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Abstract— We investigate the relationship between the prob-
lem of decentralized fault diagnosis and the problem of de-
centralized control of discrete event systems under dynamic
observations. The key system-theoretic properties that arise
in these problems are those of codiagnosability and coobserv-
ability, respectively. It was shown by Wang et al. in [1] that
coobservability is transformable to codiagnosability; however,
the transformation for the other direction has remained an
open problem. In this paper, we consider a general language-
based dynamic observations setting and show how the notion
of K-codiagnosability can be transformed to coobservability.
Moreover, we show that, when the observation map is static, the
standard notion of centralized diagnosability is transformable
to observability. Our results thereby complement those in
[1] and provide a better understanding of the relationship
between the notions of codiagnosability and coobservability. In
particular, our new results allow the leveraging of the large
existing literature on decentralized control synthesis to solve
problems of decentralized fault diagnosis.

I. INTRODUCTION

Control and diagnosis are two important research areas in
the study of Discrete Event Systems (DES). In complex auto-
mated systems, one is interested in designing a supervisor to
restrict the system’s behavior within a desired specification
as well as designing a diagnoser in order to detect and isolate
potential system’s faults. Due to limited sensing capabilities,
both problems involve dealing with partial observation of the
system’s behavior. Moreover, many technological systems
have decentralized information structures, thereby necessitat-
ing the development of decentralized control and diagnosis
architectures, where a set of supervisors or diagnosers work
as a team to ensure the desired specifications.

The property of observability arose in the study of the
control of partially observed DES [2], [3]. It is well known
that observability together with controllability provide the
necessary and sufficient conditions for the existence of a
supervisor that achieves a given specification. In [4], this
notion was extended to coobservability for decentralized
control problems. Problems of centralized fault diagnosis
of DES were initially studied in [5], [6] where the notion
of diagnosability was introduced and characterized. Several
future investigations ensued; see, e.g., the recent survey paper
[7] for extensive bibliographies. Problems of decentralized
fault diagnosis were considered in [8], where several commu-
nication protocols were developed. In particular, in Protocol
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3 of [8], all the local agents work independently, i.e., there
is no communication among them. This protocol was further
investigated in several subsequent works and the associated
condition of codiagnosability was characterized and studied;
see, e.g., [9]–[11].

All of the above-mentioned works are concerned with
the case of static observations, i.e., the set of observable
events is fixed a priori. In many applications, communication
among different agents (see, e.g., [12], [13]) as well as
dynamic sensor activation (see, e.g., [14]–[16]) may lead to
the case of dynamic observations. In the context of dynamic
observations, the observability properties of an event are not
fixed but may vary along each system trajectory. In [17],
the authors studied the property of coobservability under
dynamic observations. The fault diagnosis problem under
dynamic observations has also been investigated in several
works, such as [14], [15], [18] for the centralized case and
[1] for the decentralized case.

There is a wide literature on the two properties of coob-
servability and codiagnosability, due to their importance
in solving decentralized control and diagnosis problems,
respectively. However, almost all of the existing literature
deals with problems of control and problems of diagnosis
separately. An exception of this is the work in [1], where it
was shown, for the first time, how to map coobservability to
codiagnosability, in the context of a language-based model
for dynamic observations. This transformation from coob-
servability to codiagnosability makes it possible to leverage
the large literature on methodologies to solve (decentralized)
diagnosis problems to solve (decentralized) control prob-
lems. However, to the best of our knowledge, the reverse
transformation, from codiagnosability to coobservability, has
remained an open problem, as mentioned in the recent survey
[19].

The contribution of this paper is to show, under a
general language-based dynamic observations setting, how
to transform K-codiagnosability to coobservability. K-
codiagnosability is a strong version of codiagnosability
where it is required that any failure be diagnosed with-
in K steps after its occurrence; in codiagnosability, the
detection delay has to be finite but no K is specified.
The transformation that we present exploits the fact that
both the problem of K-codiagnosability and the problem
of coobservability can be reduced to a state disambiguation
problem. Moreover, when the observation map is event-
based, i.e., the observability properties of events are static,
we show that the standard notion of diagnosability from [6]
can be transformed to the standard notion of observability
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from [2]. Our results thereby complement those in [1] and
allow leveraging the large existing literature on problems of
decentralized control to solve problems of decentralized fault
diagnosis.

The remainder of this paper is organized as follows.
Section II presents necessary preliminaries and in particular it
reviews the notions of codiagnosability and coobservability.
In Section III, the transformation from K-codiagnosability
to coobservability under language-based observations is p-
resented. The case of event-based observations is then con-
sidered in Section IV. We illustrate the application of the
transformation algorithm of Section III to sensor activation
problems in Section IV. Finally, we conclude the paper in
Section VI. Due to space constraints, all proofs have been
omitted and they are available in [20].

II. PRELIMINARIES

A. System Model
We assume basic knowledge of DES and common nota-

tions (see, e.g., [21]). A DES is modeled as a deterministic
finite-state automaton

G = (XG, EG, δG, xG0 ) (1)

where XG is the finite set of states, EG is the finite set
of events, δG : XG × EG → XG is the partial transition
function where δG(x, e) = y means that there is a transition
labelled by event e from state x to state y, and x0 is the initial
state. δG is extended to XG × EG∗ in the usual way. The
behavior generated by G is described by L(G) = {s ∈ EG∗ :
δG(x0, s)!}, where ! means is defined. The prefix-closure of
a language L is L = {s ∈ EG∗ : (∃t ∈ EG∗)[st ∈ L]}. We
use notation | · | to denote the length of a string.

In both control and diagnosis problems, there are some
local agents monitoring the plant based on their own obser-
vations. Here, we assume that there are n local agents and we
denote by I = {1, . . . , n} the index set of the local agents.
In most of the existing literature, the observation properties
of events are specified by natural projection operations, i.e.,
for each agent i ∈ I, the set of observable events Eo,i ⊆ EG

is fixed a priori. We denote by Eo = ∪i∈IEo,i the total set of
observable events. However, in many situations, the observ-
able events may not be fixed. For instance, communication
between agents may lead to different observability properties
for the same event in different transitions. Also, under energy,
bandwidth, or security constraints, a local agent may chose to
enable/disable sensors dynamically based on its observation
history. This also leads to dynamic observations. Thus, in
a more general setting, we specify the observations of each
agent i ∈ I by the mapping ωi : L(G) → 2Eo,i . Given
an observation mapping, ωi, i ∈ I, we define the projection
Pωi : L(G)→ E∗o,i recursively as follows:

Pωi
(ε) = ε, Pωi

(sσ) =

{
Pωi

(s)σ if σ ∈ ωi(s)
Pωi

(s) if σ 6∈ ωi(s)
(2)

Clearly, if the set of observable events is fixed in the sense
that ∀s ∈ L(G), ωi(s) = Eo, then the projection Pωi reduces
to the standard natural projection.

B. Control and Diagnosis under Dynamic Observations

In fault diagnosis problems, EF ⊆ Euo := EG \Eo is the
set of fault events whose occurrences must be detected by
the diagnoser. In general, the set of fault events is partitioned
into m disjoint sets, or fault types: EF = EF1

∪̇ . . . ∪̇EFm
;

we denote by ΠF this partition and by F = {1, . . . ,m} the
index set of the fault types. We define Ψ(EFk

) = {sf ∈
L(G) : f ∈ EFk

} to be the set of strings that end with a
fault event of type Fk. We write EFk

∈ s, if s∩Ψ(EFk
) 6= ∅.

We say a language L is live if, for all s ∈ L, there exists
an event σ ∈ E, such that sσ ∈ L. Hereafter, we assume
that L(G) is live when [K-][co]diagnosability is considered.
We denoted by L/s the post-language of L after s, i.e.,
L/s = {t ∈ EG∗ : st ∈ L}. In decentralized problems,
in order to identify the fault event after its occurrence, it
is required that the type of each such fault occurrence be
unambiguously detected by one diagnoser within a finite
number of steps (event occurrences) after the occurrence.
We say that a language is K-codiagnosable if this diagnosis
delay is uniformly bounded by a given number K. We say
that a language is codiagnosable if there exists an integer
K such that it is K-codiagnosable. The formal definition of
[K-]codiagnosability under dynamic observations is recalled
from [1].

Definition 1: (Codiagnosability). A live language L(G) is
said to be K-codiagnosable w.r.t. ωi, i ∈ I and ΠF on EF

if

(∀k ∈ F)(∀s ∈ Ψ(EFk
))(∀t ∈ L(G)/s)[|t| ≥ K ⇒ CD]

(3)
where the codiagnosability condition CD is

(∃i ∈ I)(∀w ∈ L(G))[Pωi
(w) = Pωi

(st)⇒ EFk
∈ w].

(4)
We say that L(G) is codiagnosable if there exists an integer
K ∈ N such that it is K-codiagnosable.

Remark 2.1: The above definition of codiagnosability is
equivalent to the one in [8]–[10] in the case of regular
languages, as assumed in this paper. Specifically, the def-
inition in [8]–[10] states that for all faulty strings, there
is a finite detection delay. The above definition reverses
the two quantifiers as it states that there is a detection
delay that works for all faulty strings. However, it was
shown in [22] that in the case of regular languages, the two
definitions are equivalent in the centralized case for static
observation mappings. The result in [22] can be extended
to the decentralized case and to language-based observation
mappings, although the proof is omitted here.

In decentralized supervisor control problems, each local
agent not only monitors the plant, but it can also dynamically
disable/enable events to actively control the plant based on its
observations. Formally, for each agent i ∈ I, we denote by
Ec,i ⊆ E its set of controllable events. A local supervisor
is a mapping Si : E∗o,i → Γi, where Γi := {γ ∈ 2E :
E \Ec,i ⊆ γ} and ∧i∈ISi/G denotes the controlled system
under the conjunctive fusion rule for enabled events. The
legal behavior to be achieved under control is specified by
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a prefix-closed (regular) language L(H) ⊆ L(G), where
H = (XH , EH , δH , xH0 ) is the automaton that generates the
specification language. It is well known that coobservability
together with controllability provide the necessary and suf-
ficient conditions for the existence of a set of decentralized
supervisors that together achieve a given language. Formally,
we recall the definition of coobservability under dynamic
observations from [1], [17].

Definition 2: (Coobservability). A language L(H) ⊆
L(G) is said to be coobservable w.r.t. L(G), ωi and Ec,i, i ∈
I if for all s ∈ L(H) and for all σ ∈ Ec := ∪i∈IEc,i,

(sσ∈L(G)\L(H))⇒(∃i∈Ic(σ))[P−1ωi
(Pωi(s))σ∩L(H)=∅]

(5)
where, Ic(σ) := {i ∈ I : σ ∈ Ec,i}.

Note that in both Definitions 1 and 2, codiagnosability
and coobsevability are defined in the most general manner,
i.e., we consider the case where there are multiple agents
under language-based dynamic observations. For the sake of
brevity, we also use the following terminologies hereafter.
We refer to [K-]codiagnosability as [K-]diagnosability in
the centralized case, i.e., when |I| = 1; similarly for
observability. Moreover, we say the system is static [K-
][co]diagnosable or [K-][co]observable if the observation
mappings are specified by natural projections.

III. FROM K-CODIAGNOSABILITY TO COOBSERVABILITY

In this section, we present an algorithm to transform the
problem of K-codiagnosability to the problem of coobserv-
ability under general language-based dynamic observations.

The definition of codiagnosability requires that every
occurrence of the fault events be diagnosed within a finite
delay, without specifying a bound for that delay. In contrast,
K-codiagnosability explicitly specifies a uniform detection
delay bound for all fault event occurrences. Hence, K-
codiagnosability is a stronger property than codiagnosability
in the sense that K-codiagnosability implies codiagnosabil-
ity, but the reverse may not hold for some values of K.

First, we show that the notion of K-codiagnosability can
be transformed to coobservability when there is only one type
of fault events. We shall need the notation A v B to denote
that automaton A is a sub-automaton of automaton B, as
defined in [21] (p. 86). Let H = (XH , EH , δH , xH0 ) be the
automaton to be diagnosed with fault events and EFk

, k ∈ F
be the set of fault events under consideration (i.e., only type k
faults are to be diagnosed). We construct two automata H̃k =

(XH̃k , EH̃k , δH̃k , xH̃k
0 ) and G̃k = (XG̃k , EG̃k , δG̃k , xG̃k

0 )
with H̃k v G̃k, as follows.

Algorithm KCOD-COOB-I
Input: H = (XH , EH , δH , xH0 ), EFk

and K.
Output: H̃k = (XH̃k , EH̃k , δH̃k , xH̃k

0 )

and G̃k = (XG̃k , EG̃k , δG̃k , xG̃k
0 ).

Step 1: Build a new automaton Ĥk =

(XĤk , EĤk , δĤk , xĤk
0 ), where

XĤk⊆XH ×{−1, 0, 1, . . . ,K} is the set of states;
EĤk = EH is the set of events;
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Fig. 1. ω(s) = {o, e}, ∀s ∈ L(H)

δĤk : XĤk × EĤk → XĤk is the partial transition
function where for any x̂ = (x, n) ∈ XĤk , δĤk is
defined by

δĤk(x̂, σ) =



(δH(x, σ),−1),

if
(
n = −1 and
σ ∈ E \ EFk

)
(δH(x, σ), n+ 1),

if
(

0 ≤ n < K or
n = −1 ∧ σ ∈ EFk

)
(δH(x, σ),K), if n = K

(6)
xĤk
0 = (xH0 ,−1) is the initial state.

Step 2: Set H̃k ← Ĥk. Add state XH̃k ← XH̃k ∪ {SF}
and add event EH̃k ← EH̃k ∪ {ck}.

Step 3: For all x̂ = (x, n) ∈ XĤk in H̃k, if n = −1, then
add new transition δH̃k(x̂, ck) = SF .

Step 4: Set G̃k ← H̃k. Add state XG̃k ← XG̃k ∪ {USF}.
Step 5: For all x̂ = (x, n) ∈ XĤk in G̃k, if n = K, then

add new transition δĜk(x̃, ck) = USF .
Step 6: For all i ∈ I, the observation mapping ωi,G̃k

for
G̃k is specified as follows. For all s ∈ L(Ĥk),
ωi,G̃k

(s) ← ωi(s). For all s = tck ∈ L(G̃k) \
L(Ĥk), ωi,G̃k

(s)← ωi(t).
Step 7: For all i ∈ I, Ec,i ← {ck}.

Example 3.1: Consider the centralized static diagnosis
problem instance shown in Figure 1(a). H is the automaton
to be diagnosed with fault events, where EF1

= {f} is
the set of fault events and Eo = {o, e} is the set of
observable events. The observation mapping ω is given by
∀s ∈ L(G), ω(s) = {o, e}. When the desired diagnosis delay
is set to K = 1, by applying Algorithm KCOD-COOB-I,
the corresponding G̃1 and H̃1 can be constructed, as shown
in Figure 1(b). The observation mapping is also given by
∀s ∈ L(G̃1), ωG̃1

(s) = {o, e}. It is clear that L(H̃1) is not
observable w.r.t. L(G̃1), ωG̃1

and {ck}, since for strings fa
and a with P (fa) = P (a), we have fac1 ∈ L(G̃1) \L(H̃1)
but ac1 ∈ L(H̃1). Also, the original system H is not
1-diagnosable. However, it can be verified that H is 2-
diagnosable. The relationship between H , H̃k and G̃k will
be formally described in Theorem 1 below.

The following theorem establishes that the above construc-
tion procedure transforms the problem of K-codiagnosability
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to the problem of coobservability for each type of fault
events.

Theorem 1: Language L(H) is K-coodiagnosable w.r.t.
ωi, i ∈ I and fault event set EFk

, if and only if, L(H̃k) is
coobservable w.r.t. L(G̃k), ωi,G̃k

and Ec,i, i ∈ I.
The intuition behind the construction procedure in Al-

gorithm KCOD-COOB-I is as follows. The idea of the
transformation is based on the fact that both the problem
of K-codiagnosability and the problem of coobservability
can be reduced to the problem of state disambiguation; see,
e.g., [23]. Clearly, we see that Ĥk is a finite unfolding of H
and they are language equivalent, i.e., L(H) = L(Ĥk). Let
us define the set of conflicting states pairs

Tconf := {(u, v) ∈ XĤk×XĤk : [u]n = −1 and [v]n = K}

where [u]n denotes the integer component of u. If L(Ĥk)
is K-codiagnosable, then for any state pair in the set Tconf ,
at least one agent should be able to distinguish the states
in it. In the context of supervisory control, by construction,
to achieve specification L(H̃k) for plant L(G̃k), we always
need to enable ck at states labeled with integer −1 and
disable ck at states labeled with integer K. Thus we also need
to distinguish the states of any state pair in Tconf ; otherwise,
we will not be able to know whether or not we need to disable
ck. The correctness proof of the transformation algorithm
follows immediately from these results.

The next result gives the worst-case complexity of Algo-
rithm KCOD-COOB-I.

Theorem 2: Let H be the automaton to be diagnosed
with fault events. Then the worst-case time complexity of
Algorithm KCOD-COOB-I is O(K|XH ||EH |).

So far, we have shown that for each individual type of
fault, the problem of K-codiagnosability can be transformed
to the problem of coobservability. However, our objective is
to show that the problem of K-codiagnosability with multiple
fault types is transformable to the problem of coobservability.
For this purpose, we need to transform the problem of K-
codiagnosability to the problem of coobservability in a single
automaton. This is achieved by Algorithm KCOD-COOB-
II presented next. The notation A ‖ B denotes the usual
parallel composition operation of automata A and B (see,
e.g., [21]).

Algorithm KCOD-COOB-II
Input: H = (XH , EH , δH , xH0 ), EF ,ΠF and K.
Output: H̃ = (XH̃ , EH̃ , δH̃ , xH̃0 )

and G̃ = (XG̃, EG̃, δG̃, xG̃0 ).
Step 1: For each type of fault k ∈ F , build an automaton

Ĥk, as described in Step 1 of Algorithm KCOD-
COOB-I.

Step 2: Set Ĥ ← Ĥ1 ‖ Ĥ2 ‖ · · · ‖ Ĥ|F|.
Step 3: Set H̃ ← Ĥ . Add state XH̃ ← XH̃ ∪ {SF} and

add event EH̃ ← EH̃ ∪ {ck : k ∈ F}.
Step 4: For all x̂ = (x̂1, . . . , x̂|F|) ∈ XĤ in H̃ , for all

k ∈ F , if [x̂k]n = −1, then add new transition
δH̃(x̂, ck) = SF .

Step 5: Set G̃← H̃ . Add state XG̃ ← XG̃ ∪ {USF}.
Step 6: For all x̂ = (x̂1, . . . , x̂|F|) ∈ XĤ in G̃, for all

k ∈ F , if [x̂k]n = K, then add new transition
δĜ(x̃, ck) = USF .

Step 7: For all i ∈ I, the observation mapping ωi,G̃ for G̃ is
specified as follows. For all s ∈ L(Ĥ), ωi,G̃(s) ←
ωi(s). For all tc ∈ L(G̃) \ L(Ĥ), where c ∈ {ck :
k ∈ F}, ωi,G̃(s)← ωi(t).

Step 8: For all i ∈ I, Ec,i ← {ck : k ∈ F}.

Remark 3.1: Algorithm KCOD-COOB-II essentially
merges all automata Ĥk, k ∈ F , constructed by Algorithm
KCOD-COOB-I into a single automaton Ĥ . Then single
copies of the new states s and us are added. Note that,
in Step 2 of Algorithm KCOD-COOB-II, the parallel
composition between Ĥk, k ∈ F , could have resulted in an
automaton with

∏
k∈F |XĤk | number of states in general.

However, since for any i ∈ F , Ĥi is a finite unfolding of H ,
then for any state ((x1, n1), (x2, n2), . . . , (xm, nm)) ∈ XĤ ,
we have that x1 = x2 = · · · = xm. The number of states
in the composed system is only exponential in K, i.e.,
|XĤ | ≤ Km|XH |.

The following results show the properties and the correct-
ness of the transformation in Algorithm KCOD-COOB.

Lemma 3.1: The following four statements are equivalent.
S1 L(H) is K-coodiagnosable w.r.t. ωi, i ∈ I and the fault

event set EF with partition ΠF .
S2 For any k ∈ F , L(H) is K-coodiagnosable w.r.t. ωi, i ∈
I and the fault event set EFk

.
S3 For any k ∈ F , L(H̃k) is coobservable w.r.t. L(G̃k),

ωi,G̃k
and Ec,i = {ck},∀i ∈ I.

S4 L(H̃) is coobservable w.r.t. L(G̃), ωi,G̃ and Ec,i = {ck :
k ∈ F}, i ∈ I.

Follows from Lemma 3.1, we have the following theorems.
Theorem 3: Language L(H) is K-coodiagnosable w.r.t.

ωi, i ∈ I and ΠF on EF , if and only if, L(H̃) is coobserv-
able w.r.t. L(G̃), ωi,G̃ and Ec,i, i ∈ I.

Theorem 4: Let H the automaton to be diagnosed with
fault events. Then the worst-case time complexity of Algo-
rithm KCOD-COOB-II is O(Km|XH ||EH |).

Example 3.2: Let the automaton H shown in Figure 2(a)
be the system to be diagnosed with fault events, where
EF1 = {f1} and EF2 = {f2} are two types of fault
events. When K = 4, by applying Algorithm KCOD-
COOB-I and Algorithm KCOD-COOB-II, the corresponding
H̃1, G̃1, H̃2, G̃2, H̃ and G̃ that are obtained are shown in
Figures 2(b)-2(d).

Suppose that the observation mapping for H is static, i.e.,
the sets of observable for agents 1 and 2 are constant and
given by Eo,1 = {a, o} and Eo,2 = {b, o}, respectively. The
transformed observation mappings for G̃ are also specified
by natural projections P1 : L(G̃)→ E∗o,1 and P2 : L(G̃)→
E∗o,2. Consider strings s = of2aboo ∈ L(G̃) and controllable
event c2 ∈ EG̃ such that sc2 ∈ L(G̃) \ L(H̃). For agent 1,
there exists string s1 = oaoo such that P1(s) = P1(s1)
and s1c2 ∈ L(H̃); and for agent two, there exists string
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Fig. 2. K = 4 and Eo,1 = {a, o}, Eo,2 = {b, o}

s2 = oboo such that P2(s) = P2(s1) and s2c2 ∈ L(H̃).
By Definition 2, we conclude that L(H̃) is not coobservable
w.r.t. L(G̃), P1, P2 and Ec,1 = Ec,2 = {c1, c2}. Consequent-
ly, the original system H is not 4-codiagnosable.

IV. CASE OF EVENT-BASED OBSERVATION

In this section, we show that in the case of event-based
observations, i.e., static observability properties of events, the
transformation results in Section III can be extended from
the notion of K-[co]diagnosability to the stronger notion of
[co]diagnosability.

Recall that, in the transformation algorithm in Section III,
the desired diagnosis delay K is specified a priori and the
observation is language-based. Let us eliminate that extra
level of generality and assume that, for each agent i ∈ I,
the set of observable events Eo,i ⊆ E is fixed a priori. In
this case, it is possible to relax the pre-information on K
and extend the transformation algorithm of Section III from
K-diagnosability to diagnosability. We now explain how to
proceed.

In [24], the authors show that for the centralized static
diagnosis problem, if H is diagnosable, then any fault
occurrence will be detected within |XH |2 transitions after
the fault event occurs. Such an upper bound of the diagnosis

0 1 2 
𝑐 𝑐 𝑓 
𝑎 

Fig. 3. Automaton H for Example 4.1

delay is derived from the size of verifier, a special type of
automaton used for verifying diagnosibility. Therefore, we
can simply use the upper bound |XH |2 to replace the integer
K in Theorem 4 and we obtain the following result.

Proposition 4.1: When the observations are event-based,
diagnosability can be transformed to observability in
O(|XH |2m+1|EH |).

In [9] and [10], the verifier technique was extended to
the decentralized case; the decentralized verifier has size
proportional to |X|n+1. By using the same argument as
above, we have the following result.

Proposition 4.2: When the observations are event-based,
co-diagnosability can be transformed to coobservability in
O(|XH |mn+m+1|EH |2).

The question that arises is the following: In the dynamic
decentralized diagnosis problem, can we also find such an
upper bound to replace K, where this upper bound would
work for any language-based mapping? In general, such an
upper bound does not exist, since the observation policy
is language-based and K could be arbitrary large. This
phenomenon is illustrated by the following example.

Example 4.1: Consider the automaton H in Figure 3,
where f is the unique fault event. Consider the information
mapping ω : L(G)→ 2Eo defined by:

ω(s) =

{
{c}, if s ∈ {f(ac)n, cn}
{a, c}, if s ∈ L(G) \ {f(ac)n, cn}

(7)

where n is an arbitrary non-negative integer. Since we are
unable to distinguish strings cm and f(ac)m until the first
time we observe event a, which does not occur until m =
n+ 1, we see that under information mapping ω, the system
is (2n+ 3)-diagnosable but not (2n+ 2)-diagnosable. Since
n can be arbitrary large, there is no general upper bound for
the diagnosis delay under language-based observations.

V. APPLICATION TO OPTIMIZATION OF SENSOR
ACTIVATION

In this section, we show how the transformation algorithm
from Section III can leverage the research on observability
and coobservability to solve problems related to diagnosabil-
ity and codiagnosability.

In sensor activation problems, the sensors can be turned
on/off on-line by the agents based on their observation
histories. In this scenario, one is interested in synthesizing
a sensor activation policy that achieves certain observation
properties; see, e.g., [25], [26]. Roughly speaking, sensor
activation policies are a particular class of information map-
pings satisfying the property that the sensor activations for
any two indistinguishable strings must be the same. This
property is called the feasibility condition in [25], [26]. It is
formally defined as follows.
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Definition 3: Given a system G, a set of observation
mappings ωi : L(G)→ 2Eo,i is said to be a feasible sensor
activation policy if

(∀s, t ∈ L(G))[Pωi
(s) = Pωi

(t)⇒ ωi(s) = ωi(t)]

The following theorem reveals that feasibility is preserved
under the transformation algorithm of Section III. In other
words, any sensor activation policy synthesized for the trans-
formed system can be applied back to the original system.

Theorem 5: Let H be the original system and G̃ be the
transformed system. Then, ωi is a feasible sensor activation
policy for H if and only if ωi,G̃ is a feasible sensor activation
policy for G̃.

Unlike the direct approach investigated in [14], [15] for
K-diagnosability, the above theorem provides an alternative
approach for the synthesis of optimal sensor activation
policies for K-codiagnosability. Suppose H is the system
to be diagnosed with fault events; H̃ and G̃ are the trans-
formed systems. We can then apply the algorithm in [25]
to obtain the optimal sensor activation policy ωi,G̃ ensuring
coobservability for the transformed systems H̃ and G̃. Then
an optimal sensor activation policy ωi for K-codiagnosability
can be calculated by setting ωi(s) = ωi,G̃(s) for all s ∈
L(H).

Note that the works in [14], [15] only consider the
centralized sensor activation problem and that the algorith-
m developed in [26] is for codiagnosability, not for K-
codiagnosability. To the best of our knowledge, the problem
of synthesizing an optimal sensor activation policy for K-
codiagnosability had remained an open problem. It can
now be solved by applying the transformation algorithm of
Section III together with the algorithm in [25].

VI. CONCLUSION

In this paper, we have presented a new transformation
algorithm that shows that the property of language-based
K-codiagnosability can be transformed to the property of
language-based coobservability, where the integer K is given
a priori. Language-based properties are those where the
observability properties of an event are dynamic, i.e., are
history-dependent. These results complement those in [1]
that pertain to the reverse transformation, from coobserv-
ability to codiagnosability. Moreover, we have shown that,
when the observation properties are static, referred to as the
event-based case, (static) [co]diagnosability is transformable
to (static) [co]observability. These new results allow the
leveraging of the large existing literature on solution method-
ologies for problems of decentralized control to be applied
to solve problems of decentralized fault diagnosis. When
the desired diagnosis delay K is not given, the transforma-
tion from language-based codiagnosability to language-based
coobervability still remains an open problem.
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