theta)=G(x, t)$ if X is continuous.
- Thus, by the law of total probability

$$
P_{\theta}\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right)=P\left(X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n} \mid T(X)=T(x)\right) P_{\theta}(T(X)=T(x))
$$

and once we know the value of the sufficient statistic, we cannot obtain any additional information about the value of θ from knowing the observed values.

Neyman-Fisher Factorization Theorem

- The above definition of sufficient statistics is often difficult to use since it involves derivation of the conditional distribution of X given T. However, when the random variable X is discrete or continuous a simpler way to verify sufficiency is through the Neyman-Fisher factorization criterion.

Theorem: Fisher Factorization Criterion

A statistic $T=T(X)$ is sufficient for θ if and only if functions g and h can be found such that

$$
f_{X}(x \mid \theta)=g(T(x), \theta) h(x)
$$

We only proof the case of discrete random variables, i.e., $f_{X}(x ; \theta)$ is the PMF.

- (\Rightarrow) Because T is a function of x, we have

$$
f_{X}(x \mid \theta)=f_{X, T(X)}(x, T(x) \mid \theta)=f_{X \mid T(X)}(x \mid T(x), \theta) f_{T(X)}(T(x) \mid \theta)
$$

Since T is sufficient, then $f_{X \mid T(X)}(x \mid T(x), \theta)$ is not a function of θ and we can set it to be $h(X)$. The second term is a function of $T(x)$ and θ. We will write it $g(T(x), \theta)$.

- (\Leftarrow) Suppose that we have the factorization. By the definition of conditional expectation,

$$
f_{X \mid T(X)}(x \mid t, \theta)=\frac{f_{X, T(X)}(x, t \mid \theta)}{f_{T(X)}(t \mid \theta)}
$$

For the numerator, we have

$$
f_{X, T(X)}(x, t \mid \theta)=\left\{\begin{array}{cl}
0 & \text { if } T(x) \neq t \\
f_{X}(x \mid \theta)=g(t, \theta) h(x) & \text { otherwise }
\end{array}\right.
$$

Furthermore, for the denominator, we have

$$
f_{T(X)}(t \mid \theta)=\sum_{\tilde{x}: T(\tilde{x})=t} f_{X}(\tilde{x} \mid \theta)=\sum_{\tilde{x}: T(\tilde{x})=t} g(t, \theta) h(\tilde{x})
$$

Therefore, we have

$$
f_{X \mid T(X)}(x \mid t, \theta)=\frac{g(t, \theta) h(x)}{\sum_{\tilde{x}: T(\tilde{x})=t} g(t, \theta) h(\tilde{x})}=\frac{h(x)}{\sum_{\tilde{x}: T(\tilde{x})=t} h(\tilde{x})},
$$

which is independent of θ and, therefore, T is sufficient.

- For example, in the maximum likelihood estimation, we have to find the best estimate $\theta \in \Theta$ such that the likelihood function

$$
L(\theta \mid x)=f_{X}(x \mid \theta)
$$

is maximized for the observed sample $x=\left(x_{1}, \ldots, x_{n}\right)$. For sufficient statistics, since $f_{X}(x \mid \theta)=g(T(x), \theta) h(x)$, maximizing the likelihood is equivalent to maximizing $g(T(x), \theta)$ and the maximum likelihood estimator $\hat{\theta}(T(x))$ is a function of the sufficient statistic.

General Examples of Sufficient Statistics

- Example 1: Entire Sample
$X=\left(X_{1}, \ldots, X_{n}\right)$ is clearly sufficient but not very interesting.
- Example 2: Rank Ordered Sample
$X_{(1)}, \ldots, X_{(n)}$ is sufficient when X_{i} are i.i.d. This is because, under the i.i.d. setting,

$$
f\left(x_{1}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \theta\right)=\prod_{i=1}^{n} f\left(x_{(i)} \mid \theta\right)
$$

- Example 3: Binary Likelihood Ratios

Suppose that θ only takes two possible values $\Theta=\left\{\theta_{0}, \theta_{1}\right\}$, or simply $\theta \in\{0,1\}$. This gives the binary decision problem: "decide between $\theta=0$ versus $\theta=1$. Then the "likelihood ratio" (assume it is finite)

$$
\Lambda(X)=\frac{f_{1}(X)}{f_{0}(X)}=\frac{f(X \mid 1)}{f(X \mid 0)}
$$

is sufficient for θ, because we can write

$$
f_{\theta}(X)=\theta f_{1}(X)+(1-\theta) f_{0}(X)=(\underbrace{\theta \Lambda(X)+(1-\theta)}_{g(T, \theta)}) \underbrace{f_{0}(X)}_{h(X)}
$$

- Example 4: Discrete Likelihood Ratios

Suppose that θ takes p possible values, i.e., $\Theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$. Then the vector of $p-1$ likelihood ratios (assume it is finite)

$$
\Lambda(X)=\left(\frac{f_{\theta_{1}}(X)}{f_{\theta_{p}}(X)}, \ldots, \frac{f_{\theta_{p-1}}(X)}{f_{\theta_{p}}(X)}\right)=\left(\Lambda_{1}(X), \ldots, \Lambda_{p-1}(X)\right)
$$

is sufficient for θ. Try to prove this as a homework.

- Example 5: Likelihood Ratio Trajectory

When Θ is a set of scalar parameters θ the likelihood ratio trajectory over Θ is

$$
\Lambda(X)=\left\{\frac{f_{\theta}(X)}{f_{\theta_{0}}(X)}\right\}_{\theta \in \Theta}
$$

is sufficient for θ. Here θ_{0} is an arbitrary reference point in Θ for which the trajectory is finite for all X. When θ is not a scalar, this becomes a likelihood ratio surface, which is also a sufficient statistic.

- We say $T_{\text {min }}$ is a minimal sufficient statistic if for any sufficient statistic T there exists a function q such that $T_{\text {min }}=q(T)$. Finding minimal sufficient statistic is in general difficult; the following provides a sufficient condition for $T(X)$ to be be minimal

$$
\forall x, x^{\prime} \in \mathcal{X}: \Lambda(T(x))=\Lambda\left(T\left(x^{\prime}\right)\right) \Rightarrow T(x)=T\left(x^{\prime}\right)
$$

Note that $\Lambda(t)$ is well-defined because $\Lambda(x)=\Lambda(T(x))$ for any sufficient statistic T as we discussed above.

More Examples of Sufficient Statistics

- Example 1: Bernoulli Distribution

Suppose that $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is i.i.d. and each X_{i} satisfies the Bernoulli distribution with unknown probability, i.e., $P_{\theta}\left(X_{i}=1\right)=\theta$ and $P_{\theta}\left(X_{i}=0\right)=1-\theta$. Then we claim that $T(X)=\sum_{i=1}^{n} X_{i}$ is a sufficient statistic. To see this, we write the joint PMF as

$$
\begin{aligned}
p_{X}(X ; \theta) & =\prod_{i=1}^{n} p_{X_{i}}\left(X_{i} ; \theta\right)=\prod_{i=1}^{n} \theta^{X_{i}}(1-\theta)^{1-X_{i}}=\prod_{i=1}^{n}(1-\theta)\left(\frac{\theta}{1-\theta}\right)^{X_{i}} \\
& =\underbrace{(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{T(X)}}_{g(T(X, \theta))} \cdot \underbrace{1}_{h(X)}
\end{aligned}
$$

Clearly, this sufficient statistic is minimal as it is already one-dimensional.

- Example 2: Uniform Distribution

Suppose that $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is i.i.d. and each X_{i} satisfies the uniform distribution over $[0, \theta]$ with unknown length θ. Then we claim that $T(X)=\max _{i=1}^{n} X_{i}$ is a sufficient statistic. To see this, we write

$$
f_{X}(X ; \theta)=\prod_{i=1}^{n} f_{X_{i}}\left(X_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\theta} \mathbf{1}_{[0, \theta]}\left(X_{i}\right)=\prod_{i=1}^{n} \frac{1}{\theta} \mathbf{1}_{\left[X_{i}, \infty\right)}(\theta)=\underbrace{\frac{1}{\theta^{n}} \mathbf{1}_{[T(X), \infty)}(\theta)}_{g(T(X, \theta))} \cdot \underbrace{1}_{h(X)}
$$

Note that, the tricky part is $I_{[0, \theta]}\left(X_{i}\right)=I_{\left[X_{i}, \infty\right)}(\theta)$.

- Example 3: Gaussian Distribution with Unknown Mean

Suppose that $X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is i.i.d. and each X_{i} satisfies the Gaussian distribution with unknown mean θ but the variance σ^{2} is known. Then we claim that $T(X)=\sum_{i=1}^{n} X_{i}$ is a sufficient statistic. To see this, we have

$$
\begin{aligned}
& f_{X}(X ; \theta) \\
= & \prod_{i=1}^{n} f_{X_{i}}\left(X_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(X_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\sum_{i=1}^{n} \frac{\left(X_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right) \\
= & \underbrace{\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(\frac{\theta T(X)}{\sigma^{2}}\right) \exp \left(\frac{-n \theta^{2}}{2 \sigma^{2}}\right)}_{g(T(X, \theta))} \underbrace{\exp \left(\frac{-\sum_{i=1}^{n} X_{i}^{2}}{2 \sigma^{2}}\right)}_{h(X)}
\end{aligned}
$$

- Example 4: Gaussian Distribution with Unknown Mean and Variance

When the unknown mean is $\mu=\theta_{1}$ and the unknown variance is $\sigma^{2}=\theta_{2}$, then we claim that $T(X)=\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$ is a sufficient statistic. To see this, we have

$$
\begin{aligned}
& f_{X}(X ; \theta) \\
= & \prod_{i=1}^{n} f_{X_{i}}\left(X_{i} ; \theta\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(X_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} \exp \left(-\sum_{i=1}^{n} \frac{\left(X_{i}-\theta\right)^{2}}{2 \sigma^{2}}\right) \\
= & \underbrace{\left(\frac{1}{\sqrt{2 \pi \theta_{2}}}\right)^{n} \exp \left(\frac{\theta_{1}}{\theta_{2}} T_{1}(X)-\frac{1}{2 \theta_{2}} T_{2}(X)\right) \exp \left(\frac{-n \theta_{1}^{2}}{2 \theta_{2}}\right)}_{g(T(X, \theta))} \cdot \underbrace{1}_{h(X)}
\end{aligned}
$$

