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8 Parameter Estimations and Sufficient Statistics

A General Model for Statistics

» Many problems have the following common structure. A continuous signal {z(¢) : t € R}
is measured at ti,...,t, producing vector x = (z1,...,x,), where x; = x(t;). The vector
x is a realization of a random vector or a random process X = (Xj,..., X,,) with a joint
distribution which is of known form but depends on some unknown parameters
6 = (01,...,0,). The estimation theory aims to estimate these unknown parameters 6
based on the observed realization z.

» Formally, the above problem has the following ingredients:

— X = (Xy,...,X,) is a vector of random measurements or observations taken over
the course of the experiment

— X is sample or measurement space of realizations x of X, e.g., ¥ =R x --- xR
— 0 =(01,...,0,) is an unknown parameter vector of interest

— O is parameter space for the experiment

Py : B(R™) — [0, 1] is a probability measure such that, for any Borel set or event B,
we have

/ f(z;0)dx if X is continuous
B

Py(B) = probability of event B C X =
Zp(x; 0) if X is discrete

zeB

Such {Pp}gco is called the statistical model of the experiment.

The probability model also induces the joint C.D.F. associated with X
F(IE,@) = PH(Xl <Zp,...,Xp < xn)a

which is assumed to be known for each # € ©. We denote by Ey(X) the expectation of
random variable X given 6 € ©.

J

Parametric Statistics (Estimation Theory)

» The basic estimation problem is as follows. The observations X = (X7, ..., X)) is actually
generated by a true parameter 6y € ©. In case X; are i.i.d., we have X; ~ Py (+).
Then we want to find an estimator § : X — © such that the estimate 6(X, ..., X,)
approximates #p “optimally”.

» The question is that how to describe whether g is a good estimator. Depending on
whether or not we have prior knowledge about the distribution 8, we will discuss two
different approaches: Bayesian estimation and non-random estimation.
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Definition of Sufficient Statistics

» Let us consider an i.i.d. observations X = (Xi,...,X,) with distribution P, from the
family {Fp : 6 € ©}. Imagine that there are two people A and B, and that

— A observes the entire sample (X7,..., X,,);

— B observes only a smaller vector T = T'(Xy,...,X,) which is a function of the
sample. In this case, function T': R" — R™, m < n. is called a statistic.

Clearly, A has more information about the distribution of the data and, in particular,
about the unknown parameter . However, in some cases, for some choices of function T’
(called sufficient statistics) B will have as much information about 6 as A has.

» To see this more clearly, for observations X = (Xi,...,X,) and statistic T(X), the
conditional probability

fxirx) (@] t,0) =F(Xi=x1,..., Xn =2, | T(X) =1t)

is, typically, a function of both ¢ and 6. For some choices of statistic 7', however,
Ixirx)( | t,0) can be f-independent.

» To see the above argument, let us consider consider the case X = (X1,..., X,,), a sequence
of n Bernoulli trials with success probability parameter 6 and the statistic T'(X) = X; +
.-+ 4+ X, the total number of successes. Then

Py(Xy=m1,..., Xy =2,) = [[0"(1—0)"" =0"(1—06)"",
=1

where t = T'(zy,...,2,) = 1 + - - - &,. Therefore, if Y"1  x; # ¢, then we know that the
statistic is incompatible with the observation. Otherwise, we have
fx@]0)  PB(Xi=an,...,Xo=a,)  O(1-0)"t <n> -

Pl b0 =g @10 =T RT® =0 Oea-o—  \t

which does not depend on the parameter #. This means that all information about 6 in
X has been summarized by T'(X). This motivates the following definition.

Definition: Sufficient Statistics

A statistic T'= T'(X) is said to be sufficient for parameter 6 if
Py(Xy<zy,.... X, <z, | T(X)=t) = G(x,1)

where G(-, ) is a function that does not depend on . Equivalent, we have

—plx|t,0)=P(X =z |T(X)=1t)=G(x,t) if X is discrete;

— f(z | t,0) = G(x,t) if X is continuous.

» Thus, by the law of total probability
Py(Xi<zy,..,. X <zp,) =P(Xi <mq,..., X, <2, | T(X) =T (2)) (T (X) =T(x))

and once we know the value of the sufficient statistic, we cannot obtain any additional
information about the value of § from knowing the observed values.
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Neyman-Fisher Factorization Theorem

» The above definition of sufficient statistics is often difficult to use since it involves deriva-
tion of the conditional distribution of X given T'. However, when the random variable X is
discrete or continuous a simpler way to verify sufficiency is through the Neyman-Fisher
factorization criterion.

Theorem: Fisher Factorization Criterion

A statistic T' = T'(X) is sufficient for 6 if and only if functions g and A can be found
such that

fx(x ] 0) = g(T(x),0)h(z)

We only proof the case of discrete random variables, i.e., fx(z;0) is the PMF.

» (=) Because T is a function of x, we have

fx(@]0) = fxre) (@, T(2) [ 0) = fxmoo (e | T(2),0) froo(T(z) | 0)

Since T is sufficient, then fxrx)(z | T'(x),0) is not a function of § and we can set it to
be h(X). The second term is a function of 7'(z) and 6. We will write it g(7(z), 0).

» (<) Suppose that we have the factorization. By the definition of conditional expectation,

fX,T(X)(xat ‘ 9)
x)(t|6)

fxirooy(z | t,0) =

For the numerator, we have
0 if T'(x) #t
fx(z | 0) =g(t,0)h(x) otherwise

Furthermore, for the denominator, we have

froo8) = fx 9(t,0)h(z)
=T (%)= #T(%)=t

Therefore, we have

 gtOh=) k(=)
fareo( | 0) = Y@= IEOE) Yt M(E)

which is independent of # and, therefore, T is sufficient.

» For example, in the maximum likelihood estimation, we have to find the best estimate
0 € © such that the likelthood function

L | x) = fx(x [ 0)

is maximized for the observed sample z = (z1,...,x,). For sufficient statistics, since
fx(@ | 0) = g(T(x),0)h(r), maximizing the likelihood is equivalent to maximizing
9(T'(z),0) and the maximum likelihood estimator §(7(x)) is a function of the sufficient
statistic.
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General Examples of Sufficient Statistics

» Example 1: Entire Sample
X = (Xy,...,X,) is clearly sufficient but not very interesting.

» Example 2: Rank Ordered Sample
X1, -, X(n is sufficient when X; are i.i.d. This is because, under the i.i.d. setting,

n n

fr, x| 0) =[] flxi16) =[] flze | 0)

=1 =1

» Example 3: Binary Likelihood Ratios
Suppose that 6 only takes two possible values © = {6, 6,}, or simply 6 € {0,1}. This
gives the binary decision problem: “decide between # = 0 versus § = 1. Then the
“likelihood ratio” (assume it is finite)

is sufficient for 0, because we can write

fo(X) = 0£(X) + (1= 0) fo(X) = | OAX) + (1 - 0) | fo(X)

» Example 4: Discrete Likelihood Ratios
Suppose that 6 takes p possible values, i.e., © = (64,...,6,). Then the vector of p — 1
likelihood ratios (assume it is finite)

f91(X) f9p—1(X)
Jo, (X)) fo,(X)

is sufficient for 6. Try to prove this as a homework.

A = ( ) = (10X, Apa ()

» Example 5: Likelihood Ratio Trajectory
When © is a set of scalar parameters 6 the likelihood ratio trajectory over © is

X
f o (X ) I=S)
is sufficient for f. Here 6, is an arbitrary reference point in © for which the trajectory is

finite for all X. When 6 is not a scalar, this becomes a likelihood ratio surface, which is
also a sufficient statistic.

» We say T),;, is a minimal sufficient statistic if for any sufficient statistic 7' there
exists a function ¢ such that T, = ¢(7). Finding minimal sufficient statistic is in
general difficult; the following provides a sufficient condition for 7'(X) to be be minimal

Ve, o' € X MT(z)) = A(T(2')) = T(z) =T (2"

Note that A(t) is well-defined because A(z) = A(T'(x)) for any sufficient statistic 7" as we
discussed above.
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More Examples of Sufficient Statistics

» Example 1: Bernoulli Distribution
Suppose that X = (X3, Xy, ..., X,) isi.i.d. and each X; satisfies the Bernoulli distribution
with unknown probability, i.e., Pp(X; = 1) = 0 and Py(X; = 0) = 1 — 6. Then we claim
that T'(X) = Y"1 | X; is a sufficient statistic. To see this, we write the joint PMF as

px(X:0) = [Tpx(Xs0) = [T0% 00— 0~ = [T - ) (5™

0

—(1 - (—HTX) . ¢
N ~ J/ h(X)
9(T(X,0))

Clearly, this sufficient statistic is minimal as it is already one-dimensional.

» Example 2: Uniform Distribution
Suppose that X = (X3, Xy, ..., X,,) isi.i.d. and each X; satisfies the uniform distribution
over [0, 6] with unknown length 6. Then we claim that 7'(X) = max}; X; is a sufficient
statistic. To see this, we write

n n

1 1 1
fx(X;0) = foi(Xi;e) = 11 51[079]()(@) = 11 51[Xi,oo)(9) = 071[T(X)7w)(9) \h(i),
= = = N—————

Note that, the tricky part is Ijg g(X;) = I[x;.00)(0)-

» Example 3: Gaussian Distribution with Unknown Mean
Suppose that X = (X1, Xy, ..., X,,) isi.i.d. and each X; satisfies the Gaussian distribution
with unknown mean 6 but the variance o2 is known. Then we claim that 7'(X) = > | X;
is a sufficient statistic. To see this, we have

fx(X;0)
T I - T X:—-62\ ([ 1 \" — (X; — 0)?
Tl =T e (-2552) - (735) oo (- S 2552
1Y 0T (X) —n#? S ¢
= (—27rcr> exp ( = ) exp ( 52 ) exp (—202
o(T(X,0)) )

» Example 4: Gaussian Distribution with Unknown Mean and Variance

When the unknown mean is 4 = 6; and the unknown variance is 0 = 5, then we claim
that T(X) = (30, Xy, >y X?) is a sufficient statistic. To see this, we have

fx(X50)




