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8 Parameter Estimations and Sufficient Statistics
A General Model for Statistics

▶ Many problems have the following common structure. A continuous signal {x(t) : t ∈ R}
is measured at t1, . . . , tn producing vector x = (x1, . . . , xn), where xi = x(ti). The vector
x is a realization of a random vector or a random process X = (X1, . . . , Xn) with a joint
distribution which is of known form but depends on some unknown parameters
θ = (θ1, . . . , θp). The estimation theory aims to estimate these unknown parameters θ
based on the observed realization x.

▶ Formally, the above problem has the following ingredients:
– X = (X1, . . . , Xn) is a vector of random measurements or observations taken over

the course of the experiment
– X is sample or measurement space of realizations x of X, e.g., X = R× · · · × R
– θ = (θ1, . . . , θp) is an unknown parameter vector of interest
– Θ is parameter space for the experiment
– Pθ : B(Rn) → [0, 1] is a probability measure such that, for any Borel set or event B,

we have

Pθ(B) = probability of event B ⊆ X =


∫
B

f(x; θ)dx if X is continuous∑
x∈B

p(x; θ) if X is discrete

Such {Pθ}θ∈Θ is called the statistical model of the experiment.

The probability model also induces the joint C.D.F. associated with X

F (x; θ) = Pθ(X1 ≤ x1, . . . , Xn ≤ xn),

which is assumed to be known for each θ ∈ Θ. We denote by Eθ(X) the expectation of
random variable X given θ ∈ Θ.

Parametric Statistics (Estimation Theory)

▶ The basic estimation problem is as follows. The observations X = (X1, . . . , Xn) is actually
generated by a true parameter θ0 ∈ Θ. In case Xi are i.i.d., we have Xi ∼ Pθ0(·).
Then we want to find an estimator θ̂ : X → Θ such that the estimate θ̂(X1, . . . , Xn)
approximates θ0 “optimally”.

▶ The question is that how to describe whether θ̂ is a good estimator. Depending on
whether or not we have prior knowledge about the distribution θ, we will discuss two
different approaches: Bayesian estimation and non-random estimation.
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Definition of Sufficient Statistics

▶ Let us consider an i.i.d. observations X = (X1, . . . , Xn) with distribution Pθ from the
family {Pθ : θ ∈ Θ}. Imagine that there are two people A and B, and that

– A observes the entire sample (X1, . . . , Xn);
– B observes only a smaller vector T = T (X1, . . . , Xn) which is a function of the

sample. In this case, function T : Rn → Rm,m ≤ n. is called a statistic.

Clearly, A has more information about the distribution of the data and, in particular,
about the unknown parameter θ. However, in some cases, for some choices of function T
(called sufficient statistics) B will have as much information about θ as A has.

▶ To see this more clearly, for observations X = (X1, . . . , Xn) and statistic T (X), the
conditional probability

fX|T (X)(x | t, θ) = Pθ(X1 = x1, . . . , Xn = xn | T (X) = t)

is, typically, a function of both t and θ. For some choices of statistic T , however,
fX|T (X)(x | t, θ) can be θ-independent.

▶ To see the above argument, let us consider consider the case X = (X1, . . . , Xn), a sequence
of n Bernoulli trials with success probability parameter θ and the statistic T (X) = X1 +
· · ·+Xn the total number of successes. Then

Pθ(X1 = x1, . . . , Xn = xn) =
n∏

i=1

θxi(1− θ)1−xi = θt(1− θ)n−t,

where t = T (x1, . . . , xn) = x1 + · · · xn. Therefore, if
∑n

i=1 xi ̸= t, then we know that the
statistic is incompatible with the observation. Otherwise, we have

fX|T (X)(x | t, θ) = fX(x | θ)
fT (X)(t | θ)

=
Pθ(X1 = x1, . . . , Xn = xn)

Pθ(T (X) = t)
=

θt(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

which does not depend on the parameter θ. This means that all information about θ in
X has been summarized by T (X). This motivates the following definition.

Definition: Sufficient Statistics

A statistic T = T (X) is said to be sufficient for parameter θ if

Pθ(X1 ≤ x1, . . . , Xn ≤ xn | T (X) = t) = G(x, t)

where G(·, ·) is a function that does not depend on θ. Equivalent, we have

– p(x | t, θ) = Pθ(X = x | T (X) = t) = G(x, t) if X is discrete;

– f(x | t, θ) = G(x, t) if X is continuous.

▶ Thus, by the law of total probability

Pθ(X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1, . . . , Xn ≤ xn | T (X) = T (x))Pθ(T (X) = T (x))

and once we know the value of the sufficient statistic, we cannot obtain any additional
information about the value of θ from knowing the observed values.
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Neyman-Fisher Factorization Theorem

▶ The above definition of sufficient statistics is often difficult to use since it involves deriva-
tion of the conditional distribution of X given T . However, when the random variable X is
discrete or continuous a simpler way to verify sufficiency is through the Neyman-Fisher
factorization criterion.

Theorem: Fisher Factorization Criterion

A statistic T = T (X) is sufficient for θ if and only if functions g and h can be found
such that

fX(x | θ) = g(T (x), θ)h(x)

We only proof the case of discrete random variables, i.e., fX(x; θ) is the PMF.

▶ (⇒) Because T is a function of x, we have

fX(x | θ) = fX,T (X)(x, T (x) | θ) = fX|T (X)(x | T (x), θ)fT (X)(T (x) | θ)

Since T is sufficient, then fX|T (X)(x | T (x), θ) is not a function of θ and we can set it to
be h(X). The second term is a function of T (x) and θ. We will write it g(T (x), θ).

▶ (⇐) Suppose that we have the factorization. By the definition of conditional expectation,

fX|T (X)(x | t, θ) =
fX,T (X)(x, t | θ)
fT (X)(t | θ)

For the numerator, we have

fX,T (X)(x, t | θ) =

{
0 if T (x) ̸= t

fX(x | θ) = g(t, θ)h(x) otherwise

Furthermore, for the denominator, we have

fT (X)(t | θ) =
∑

x̃:T (x̃)=t

fX(x̃ | θ) =
∑

x̃:T (x̃)=t

g(t, θ)h(x̃)

Therefore, we have

fX|T (X)(x | t, θ) = g(t, θ)h(x)∑
x̃:T (x̃)=t g(t, θ)h(x̃)

=
h(x)∑

x̃:T (x̃)=t h(x̃)
,

which is independent of θ and, therefore, T is sufficient.

▶ For example, in the maximum likelihood estimation, we have to find the best estimate
θ ∈ Θ such that the likelihood function

L(θ | x) = fX(x | θ)

is maximized for the observed sample x = (x1, . . . , xn). For sufficient statistics, since
fX(x | θ) = g(T (x), θ)h(x), maximizing the likelihood is equivalent to maximizing
g(T (x), θ) and the maximum likelihood estimator θ̂(T (x)) is a function of the sufficient
statistic.
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General Examples of Sufficient Statistics

▶ Example 1: Entire Sample
X = (X1, . . . , Xn) is clearly sufficient but not very interesting.

▶ Example 2: Rank Ordered Sample
X(1), . . . , X(n) is sufficient when Xi are i.i.d. This is because, under the i.i.d. setting,

f(x1, . . . , xn | θ) =
n∏

i=1

f(xi | θ) =
n∏

i=1

f(x(i) | θ)

▶ Example 3: Binary Likelihood Ratios
Suppose that θ only takes two possible values Θ = {θ0, θ1}, or simply θ ∈ {0, 1}. This
gives the binary decision problem: “decide between θ = 0 versus θ = 1. Then the
“likelihood ratio” (assume it is finite)

Λ(X) =
f1(X)

f0(X)
=

f(X | 1)
f(X | 0)

is sufficient for θ, because we can write

fθ(X) = θf1(X) + (1− θ)f0(X) =

θΛ(X) + (1− θ)︸ ︷︷ ︸
g(T,θ)

 f0(X)︸ ︷︷ ︸
h(X)

▶ Example 4: Discrete Likelihood Ratios
Suppose that θ takes p possible values, i.e., Θ = (θ1, . . . , θp). Then the vector of p − 1
likelihood ratios (assume it is finite)

Λ(X) =

(
fθ1(X)

fθp(X)
, . . . ,

fθp−1(X)

fθp(X)

)
= (Λ1(X), . . . ,Λp−1(X))

is sufficient for θ. Try to prove this as a homework.

▶ Example 5: Likelihood Ratio Trajectory
When Θ is a set of scalar parameters θ the likelihood ratio trajectory over Θ is

Λ(X) =

{
fθ(X)

fθ0(X)

}
θ∈Θ

is sufficient for θ. Here θ0 is an arbitrary reference point in Θ for which the trajectory is
finite for all X. When θ is not a scalar, this becomes a likelihood ratio surface, which is
also a sufficient statistic.

▶ We say Tmin is a minimal sufficient statistic if for any sufficient statistic T there
exists a function q such that Tmin = q(T ). Finding minimal sufficient statistic is in
general difficult; the following provides a sufficient condition for T (X) to be be minimal

∀x, x′ ∈ X : Λ(T (x)) = Λ(T (x′)) ⇒ T (x) = T (x′)

Note that Λ(t) is well-defined because Λ(x) = Λ(T (x)) for any sufficient statistic T as we
discussed above.
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More Examples of Sufficient Statistics

▶ Example 1: Bernoulli Distribution
Suppose that X = (X1, X2, . . . , Xn) is i.i.d. and each Xi satisfies the Bernoulli distribution
with unknown probability, i.e., Pθ(Xi = 1) = θ and Pθ(Xi = 0) = 1 − θ. Then we claim
that T (X) =

∑n
i=1Xi is a sufficient statistic. To see this, we write the joint PMF as

pX(X; θ) =
n∏

i=1

pXi
(Xi; θ) =

n∏
i=1

θXi(1− θ)1−Xi =
n∏

i=1

(1− θ)(
θ

1− θ
)Xi

=(1− θ)n(
θ

1− θ
)T (X)︸ ︷︷ ︸

g(T (X,θ))

· 1︸︷︷︸
h(X)

Clearly, this sufficient statistic is minimal as it is already one-dimensional.

▶ Example 2: Uniform Distribution
Suppose that X = (X1, X2, . . . , Xn) is i.i.d. and each Xi satisfies the uniform distribution
over [0, θ] with unknown length θ. Then we claim that T (X) = maxni=1Xi is a sufficient
statistic. To see this, we write

fX(X; θ) =
n∏

i=1

fXi
(Xi; θ) =

n∏
i=1

1

θ
1[0,θ](Xi) =

n∏
i=1

1

θ
1[Xi,∞)(θ) =

1

θn
1[T (X),∞)(θ)︸ ︷︷ ︸
g(T (X,θ))

· 1︸︷︷︸
h(X)

Note that, the tricky part is I[0,θ](Xi) = I[Xi,∞)(θ).

▶ Example 3: Gaussian Distribution with Unknown Mean
Suppose that X = (X1, X2, . . . , Xn) is i.i.d. and each Xi satisfies the Gaussian distribution
with unknown mean θ but the variance σ2 is known. Then we claim that T (X) =

∑n
i=1Xi

is a sufficient statistic. To see this, we have

fX(X; θ)

=
n∏

i=1

fXi
(Xi; θ) =

n∏
i=1

1√
2πσ

exp

(
−(Xi − θ)2

2σ2

)
=

(
1√
2πσ

)n

exp

(
−

n∑
i=1

(Xi − θ)2

2σ2

)

=

(
1√
2πσ

)n

exp

(
θT (X)

σ2

)
exp

(
−nθ2

2σ2

)
︸ ︷︷ ︸

g(T (X,θ))

exp

(
−
∑n

i=1X
2
i

2σ2

)
︸ ︷︷ ︸

h(X)

▶ Example 4: Gaussian Distribution with Unknown Mean and Variance
When the unknown mean is µ = θ1 and the unknown variance is σ2 = θ2, then we claim
that T (X) = (

∑n
i=1Xi,

∑n
i=1 X

2
i ) is a sufficient statistic. To see this, we have

fX(X; θ)

=
n∏

i=1

fXi
(Xi; θ) =

n∏
i=1

1√
2πσ

exp

(
−(Xi − θ)2

2σ2

)
=

(
1√
2πσ

)n

exp

(
−

n∑
i=1

(Xi − θ)2

2σ2

)

=

(
1√
2πθ2

)n

exp

(
θ1
θ2
T1(X)− 1

2θ2
T2(X)

)
exp

(
−nθ21
2θ2

)
︸ ︷︷ ︸

g(T (X,θ))

· 1︸︷︷︸
h(X)
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