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a b s t r a c t

We investigate the relationship between decentralized fault diagnosis and decentralized control of
discrete event systems under dynamic observations. The key system-theoretic properties that arise in
these problems are those of codiagnosability and coobservability, respectively. It was shown by Wang
et al. (2011) that coobservability is transformable to codiagnosability; however, the transformation for
the other direction has remained an open problem. In this paper, we consider a general language-based
dynamic observations setting and show how the notion of K -codiagnosability can be transformed to
coobservability.When the observation properties are transition-based,we present a new approach for the
verification of transition-based codiagnosability. An upper bound of the diagnosis delay for decentralized
diagnosis under transition-based observations is derived. Moreover, we show that transition-based
[co]diagnosability is transformable to transition-based [co]observability. Our results thereby complement
those in Wang et al. (2011) and provide a thorough characterization of the relationship between the
two notions of codiagnosability and coobservability and their verification. In particular, our results allow
the leveraging of the large existing literature on decentralized control synthesis to solve corresponding
problems of decentralized fault diagnosis.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Control and diagnosis are two important research areas in the
study of Discrete Event Systems (DES). In complex automated
systems, one is interested in designing a supervisor to restrict the
system’s behavior within a desired specification as well as de-
signing a diagnoser in order to detect and isolate potential system
faults. Due to limited sensing capabilities, both problems involve
dealing with partial observation of the system’s behavior. More-
over, many technological systems have decentralized information
structures, thereby necessitating the development of decentralized
control and diagnosis architectures, where a set of supervisors or
diagnosers work as a team to ensure the desired specifications.
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The property of observability arose in the study of the control of
partially observed DES (Cieslak, Desclaux, Fawaz, & Varaiya, 1988;
Lin &Wonham, 1988). It is well known that observability together
with controllability provide the necessary and sufficient conditions
for the existence of a supervisor that achieves a given specifica-
tion. This notion was extended to coobservability for decentralized
control problems, see, e.g., Overkamp and van Schuppen (2000),
Rudie and Willems (1995), Rudie and Wonham (1992), Seatzu,
Silva, and Van Schuppen (2013), Tripakis (2004) and Yoo and Lafor-
tune (2002). Problems of centralized fault diagnosis of DES were
initially studied in Lin (1994) and Sampath, Sengupta, Lafortune,
Sinnamohideen, and Teneketzis (1995) where the notion of diag-
nosabilitywas introduced and characterized. Several future investi-
gations ensued and a large amount of literature has been published
on this topic; the recent survey papers (Zaytoon & Lafortune, 2013;
Zaytoon & Sayed-Mouchaweh, 2012) contain extensive bibliogra-
phies. Problems of decentralized fault diagnosis were initially con-
sidered inDebouk, Lafortune, and Teneketzis (2000),where several
communication protocols were developed. In particular, in Proto-
col 3 of Debouk et al. (2000), all the local agents work indepen-
dently, i.e., there is no communication among them. This protocol
was further investigated in several subsequentworks and the asso-
ciated condition of codiagnosabilitywas characterized and studied;
see, e.g., Moreira, Jesus, and Basilio (2011), Qiu and Kumar (2006)
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andWang, Yoo, and Lafortune (2007). State-based, distributed, and
robust approaches to diagnosis have also been considered; see, e.g.,
Carvalho, Basilio, and Moreira (2012), Hashtrudi Zad, Kwong, and
Wonham (2003), Pencolé and Cordier (2005), Seatzu et al. (2013),
Su and Wonham (2005) and Zaytoon and Lafortune (2013).

All of the above-mentioned works are concerned with the case
of static observations, where the set of observable events is fixed a
priori. In many applications however, communication among dif-
ferent agents (see, e.g., Lin, 2014, Rudie, Lafortune, & Lin, 2003) as
well as dynamic sensor activation (see, e.g., Cassez&Tripakis, 2008,
Sears & Rudie, 2013a,b, Thorsley & Teneketzis, 2007, Wang, Lafor-
tune, Girard, & Lin, 2010,Wang, Lafortune, Lin, & Girard, 2010)may
lead to the case of dynamic observations. In the context of dynamic
observations, the observability properties of an event are not fixed
butmay vary along each system trajectory. InHuang, Rudie, and Lin
(2008), the authors studied the property of coobservability under
dynamic observations. The fault diagnosis problem under dynamic
observations has also been investigated in several works, such as
Cassez and Tripakis (2008) and Thorsley and Teneketzis (2007) for
the centralized case and Wang, Girard, Lafortune, and Lin (2011)
for the decentralized case.

There is a wide literature on the two properties of coobserv-
ability and codiagnosability, due to their importance in solving de-
centralized control anddiagnosis problems, respectively. However,
almost all of the existing literature deals with problems of control
and problems of diagnosis separately. An exception to this is the
work in Wang et al. (2011), where it was shown, for the first time,
how to map coobservability to codiagnosability, in the context of
a language-based model for dynamic observations. This transfor-
mation from coobservability to codiagnosability makes it possible
to leverage existing methodologies for solving (decentralized) di-
agnosis problems to solve (decentralized) control problems. How-
ever, to the best of our knowledge, the reverse transformation,
from codiagnosability to coobservability, has remained an open
problem, as mentioned in the recent survey (Sears & Rudie, 2015).

The contributions of this paper are two-fold. First, we showhow
to transform K-codiagnosability to coobservability under a general
language-based dynamic observations setting. K -codiagnosability
is a strong version of codiagnosability where it is required that any
failure be diagnosed within K steps after its occurrence; in codiag-
nosability, the detection delay has to be finite but no K is specified.
The transformation that we present exploits the fact that both the
problem of K -codiagnosability and the problem of coobservability
can be reduced to a state disambiguation problem. Second, we pro-
vide a newapproach for the verification of transition-based codiag-
nosability. Our method is different from that in Wang et al. (2011)
and adopts the standard verifier approach which is used for static
diagnosis problem in the literature (Jiang, Huang, Chandra, & Ku-
mar, 2001; Qiu & Kumar, 2006;Wang, Yoo et al., 2007; Yoo & Lafor-
tune, 2002). Our approach ends upwith the same complexity as the
approach proposed in Wang et al. (2011); however it allows us to
derive an upper bound for the maximal delay of diagnosis, which
is not provided in Wang et al. (2011). Moreover, by using the de-
rived upper bound for the maximal diagnosis delay, we show that
transition-based [co]diagnosability is transformable to transition-
based [co]observability. Therefore, the standard notion of diag-
nosability from Sampath et al. (1995) can be transformed to the
standard notion of observability from Lin andWonham (1988). Our
results thereby complement those in Wang et al. (2011) and allow
leveraging the large existing literature on problems of decentral-
ized control to solve problems of decentralized fault diagnosis.

The remaining part of this paper is organized as follows.
Section 2 presents necessary preliminaries and in particular
it reviews the notions of codiagnosability and coobservability.
In Section 3, the transformation from K -codiagnosability to
coobservability under language-based observations is presented.
In Section 4, we present a new approach for the verification of
transition-based codiagnosability, with which an upper bound of
the diagnosis delay for decentralized diagnosis under transition-
based observations is derived. We illustrate the application of
the transformation algorithm of Section 3 to sensor activation
problems in Section 5. Finally, we conclude the paper in Section 6.
Preliminary and partial versions of some of the results in Sections 3
and 5 are presented in Yin and Lafortune (2015).

2. Preliminaries

2.1. System model

We assume basic knowledge of DES and common notations
(see, e.g., Cassandras & Lafortune, 2008). A DES is modeled as a
deterministic finite-state automaton G = (XG, EG, δG, xG0), where
XG is the finite set of states, EG is the finite set of events, δG

:

XG
×EG
→ XG is the partial transition function where δG(x, e) = y

means that there is a transition labeled by event e from state x to
state y, and xG0 ∈ XG is the initial state. Function δG is extended
to XG

× EG∗ in the usual way. The behavior generated by G is
described by L(G) = {s ∈ EG∗

: δG(xG0 , s)!}, where ! means ‘‘is
defined’’. The set of transitions TR(G) of G is defined by TR(G) :=
{(x, e) ∈ XG

× EG
: δG(x, e)!}. The prefix-closure of a language L is

L = {s ∈ EG∗
: (∃t ∈ EG∗)[st ∈ L]}. We use notation | · | to denote

the length of a string.
In both control and diagnosis problems, there are some local

agents monitoring the plant based on their own observations.
Here, we assume that there are n local agents and we denote
by I = {1, . . . , n} the index set of the local agents. In most of
the existing literature, the observation properties of events are
specified by natural projection operations, i.e., for each agent i ∈ I,
the set of observable events Eo,i ⊂ EG is fixed a priori. We denote
by Eo = ∪i∈I Eo,i the total set of observable events. However,
in many situations, the observable events may not be fixed. For
instance, communication between agents may lead to an event
being observed onoccurrence of one transition but not observed on
occurrence of a different transition. Also, under energy, bandwidth,
or security constraints, a local agent may choose to enable/disable
sensors dynamically based on its observation history; this also
leads to dynamic observations. Thus, in a more general setting,
we specify the observations of each agent i ∈ I by the mapping
ωi : L(G) → 2Eo,i . Given an observation mapping, ωi, i ∈ I, we
define the projection Pωi : L(G)→ E∗o,i recursively as follows:

Pωi(ϵ) = ϵ, Pωi(sσ) =


Pωi(s)σ if σ ∈ ωi(s)
Pωi(s) if σ ∉ ωi(s).

(1)

The inverse of Pωi , denoted by P−1ωi
, is defined as P−1ωi

: Eo∗ → 2EG
∗

with P−1ωi
(s) := {t ∈ EG∗

: Pωi(t) = s}. The projection Pωi

and its inverse P−1ωi
are extended to languages in the usual way.

Clearly, if the set of observable events is fixed in the sense that
∀s ∈ L(G), ωi(s) = Eo,i, then the projection Pωi reduces to the
standard natural projection.

The abovedefinition of observationmapping is language-based;
as such, itmay require infinitememory to realize. In practice, one is
often interested in studying a particular type of dynamic observa-
tion, namely, transition-based dynamic observation. Formally, for
each agent i ∈ I, we say that an observationmappingωi : L(G)→
2Eo,i is transition-based if

(∀s, t ∈ L(G))[δG(xG0 , s) = δG(xG0 , t)⇒ ωi(s) = ωi(t)]. (2)

Thus, a transition-based observation mapping ωi can also be de-
scribed by a set of observable transitions Ωi ⊆ TR(G) defined by
Ωi := {(x, e) ∈ TR(G) : ∃s ∈ L(G) s.t. δG(xG0 , s) = x ∧ e ∈ ωi(s)}.
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The transition-based observation mapping also induces a projec-
tion PΩi : L(G) → E∗o,i, which can be computed recursively as
follows:

PΩi(ϵ) = ϵ,

PΩi(sσ) =


PΩi(s)σ if (δG(xG0 , s), σ ) ∈ Ωi

PΩi(s) if (δG(xG0 , s), σ ) ∉ Ωi.

(3)

2.2. Control and diagnosis under dynamic observations

In fault diagnosis problems, EF ⊆ Euo := EG
\ Eo is the set of

fault events whose occurrencesmust be detected by the diagnoser.
In general, the set of fault events is partitioned intom disjoint sets,
or fault types: EF = EF1 ∪̇ · · · ∪̇EFm ; we denote by ΠF this partition
and by F = {1, . . . ,m} the index set of the fault types. For any
j ∈ F , we define Ψ (EFj) = {sf ∈ L(G) : f ∈ EFj} to be the set of
strings that end with a fault event of type Fj. We write EFj ∈ s, if
{s} ∩ Ψ (EFj) ≠ ∅. We say a language L is live if, for all s ∈ L, there
exists an event σ ∈ E, such that sσ ∈ L. Hereafter, we assume
that L(G) is live when [K -][co]diagnosability is considered; this
assumption is commonlymade in the DES fault diagnosis literature
to simplify the technical development. We denote by L/s the post-
language of L after s, i.e., L/s = {t ∈ EG∗

: st ∈ L}. In decentralized
problems, in order to identify the fault event after its occurrence,
it is required that the type of each such fault occurrence be
unambiguously detected by (at least) one diagnoser within a finite
number of steps, i.e., event occurrences, after the fault occurrence.
We say that a language is K -codiagnosable if this diagnosis delay is
uniformly bounded by a given number K . We say that a language
is codiagnosable if there exists an integer K such that the language
is K -codiagnosable. The formal definition of [K -]codiagnosability
under dynamic observations is recalled fromWang et al. (2011).

Definition 1 (Codiagnosability). A language L(H) is said to be
K -codiagnosable w.r.t. ωi, i ∈ I and ΠF on EF if

(∀j ∈ F )(∀s ∈ Ψ (EFj))(∀t ∈ L(H)/s)[|t| ≥ K ⇒ CD]

where the codiagnosability condition CD is

(∃i ∈ I)(∀w ∈ L(H))[Pωi(w) = Pωi(st)⇒ EFj ∈ w].

We say that L(H) is codiagnosable if there exists an integer K ∈ N
such that L(H) is K -codiagnosable.

Since K -codiagnosability explicitly specifies a uniform detection
delay bound for all fault event occurrences, it is a stronger prop-
erty than codiagnosability: K -codiagnosability implies codiagnos-
ability, but the reverse may not hold for some values of K .

Remark 1. The above definition of codiagnosability is equivalent
to the one in Debouk et al. (2000) andWang, Yoo et al. (2007) in the
case of regular languages (i.e., finite state systems), as is assumed
in this paper. Specifically, the definition in Debouk et al. (2000)
and Wang, Yoo et al. (2007) states that for all faulty strings, there
is a finite detection delay. The above definition reverses the two
quantifiers as it states that there is a detection delay that works
for all faulty strings. However, it was shown in Yoo and Garcia
(2009) that in the case of regular languages, the two definitions are
equivalent in the centralized case for static observation mappings.
The result in Yoo and Garcia (2009) can be extended to the
decentralized case and to language-based observation mappings,
although the proof is omitted here.
In decentralized supervisory control problems, each local
agent not only monitors the plant, but it can also dynamically
disable/enable events to actively control the plant based on its
observations. Formally, for each agent i ∈ I, we denote by Ec,i ⊆ EG

its set of controllable events and denote by Ec = ∪i∈I Ec,i the
total set of controllable events. A local supervisor is a mapping Si :
E∗o,i → 2Ec,i and∧i∈I Si/G denotes the controlled system under the
conjunctive fusion rule for enabled events. The legal behavior to
be achieved under control is specified by a prefix-closed (regular)
language L(H) ⊆ L(G), where H = (XH , EH , δH , xH0 ) is the
automaton that generates the specification language. It is well
known that coobservability together with controllability provide
the necessary and sufficient conditions for the existence of a set of
decentralized supervisors that together achieve a given language.
Formally,we recall the definition of coobservability under dynamic
observations from Huang et al. (2008) and Wang et al. (2011). Let
Ic(σ ) := {i ∈ I : σ ∈ Ec,i}.

Definition 2 (Coobservability). A language L(H) ⊆ L(G) is said to
be coobservable w.r.t. L(G), ωi and Ec,i, i ∈ I if for all s ∈ L(H)
and for all σ ∈ Ec := ∪i∈I Ec,i,

(sσ ∈ L(G) \L(H))

⇒ (∃i ∈ Ic(σ ))[P−1ωi
(Pωi(s)){σ } ∩L(H) = ∅].

Note that in both Definitions 1 and 2, codiagnosability and
coobservability are defined in the most general manner, i.e., we
consider the casewhere there aremultiple agents under language-
based dynamic observations. For the sake of brevity, we will
use the following terminologies hereafter. We refer to [K -
]codiagnosability as [K -]diagnosability in the centralized case,
i.e., when |I| = 1; similarly for observability. Moreover, we say
the system is static [K -][co]diagnosable or [K -][co]observable if the
observation mappings are specified by natural projections.

3. From K -codiagnosability to coobservability

In this section, we present an algorithm to transform the
problem of K -codiagnosability to the problem of coobservability
under general language-based dynamic observations.

3.1. Case of one fault type

First, we show that the notion of K -codiagnosability can be
transformed to coobservability when there is only one type of
fault events. We shall need the notation A ⊑ B to denote that
automaton A is a sub-automaton of automaton B, as defined in
Cassandras and Lafortune (2008, p. 86). Let L(H) be the language
to be diagnosed,whereH = (XH , EH , δH , xH0 ), and EFj be the unique
set of fault events under consideration (i.e., only type j faults are to

be diagnosed).We construct two automata H̃j = (X H̃j , EH̃j , δH̃j , x
H̃j
0 )

and G̃j = (X G̃j , E G̃j , δG̃j , x
G̃j
0 ) with H̃j ⊑ G̃j, as follows.

Algorithm KCOD–COOB-I

Input: H = (XH , EH , δH , xH0 ), EFj and K .

Output: H̃j = (X H̃j , EH̃j , δH̃j , x
H̃j
0 ), G̃j = (X G̃j , E G̃j , δG̃j , x

G̃j
0 ) and

Ec,i = {cj},∀i ∈ I.

Step 1: Build a new automaton Ĥj = (X Ĥj , EĤj , δĤj , x
Ĥj
0 ), where

X Ĥj ⊆ XH
×{−1, 0, 1, . . . , K} is the set of states; EĤj = EH

is the set of events; δĤj : X Ĥj × EĤj → X Ĥj is the partial
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(a) H . (b) K = 2.

Fig. 1. ω1(s) = {o, e}, ∀s ∈ L(H).
transition function where for any x̂ = (x, n) ∈ X Ĥj , δĤj is
defined by

δĤj(x̂, σ ) =



(δH(x, σ ),−1), if

n = −1 and
σ ∈ EH

\ EFj


(δH(x, σ ), n+ 1),

if


0 ≤ n < K or
n = −1 ∧ σ ∈ EFj


(δH(x, σ ), K), if n = K

(4)

x
Ĥj
0 = (xH0 ,−1) is the initial state.
Step 2: Set H̃j ← Ĥj. Set X H̃j ← X H̃j ∪ {SF} and set
EH̃j ← EH̃j ∪ {cj}.
Step 3: For all x̂ = (x, n) ∈ X Ĥj in H̃j, if n = −1, then add
new transition δH̃j(x̂, cj) = SF .
Step 4: Set G̃j ← H̃j. Set X G̃j ← X G̃j ∪ {USF}.
Step 5: For all x̂ = (x, n) ∈ X Ĥj in G̃j, if n = K , then add
new transition δG̃j(x̃, cj) = USF .
Step 6: For all i ∈ I, Ec,i ← {cj}.

For the above automaton G̃j, the observation mapping ωi,G̃j
of each

agent i ∈ I is specified as follows. For all s ∈ L(Ĥj), ωi,G̃j
(s) ←

ωi(s). For all s = tcj ∈ L(G̃j) \ L(Ĥj), ωi,G̃j
(s) ← ωi(t). In fact,

we do not need to compute ωi,G̃j
explicitly, since we can use H and

ωi to simulate ωi,G̃j
. Specifically, for any string s ∈ L(G̃j), we can

use H to determine if s ∈ L(H) = L(Ĥ). If so, we return ωi(s).
Otherwise, we know that s = tcj ∈ L(G̃j) \L(Ĥj) and return ωi(t).

Example 1. Consider the centralized static diagnosis problem
instance shown in Fig. 1(a). L(H) is the language to be diagnosed
when EF = {f } is the set of fault events and Eo = {o, e} is the
set of observable events. The observation mapping ω1 is given by
∀s ∈ L(G), ω1(s) = {o, e}. When the desired diagnosis delay is set
to K = 2, by applying AlgorithmKCOD–COOB-I, the corresponding
G̃1 and H̃1 are constructed; they are shown in Fig. 1(b). The
observation mapping is also given by ∀s ∈ L(G̃1), ωG̃1

(s) = {o, e}.
It is clear that L(H̃1) is observable w.r.t. L(G̃1), ωG̃1

and {c1}, since
we know for sure that we need to disable c1 after the occurrence of
string fao. The original system H is 2-diagnosable. However, it can
be verified that H is not 1-diagnosable. The relationship between
H , H̃j and G̃j will be formally described in Theorem 1. �

Before we present the correctness of Algorithm KCOD–COOB-I,
we first discuss the intuition behind the construction procedure in
it. The idea of the transformation is based on the fact that both the
problem of K -codiagnosability and the problem of coobservability
can be reduced to the problem of state disambiguation; see, e.g.,
Wang, Lafortune, and Lin (2007). Clearly, we see that Ĥj is a finite
unfolding of H and they are language equivalent, i.e., L(H) =

L(Ĥj). Let us define the set of conflicting states pairs

Tconf := {(u, v) ∈ X Ĥj × X Ĥj : [u]n = −1 and [v]n = K}

where [u]n denotes the integer component of u. Let Eωi(s) be the
state estimator of Agent i upon the occurrence s ∈ L(Ĥj), i.e.,

Eωi(s) := {x ∈ X Ĥj : ∃t ∈ P−1ωi
(Pωi(s)) s.t. δ

Ĥj(x
Ĥj
0 , t) = x}. If

L(Ĥj) is K -codiagnosable, then for any string s ∈ L(Ĥj), there
exists at least one agent i ∈ I such that it is not confused with
any state pair in Tconf after s, i.e., Tconf ∩ (Eωi(s) × Eωi(s)) = ∅.
In the context of supervisory control, by construction, to achieve
specification L(H̃j) for plant L(G̃j), we always need to enable cj
at states labeled with integer −1 and disable cj at states labeled
with integer K . Thus, for any execution of the system, we also
need that at least one agent can distinguish the states of any state
pair in Tconf ; otherwise, we will not be able to know whether or
not we need to disable cj. The following theorem establishes that
the above construction procedure transforms the problem of K -
codiagnosability to the problem of coobservability for each type of
fault events.

Theorem 1. LanguageL(H) is K-coodiagnosable w.r.t.ωi, i ∈ I and
fault event set EFj , if and only if, L(H̃j) is coobservable w.r.t. L(G̃j),
ωi,G̃j

and Ec,i = {cj}, i ∈ I.

Proof. (⇒) By contrapositive. Suppose thatL(H̃j) is not coobserv-
able. This implies that there exists a string t ∈ L(H̃j) and an event
cj ∈ Ec = {cj}, such that tcj ∈ L(G̃j) \L(H̃j) and

(∀i ∈ I)(∃s ∈ L(H̃j))[Pωi,G̃j
(s) = Pωi,G̃j

(t) ∧ scj ∈ L(H̃j)]. (5)

Consider the above s and t . By the transformation algorithm, since

scj ∈ L(H̃j), we know that [δH̃j(x
H̃j
0 , s)]n = −1, which means that

EFj ∉ s. Similarly, tcj ∈ L(G̃j)\L(H̃j) implies that [δH̃j(x
H̃j
0 , t)]n = K .

Then we can write t = t1t2 such that t1 ∈ Ψ (Fj) and |t2| ≥ K . Note
that strings s and t also exist inL(H) and, by construction, we have
that Pωi(s) = Pωi,G̃j

(s) = Pωi,G̃j
(t) = Pωi(t). Thus, we know that

(∃t1 ∈ Ψ (EFj))(∃t2 ∈ L(H)/t1 : |t2| ≥ K)

(∀i ∈ I)(∃s ∈ L(H))[Pωi(s) = Pωi(t1t2) ∧ EFj ∉ s] (6)

which is a violation of K -codiagnosability.
(⇐) By contrapositive. Suppose thatL(H) is notK -codiagnosable

w.r.t. Pωi , i ∈ I and EF . This implies that

(∃s ∈ Ψ (EFj))(∃t ∈ L(H)/s : |t| ≥ K)

(∀i ∈ I)(∃w ∈ L(H))[Pωi(w) = Pωi(st) ∧ EFj ∉ w]. (7)

By the transformation algorithm, we know that [δG̃j(x
G̃j
0 , st)]n = K

and [δG̃j(x
G̃j
0 , w)]n = −1 in G̃j, which means that stcj ∈ L(G̃j) \
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L(H̃j) and wcj ∈ L(H̃j). Thus, there exists st ∈ L(H̃j) and there
exists cj ∈ Ec = {cj}, such that stcj ∈ L(G̃j)\L(H̃j) and for all i ∈ I
we have

(∃w ∈ L(H̃j))[Pωi,G̃j
(st) = Pωi,G̃j

(w) ∧ wcj ∈ L(H̃j)]

which is a violation of coobservability. �

Remark 2. LetL(H) be the language to be diagnosed. In Algorithm
KCOD–COOB-I, the construction of automaton Ĥj in Step 1 can be
done in time O(K |XH

| |EH
|). The computational effort for Steps 2, 4

and 6 is a constant. Steps 3 and 5 require the search of the state
space of Ĥ , which can be done in time O(K |XH

|). Consequently,
the worst-case time complexity of Algorithm KCOD–COOB-I is
O(K |XH

| |EH
|).

3.2. Case of multiple fault types

Building on the results in the preceding section, our objective is
to show that the problem of K -codiagnosability withmultiple fault
types is transformable to the problem of coobservability. For this
purpose, we need to transform the problem of K -codiagnosability
to the problem of coobservability in a single automaton. This
is achieved by Algorithm KCOD–COOB-II presented next. The
notation A ∥ B denotes the usual parallel composition operation
of automata A and B (see, e.g., Cassandras & Lafortune, 2008).
Algorithm KCOD–COOB-II
Input: H = (XH , EH , δH , xH0 ), EF , ΠF and K .

Output: H̃ = (X H̃ , EH̃ , δH̃ , xH̃0 ), G̃ = (X G̃, E G̃, δG̃, xG̃0) and Ec,i =
{cj : j ∈ F },∀i ∈ I.

Step 1: For each type of fault j ∈ F , build an automaton Ĥj, as
described in Step 1 of Algorithm KCOD–COOB-I.

Step 2: Set Ĥ ← Ĥ1 ∥ Ĥ2 ∥ · · · ∥ Ĥ|F |.
Step 3: Set H̃ ← Ĥ . Set X H̃

← X H̃
∪ {SF} and set EH̃

← EH̃
∪ {cj :

j ∈ F }.
Step 4: For all x̂ = (x̂1, . . . , x̂|F |) ∈ X Ĥ in H̃ , for all j ∈ F , if

[x̂j]n = −1, then add new transition δH̃(x̂, cj) = SF .
Step 5: Set G̃← H̃ . Set X G̃

← X G̃
∪ {USF}.

Step 6: For all x̂ = (x̂1, . . . , x̂|F |) ∈ X Ĥ in G̃, for all j ∈ F , if
[x̂j]n = K , then add new transition δG̃(x̃, cj) = USF .

Step 7: For all i ∈ I, Ec,i ← {cj : j ∈ F }.

For the above automaton G̃, the observation mapping ωi,G̃ of each
agent i ∈ I is specified as follows. For all s ∈ L(Ĥ), ωi,G̃(s) ←
ωi(s). For all tc ∈ L(G̃) \ L(Ĥ), where c ∈ {cj : j ∈ F },
ωi,G̃(s)← ωi(t). In fact, we still do not need to compute ωi,G̃, since
we can still use H and ωi to simulate ωi,G̃ as we discussed earlier
for the case of one fault type.

Remark 3. Algorithm KCOD–COOB-II essentially merges all au-
tomata Ĥj, j ∈ F , constructed by Algorithm KCOD–COOB-I into
a single automaton Ĥ . Then single copies of the new states SF and
USF are added. Note that, in Step 2 of Algorithm KCOD–COOB-II,
the parallel composition between Ĥj, j ∈ F , could have resulted in
an automaton with


j∈F |X

Ĥj | number of states in general. How-
ever, since for any i ∈ F , Ĥi is a finite unfolding of H , then for
any state ((x1, n1), (x2, n2), . . . , (xm, nm)) ∈ X Ĥ , we have that
x1 = x2 = · · · = xm. The number of states in the composed system
is only exponential in K , i.e., |X Ĥ

| ≤ Km
|XH
|.
The following result shows the correctness of the transforma-
tion in Algorithm KCOD–COOB-II.

Theorem 2. LanguageL(H) is K-coodiagnosable w.r.t.ωi, i ∈ I and
ΠF on EF , if and only if, L(H̃) is coobservable w.r.t. L(G̃), ωi,G̃ and
Ec,i = {cj : j ∈ F }, i ∈ I.

Proof. In order to prove the result, it suffices to show that the
following statements are equivalent.

S1 L(H) is K -coodiagnosable w.r.t. ωi, i ∈ I and the fault event
set EF with partition ΠF .

S2 For any j ∈ F , L(H) is K -coodiagnosable w.r.t. ωi, i ∈ I and
the fault event set EFj .

S3 For any j ∈ F , L(H̃j) is coobservable w.r.t. L(G̃j), ωi,G̃j
and

Ec,i = {cj}, ∀i ∈ I.
S4 L(H̃) is coobservable w.r.t. L(G̃), ωi,G̃ and Ec,i = {cj : j ∈

F }, i ∈ I.

S1 ⇔ S2 follows from Definition 1 and S2 ⇔ S3 follows from
Theorem 1. Thus, it remains to show that S3 and S4 are equivalent.
For S3 and S4, we have

S3 is false
⇔ (∃j ∈ F )(∃t ∈ L(H̃j) : tcj ∈ L(G̃j) \L(H̃j))(∀i ∈ I)

(∃s ∈ L(H̃j))[Pωi,G̃j
(s) = Pωi,G̃j

(t) ∧ scj ∈ L(H̃j)] (8)

⇔ (∃cj ∈ Ec)(∃t ∈ L(H̃) : tcj ∈ L(G̃) \L(H̃))(∀i ∈ I)

(∃s ∈ L(H̃))[Pωi,G̃
(s) = Pωi,G̃

(t) ∧ scj ∈ L(H̃)] (9)

⇔ S4 is false.

To see why the second equivalence holds, let us first suppose that
Eq. (8) holds and consider the same t, s and cj in Eq. (8). Since
tcj ∈ L(G̃j) \L(H̃j) and scj ∈ L(H̃j), by the definitions of G̃j and H̃j,
we know that s, t ∈ L(Ĥj) = L(Ĥ) ⊆ L(H̃), EFj ∉ s and EFj ∈ t . By
the definitions of G̃ and H̃ , we have that tcj ∈ L(G̃)\L(H̃) and scj ∈
L(H̃). Moreover, since ∀s ∈ L(Ĥ) = L(H) : ωi(s) = ωi,G̃(s) =
ωi,G̃j

(s), Pωi,G̃j
(s) = Pωi,G̃j

(t) implies that Pωi,G̃
(s) = Pωi,G̃

(t).

Therefore, we know that Eq. (9) holds for the same t, s and cj.
Similarly, suppose that Eq. (9) holds and consider the same t, s

and cj in Eq. (9). Since tcj ∈ L(G̃)\L(H̃) and scj ∈ L(H̃), by the def-
initions of G̃ and H̃ , we know that s, t ∈ L(Ĥ) = L(Ĥj) ⊆ L(H̃j),
EFj ∉ s and EFj ∈ t . By the definitions of G̃j and H̃j, we have that
tcj ∈ L(G̃j) \L(H̃j) and scj ∈ L(H̃j). Moreover, since ∀s ∈ L(Ĥ) =
L(H) : ωi(s) = ωi,G̃(s) = ωi,G̃j

(s), Pωi,G̃
(s) = Pωi,G̃

(t) implies that
Pωi,G̃j

(s) = Pωi,G̃j
(t). Therefore, we know that Eq. (8) holds for the

same t, s and j. �

Remark 4. LetL(H) be the language to be diagnosed. In Algorithm
KCOD–COOB-II, the construction of all the automata Ĥj, j ∈
F , in Step 1 can be done in time O(mK |XH

| |EH
|). The parallel

composition in Step 2 can also be done in time O(Km
|XH
| |EH
|),

since Ĥ has at most Km
|XH
| states as discussed in Remark 3. The

computational effort for Steps 3, 5 and 7 is a constant. Steps 4 and
6 require the search of the state space of X Ĥ , which can be done in
time O(Km

|XH
|). Consequently, the worst-case time complexity of

Algorithm KCOD–COOB-II is O(Km
|XH
| |EH
|).

Example 2. Let the automaton H shown in Fig. 2 be the system
to be diagnosed. Suppose that EF1 = {f1} and EF2 = {f2} are the
two types of fault events. When K = 4, by applying Algorithm
KCOD–COOB-I and Algorithm KCOD–COOB-II, the corresponding
H̃1, G̃1, H̃2, G̃2, H̃ and G̃ that are obtained are shown in Fig. 2(b)–(d).
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(a) H . (b) H̃1, G̃1 . (c) H̃2, G̃2 . (d) H̃, G̃.

Fig. 2. K = 4 and Eo,1 = {a, o}, Eo,2 = {b, o}.
Suppose that the observation mapping for H is static, i.e., the
sets of observable for agents 1 and 2 are constant and given by
Eo,1 = {a, o} and Eo,2 = {b, o}, respectively. The transformed
observation mappings for G̃ are also specified by natural projec-
tions P1 : L(G̃) → E∗o,1 and P2 : L(G̃) → E∗o,2. Consider strings

s = of2aboo ∈ L(G̃) and controllable event c2 ∈ E G̃ such that
sc2 ∈ L(G̃) \L(H̃). For agent 1, there exists string s1 = oaoo such
that P1(s) = P1(s1) and s1c2 ∈ L(H̃); and for agent two, there ex-
ists string s2 = oboo such that P2(s) = P2(s2) and s2c2 ∈ L(H̃).
By Definition 2, we conclude that L(H̃) is not coobservable w.r.t.
L(G̃), P1, P2 and Ec,1 = Ec,2 = {c1, c2}. Consequently, the original
system H is not 4-codiagnosable by Theorem 2. �

3.3. Case of event-based observations

In transformation Algorithms KCOD–COOB-I and KCOD–COOB-
II in Section 3, the desired diagnosis delay K is specified a priori
and the observations are language-based. Let us eliminate that
extra level of generality and assume that there is only one agent
and the set of observable events Eo,1 ⊆ EH is fixed a priori.
In this case, it is possible to relax the pre-information on K and
extend Algorithms KCOD–COOB-I and KCOD–COOB-II from K -
diagnosability to diagnosability. We now explain how to proceed.

In Yoo and Lafortune (2002), the authors show that for the
centralized static diagnosis problem, if H is diagnosable, then any
fault occurrence will be detected within |XH

|
2 transitions after

the fault event occurs (Proposition 1 in Yoo & Lafortune, 2002).
Such an upper bound of the diagnosis delay is derived from the
size of verifier, a special type of automaton used for verifying
diagnosability. Therefore, we obtain the following result.

Proposition 3. When the observations are event-based, diagnosabil-
ity can be transformed to observability in O(|XH

|
2m+1
|EH
|).

Proof. Since H is diagnosable if and only if it is |XH
|
2-diagnosable

(Proposition 1 in Yoo & Lafortune, 2002), we can simply use the
upper bound |XH

|
2 to replace the integer K in O(Km

|XH
| |EH
|),

which is the complexity of Algorithm KCOD–COOB-II. �

3.4. Case of language-based observations

In view of the results in the preceding section, a natural
question to ask is: In the dynamic decentralized diagnosis problem,
can we also find an upper bound to replace K , where this upper
bound would work for any language-based mapping? The answer
is that, in general, such an upper bound does not exist, since when
the observation policy is language-based, K could be arbitrarily
large. This phenomenon is illustrated by the following example.

Example 3. Consider the automaton H in Fig. 3(a), where f is the
unique fault event. Consider the observationmappingω : L(G)→
2Eo defined by:

ω(s) =

{c}, if s ∈ {f (ac)n, cn}
{a, c}, if s ∈ L(G) \ {f (ac)n, cn}

(10)

for some finite non-negative integer n. Since we are unable to
distinguish strings cm and f (ac)m until the first time we observe
event a, which does not occur until m = n + 1, we see that under
informationmappingω, the system is (2n+3)-diagnosable but not
(2n + 2)-diagnosable. Since n can be arbitrarily large, there is no
general upper bound for the diagnosis delay under language-based
observations. �

The reason why such an upper bound does not exist is that the
observation policymay require arbitrarily largememory to realize.
In practice, for language-based observations, the observation
policy needs to be realized by a finite structure, e.g., a finite state
transducer; see, e.g., Cassez and Tripakis (2008). Formally, a finite
state transducer is a deterministic labeled automaton T = (A, L),
where A = (XA, EA, f A, xA0) is a finite state automaton such that
EA
= EH and L : XA

→ 2EA is a labeling function that specifies
the set of events that are observable at state x. Therefore, given
a system H with dynamic observations specified by transducer
T = (A, L), we can construct a new system HT := H ∥ A
with transition-based observation ΩT , where ΩT is specified by:
for any (xG, xT ) ∈ XHT , for any σ ∈ EHT , ((xG, xT ), σ ) ∈ ΩT if
σ ∈ L(xT ) and ((xG, xT ), σ ) is a transition in HT . It follows from
Cassez and Tripakis (2008) thatHT andΩT capture the information
mapping of H and T . We use the following example to show how
language-based observations can be reduced to transition-based
observations by refining the system’s original state space with the
given transducer.

Example 4. Consider again the automatonH in Fig. 3(a), where f is
the unique fault event. Consider the transducer T in Fig. 3(b),where
the system decides to observe event a only after observing event
c twice. The refined system HT with transition-based observation
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(a) Automaton H . (b) Transducer T = (A, L) for H . (c) HT = H ∥ A; ΩT is the set of (black) solid-line transitions.

Fig. 3. Example of language-based observation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
map ΩT is shown in Fig. 3(c), where the (red) dashed lines
represent unobservable transitions. It can be verified that HT
is diagnosable under ΩT . Therefore, the original system H is
diagnosable under T . �

As discussed above, since any language-based observation map
with finite memory can be reduced to a transition-based observa-
tion map, to show that language-based [co]diagnosability is trans-
formable to language-based [co]observability, it suffices to find a
general upper bound of the diagnosis delay for the transition-based
[co]diagnosis problem. Such an upper bound does exist and we will
derive it in the next section.

4. Verification of transition-based codiagnosability: a verifier
approach

In this section, we first provide a new approach for the
verification of transition-based diagnosability, by constructing a
new automaton that we call the T-Verifier. Then, by using the
T-Verifier, we derive an upper bound for the diagnosis delay
with transition-based observations. For the sake of simplicity, the
verification algorithmwill be presented by assuming that there are
two agents, i.e., I = {1, 2}, and that there is only one type of faults,
i.e., EF = EF1 . The latter assumption is without loss of generality,
since the diagnosis of each fault can be analyzed individually;
Section 4.3 contains further discussion on the case ofmultiple fault
types. The case of multiple agents is discussed in Section 4.2.

4.1. T-verifier

First, we denote byGN the accessible part ofG after removing all
fault transitions in G, i.e., GN models the ‘‘non-faulty’’ behavior of
G. Then, given the automaton G, fault event set EF , and local agents
with transition-based observations Ωi, i = 1, 2, the T-verifier V is
defined as the deterministic automaton

V = (XV , EV , δV , xV0 )

where:

(i) XV
= XG

× XGN × XGN × L, where L = {N, F} is the label set;
(ii) EV

= (EG
∪ {ϵ})× (EG

∪ {ϵ})× (EG
∪ {ϵ}), is the event set;

(iii) xV0 = (xG0 , x
GN
0 , xGN0 ,N) is the initial state;

(iv) δV
: XV
× EV

→ XV is the partial (deterministic) transition
function defined according to the even cases (a)–(g) below:
(a) For σ ∈ EF ,

δV ((x0, x1, x2, l), (σ , ϵ, ϵ)) = (δG(x0, σ ), x1, x2, F). (11)
(b) For σ ∈ EG

\ EF such that A.1 in Table 1 holds
δV ((x0, x1, x2, l), (σ , σ , σ ))

= (δG(x0, σ ), δGN (x1, σ ), δGN (x2, σ ), l). (12)
(c) For σ ∈ EG

\ EF such that C.3, C.4, D.3 or D.4 in Table 1
holds
δV ((x0, x1, x2, l), (σ , ϵ, ϵ)) = (δG(x0, σ ), x1, x2, l). (13)

(d) For σ ∈ EG
\ EF such that B.1, B.2, B.3, B.4, D.1, D.2, D.3 or

D.4 in Table 1 holds
δV ((x0, x1, x2, l), (ϵ, σ , ϵ)) = (x0, δGN (x1, σ ), x2, l). (14)
(e) For σ ∈ EG
\ EF such that A.2, A.4, B.2, B.4, C.2, C.4, D.2 or

D.4 in Table 1 holds
δV ((x0, x1, x2, l), (ϵ, ϵ, σ )) = (x0, x1, δGN (x2, σ ), l). (15)

(f) For σ ∈ EG
\ EF such that A.3 or A.4 in Table 1 holds

δV ((x0, x1, x2, l), (σ , σ , ϵ))

= (δG(x0, σ ), δGN (x1, σ ), x2, l). (16)
(g) For σ ∈ EG

\ EF such that C.1 or D.1 in Table 1 holds
δV ((x0, x1, x2, l), (σ , ϵ, σ ))

= (δG(x0, σ ), x1, δGN (x2, σ ), l). (17)

This completes the definition of the T-verifier.
Table 1 captures the 16 different combinations of transition-

based observations from a state triple (x0, x1, x2). Intuitively, the
T-Verifier tracks one string in L(G) and two strings in L(GN) that
look identical for agents 1 and 2 under their own observations.
To formalize this assertion, we introduce the following notation:
for any string t = σ1 . . . σn ∈ L(V ), σi = (σ 0

i , σ 1
i , σ 2

i ), we
define θk(t), k = 0, 1, 2 to be the restriction of t to each of its
components; namely, θk(t) = σ k

1 . . . σ k
n ∈ L(G), k = 0, 1, 2. Then

we have the following results. The proofs of Lemmas 4 and 5 are
given in the Appendix.

Lemma 4. For any t ∈ L(V ) and for any i ∈ {1, 2}, we have

PΩi(θ0(t)) = PΩi(θi(t)). (18)

Lemma 5. For any s0 ∈ L(G), s1, s2 ∈ L(GN) such that PΩi(s0) =
PΩi(si),∀i = 1, 2, there exists a string t ∈ L(V ) such that θi(t) =
si,∀i = 0, 1, 2.

Definition 3 (Path and Cycle). We call a sequence of states and
events in the form of t = v0σ0 . . . vp−1σp−1vp, vi ∈ XV , σi ∈ E
a path in V , if vi+1 = δV (vi, σi),∀i ∈ {0, . . . , p− 1}. We define the
length of a path as the number of events in it, e.g., |t| = p. We say
that a path forms a cycle if v0 = vp.

A cycle v0σ0 . . . vp−1σp−1vp in V is said to be F-real if:

(1) (vi)l = F ,∀i ∈ {0, 1, . . . , p − 1}, where (·)l means the label
component of vi and;

(2) ∃j ∈ {0, 1, . . . , p− 1} such that θ0(σj) ≠ ϵ.

The following set of results establish how the T-Verifier can be
applied to the verification of transition-based codiagnosability. The
relationship between these results is depicted in Fig. 4.

Lemma 6. L(G) is not codiagnosable w.r.t. Ω1, Ω2 and EF if there
exists an F-real cycle in V .

Proof. Suppose that there exists an F-real cycle vpσpvp+1 . . .
vp+mσp+mvp in V . Since (vi)l = F ,∀i ∈ {p, p + 1, . . . , p + m}, we
know that there exists a path v0σ0 . . . vp−1σp−1vp, where v0 = xV0 ,
such that

[∃i ∈ {0, . . . , p− 1} s.t. θ0(σi) ∈ EF ]
∧[stn = σ0 . . . σp−1(σp . . . σp+m)n ∈ L(V ), ∀n ∈ N].

Considering the above s and t , we have that: (i) by the construction
of V , EF ∈ θ0(s); and (ii) by Definition 3, θ0(t) ≠ ϵ.



248 X. Yin, S. Lafortune / Automatica 61 (2015) 241–252
Table 1
Shorthand symbol for different cases.

Case Agent 1 Agent 2 Case Agent 1 Agent 2

A.1 (x0, σ ) ∈ Ω1, (x1, σ ) ∈ Ω1 (x0, σ ) ∈ Ω2, (x2, σ ) ∈ Ω2 C.1 (x0, σ ) ∉ Ω1, (x1, σ ) ∈ Ω1 (x0, σ ) ∈ Ω2, (x2, σ ) ∈ Ω2
A.2 Above (x0, σ ) ∈ Ω2, (x2, σ ) ∉ Ω2 C.2 Above (x0, σ ) ∈ Ω2, (x2, σ ) ∉ Ω2
A.3 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∈ Ω2 C.3 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∈ Ω2
A.4 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∉ Ω2 C.4 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∉ Ω2
B.1 (x0, σ ) ∈ Ω1, (x1, σ ) ∉ Ω1 (x0, σ ) ∈ Ω2, (x2, σ ) ∈ Ω2 D.1 (x0, σ ) ∉ Ω1, (x1, σ ) ∉ Ω1 (x0, σ ) ∈ Ω2, (x2, σ ) ∈ Ω2
B.2 Above (x0, σ ) ∈ Ω2, (x2, σ ) ∉ Ω2 D.2 Above (x0, σ ) ∈ Ω2, (x2, σ ) ∉ Ω2
B.3 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∈ Ω2 D.3 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∈ Ω2
B.4 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∉ Ω2 D.4 Above (x0, σ ) ∉ Ω2, (x2, σ ) ∉ Ω2
Fig. 4. Codiagnosability, |XG
|
3-codiagnosability and the non-existence of F-real

cycle are equivalent.

Then, we define strings w0(n) ∈ L(G) and w1(n), w2(n) ∈
L(GN) by wi(n) = θi(stn), i = 0, 1, 2, n ≥ 0. As discussed above,
|w0(n)| ≥ 1 + n. Moreover, by Lemma 4, for any n ∈ N, we have
PΩ1(w0(n)) = PΩ1(w1(n)) and PΩ2(w0(n)) = PΩ2(w2(n)). Since
n can be arbitrarily large, w0(n) can be made arbitrarily long; this
leads to a violation of codiagnosability. �

Moreover, the T-Verifier can also be used to estimate the
upper bound for the diagnosis delay, as stated in the following
proposition.

Proposition 7. When I = {1, 2}, for transition-based observations,
L(G) is codiagnosable w.r.t. Ω1, Ω2 and EF if and only if it is |XG

|
3-

codiagnosable.

Proof. The ‘‘if’’ part is trivial. We show the ‘‘only if’’ part by
contrapositive. Suppose thatL(G) is not |XG

|
3-codiagnosable. Then

there exists a string st ∈ L(G) such that s ∈ Ψ (EF ) ∧ |t| = |XG
|
3

and there exist strings wi := siti ∈ L(GN), i = 1, 2, such that
PΩi(s) = PΩi(si),∀i = 1, 2 and PΩi(st) = PΩi(siti),∀i = 1, 2.
Define the following notation: xs := δG(xG0 , s), xst := δG(xG0 , st) and
xsi := δGN (xGN0 , si), xwi := δGN (xGN0 , wi),∀i = 1, 2. By Lemma 5,
we know that v0 := (xs, xs1 , xs2 , F) and vr := (xst , xw1 , xw2 , F)
are all reachable states in V with a path g = v0σ0 . . . σr−1vr
such that σ 0

0 . . . σ 0
r−1 = t and σ i

0 . . . σ i
r−1 = ti, i = 1, 2, where

σl = (σ 0
l , σ 1

l , σ 2
l ),∀l = 1, . . . , r − 1. Therefore, there exist some

|t| integers 0 ≤ i1 < i2 < · · · < i|t| ≤ r − 1 such that
θ0(σil) = σ 0

il
≠ ϵ,∀l = 1, . . . , |t|. Since i|t| ≥ |t| = |XG

|
3 and

there are at most |XG
|
3 states in V labeled by F , we know that there

exist two integers 1 ≤ p < q ≤ |t| such that vipσipvip+1 . . . σiq−1viq

forms a cycle and θ0(σip) = σ 0
ip ≠ ϵ. Thus, there exists an F-

real cycle in V , which means that L(G) is not codiagnosable by
Lemma 6. �

Lemma 8. There exists an F-real cycle in V if L(G) is not
codiagnosable w.r.t. Ω1, Ω2 and EF .

Proof. As depicted in Fig. 4, the proof of this lemma follows
immediately from the proof of Proposition 7, in which we
have shown that codiagnosability and |XG

|
3-codiagnosability are

equivalent and non-|XG
|
3-codiagnosable implies the existence of

an F-real cycle in V . �

Theorem 9. L(G) is not codiagnosable w.r.t. Ω1, Ω2 and EF if and
only if there exists an F-real cycle in V .
Proof. Follows from Lemmas 6 and 8. �

By Theorem 9, to verify transition-based codiagnosability, it
suffices to verify the presence or not of an F-real cycle in V , which
is similar to the static case (Qiu & Kumar, 2006; Wang, Yoo et al.,
2007). We illustrate the verification procedure by the following
example.

Example 5. Consider the systemG in Fig. 5(a), where f is the single
fault event. Two agents monitor the plant with transition-based
observations Ω1 and Ω2, respectively, as shown in Fig. 5(b) and
(c), where (red) dashed lines represent unobservable transitions.
Part of the corresponding T-Verifier V is shown in Fig. 5(d). For
example, at state (0, 0, 0,N), we have that (0, o), (0, o) ∈ Ω1
and (0, o), (0, o) ∉ Ω2. Therefore, events (ϵ, ϵ, o) and (o, o, ϵ) are
defined at this state and according to the transition function, the
successor states are (0, 0, 1,N) and (1, 1, 0,N), respectively. By
definition, we see that the cycle (3, 3, 3, F)(a, a, a)(3, 3, 3, F) is an
F-real cycle. By Theorem 9, the system G is not codiagnosable w.r.t.
Ω1, Ω2 and {f }. �

4.2. Case of multiple agents

In this section, we highlight how to generalize the results of the
previous section to the case of n local agents. In this context, XV

=

XG
×XGN × · · · × XGN  

n times

×L, EV
= (EG

∪ {ϵ})× · · · × (EG
∪ {ϵ})  

(n+1) times

, and

the transition function δV
: XV
× EV

× XV is defined as follows:

(a) For σ ∈ EF , then

δV ((x0, x1, . . . , xn, l), (σ , ϵ, . . . , ϵ))

= (δG(x0, σ ), x1, . . . , xn, F). (19)

(b) For σ ∈ EG
\ EF , we partition I into four disjoint sets I =

I1∪̇I2∪̇I3∪̇I4, where: (i)I1 = {i ∈ I : (x0, σ ) ∈ Ωi∧(xi, σ ) ∈

Ωi}; (ii) I2 = {i ∈ I : (x0, σ ) ∈ Ωi ∧ (xi, σ ) ∉ Ωi};
(iii) I3 = {i ∈ I : (x0, σ ) ∉ Ωi ∧ (xi, σ ) ∈ Ωi}; and (iv)
I4 = {i ∈ I : (x0, σ ) ∉ Ωi ∧ (xi, σ ) ∉ Ωi}. Then, we have the
following two types of transitions:

(b1) If I2 = ∅, then the single transition

δV ((x0, x1, . . . , xn, l), (σ , e1, . . . , en))
= (δG(x0, σ ), δGN (x1, e1), . . . , δGN (xn, en), l),

where for any i ∈ I, ei =

σ , if i ∈ I1
ϵ, if i ∈ I3 ∪ I4.

(20)

(b2) The following transition for each i ∈ I2 ∪ I4,

δV ((x0, x1, . . . , xn, l), (ϵ, ϵ, . . . , ϵ, σ
(i+1)th

, ϵ, . . . , ϵ))

= (x0, x1, . . . , xi−1, δGN (xi, σ ), xi+1, . . . , xn, l). (21)
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(a) System: G. (b) Agent 1: Ω1 . (c) Agent 2: Ω2 . (d) Part of the T-Verifier V for G, Ω1 and Ω2 .

Fig. 5. Example of the verification of transition-based codiagnosability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
The above construction generalizes Eqs. (11)–(17) in the two
agents’ case. Specifically, Eq. (11) is generalized by Eq. (19), Eqs.
(12), (13), (16), and (17) are special cases of Eq. (20), and Eqs. (14)
and (15) are special cases of Eq. (21). In words, case (b1) covers all
cases in Table 1 except A.2, C.2, D.2, and all cases B. In this case,
the first component x0 moves on observable transition σ and the
agents that observe that transition move as well (first case of Eq.
(20)) or do not move if they do not see the transition (second case
in Eq. (20)). Case (b2) covers the remaining cases in Table 1, as well
as cases A.4, C.4, D.3, and D.4. Here, the first component x0 does not
move and we list all individual moves of the agents that project to
the empty string. Note that if I2 ≠ ∅, then the first component
x0 cannot move as this would violate the conditions that projected
strings are to remain the same.

Similar to the case of two agents, the diagnosis delay in the case
of n agents is bounded by the size of the first n + 1 components
of the T-Verifier, i.e., |XG

|
n+1. Consequently, Proposition 7 can be

extended to the n-agents’ case as follows.

Proposition 10. When |I| = n, for transition-based observations,
L(G) is codiagnosable w.r.t. EF and Ωi, i ∈ I, if and only if it is
|XG
|
n+1-codiagnosable.

The proof of this result follows the same strategy as the proof of
Proposition 7, but is more tedious.

Remark 5. When there are n local agents, the T-Verifier has at
most 2|XG

|
n+1 states. For each state, there are at most |EG

| +

n(|EG
| − |EF |) transitions that originate from it (|EG

| choices when
the first component is involved and n(|EG

| − |EF |) choices when
the remaining n components are involved). Thus, the total number
of transitions in V is bounded by 2|XG

|
n+1(|EG

| + n(|EG
| − |EF |)).

The verification of the existence of an F-real cycle is a strongly
connected graph detection problem, which follows the same tech-
nique as described in Moreira et al. (2011), Qiu and Kumar (2006)
and Wang, Yoo et al. (2007) and can be done in linear com-
plexity w.r.t. the number of states and transitions. Thus, the to-
tal worst-case time complexity of the verification procedure is
O(|XG

|
n+1(|EG

|+n(|EG
|− |EF |))). This is in fact the same computa-

tional complexity as reported in Moreira et al. (2011) and Qiu and
Kumar (2006). However, we are considering transition-based codi-
agnosability here, which ismore general than the static codiagnos-
ability case considered in Moreira et al. (2011) and Qiu and Kumar
(2006). In other words, when using the verifier approach, the ver-
ification of codiagnosability is not more computationally difficult
for transition-based dynamic observations as it is with static ob-
servations.

4.3. Discussion and summary of results

Let L(G) be the language to be diagnosed. The preceding
derivation of the upper bound for the maximal diagnosis delay
is based on the assumption that there is one only type of fault,
which was made for the sake of simplicity at the beginning of
Fig. 6. The relationship between [K -][Co]diagnosability and [Co]observability.

Section 4. In the case of multiple fault types, a system is not
codiagnosable if and only if it is not codiagnosable w.r.t. at least
one type of faults. Moreover, given a certain type of faults, the
system is not codiagnosable if and only if it is not |XG

|
n+1-

codiagnosable. Therefore, this upper bound can also be applied to
the case of multiple fault types. By using the upper bound |XG

|
n+1

to replace the integer K in O(Km
|XG
| |EG
|), which is the complexity

of Algorithm KCOD–COOB-II, we consequently have the following
result.

Corollary 11. Let L(G) be the language to be diagnosedwith |I| = n
and |F | = m. Transition-based codiagnosability can be transformed
to transition-based coobservability in O(|XG

|
mn+m+1

|EG
|).

We summarize the various transformations between the dif-
ferent notions of [K -][co]diagnosability and [co]observability that
have been discussed so far in this paper in the diagram in Fig. 6. In
this diagram, the arrows between blocks represent the transforma-
tions and the self-loop at each block represents the corresponding
verification algorithm. As can be seen in the diagram, we cannot
transform language-based codiagnosability directly to language-
based coobservability. However, as discussed in Section 3.4, we
can first transform language-based codiagnosability to transition-
based codiagnosability, and then transform transition-based co-
diagnosability to transition-based coobservability by using Corol-
lary 11, which is a special case of language-based coobservability.

Fig. 6 also highlights different verification algorithms for dif-
ferent notions. For a comprehensive survey on the computational
complexity of these verification algorithms, the reader is referred
to Sears and Rudie (2015). Since all the notions in the diagram can
be related from one to the other, an interesting question that arises
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is: How to choose the ‘‘right’’ approach to verify a certain property?
For instance, Ref. Huang et al. (2008) presents a verification algo-
rithm of complexity of O(|X |6|E|) for transition-based coobserv-
ability with two agents (|X | is the number of states and |E| is the
number of events of the system); however, the extension of this
algorithm to the case of n agents is not available in the literature
(Sears & Rudie, 2015). However, by applying the transformation al-
gorithm inWang et al. (2011) and the verification algorithm in Sec-
tion 4, the verification of transition-based coobservability can be
done in O(|X |3|E|2), which may improve the computational com-
plexity over the algorithm inHuang et al. (2008), since |E| is usually
much smaller than |X |. Moreover, this approach is applicable to the
case of n agents.

Another implication of the relationships in the diagram in Fig. 6
is that we can solve a control (respectively, diagnosis) problem
by applying the methodology for its corresponding diagnosis
(respectively, control) problem. We discuss this issue in more
detail through a specific problem in the next section.

5. Application to optimization of sensor activation

In this section, we showhow the results in Section 3 can be used
to leverage the research on observability and coobservability to
solve problems pertaining to diagnosability and codiagnosability.

In sensor activation problems, under energy, bandwidth, or
security constraints, the sensors can be turned on/off on-line by the
agents based on their observation histories. In this scenario, one is
interested in synthesizing a sensor activation policy that achieves
certain observational properties; see, e.g., Wang, Lafortune, Girard
et al. (2010), Wang, Lafortune, Lin et al. (2010) and Sears and
Rudie (2013a,b). Roughly speaking, sensor activation policies are
a particular class of observation mappings satisfying the property
that the sensor activation decisions for any two indistinguishable
strings must be the same. This property is called the feasibility
condition inWang, Lafortune, Girard et al. (2010),Wang, Lafortune,
Lin et al. (2010). It is formally defined as follows.

Definition 4. Given a system G, an observation mappings ωi :

L(G)→ 2Eo,i , i ∈ I, is said to be a feasible sensor activation policy
if

(∀σ ∈ EG)(∀sσ , tσ ∈ L(G))

Pωi(s) = Pωi(t)⇒ [σ ∈ ωi(s)⇔ σ ∈ ωi(t)]. (22)

The following theorem reveals that feasibility is preserved
under transformation Algorithm KCOD–COOB-II of Section 3. In
other words, any sensor activation policy synthesized for the
transformed system can be applied back to the original system.

Theorem 12. Let H be the input to Algorithm KCOD–COOB-II and
consider output G̃. Then, for each agent i ∈ I, ωi is a feasible sensor
activation policy for H if and only if ωi,G̃ is a feasible sensor activation
policy for G̃.

Proof. (⇐) By contrapositive. Since L(H) = L(Ĥ) ⊆ L(G̃) and
∀s ∈ L(H) : ωi(s) = ωi,G̃(s), ωi is not feasible for H implies
immediately that ωi,G̃ is not feasible for G̃ either.

(⇒) Suppose ωi is feasible for H . For any σ ∈ E G̃, we know that
either (i) σ ∈ EH ; or (ii) σ ∈ {cj : j ∈ F }. If σ ∈ EH , then for any
sσ , tσ ∈ L(G̃), we know that s, t ∈ L(Ĥ) = L(H). Moreover, by
the definition of ωi,G̃, we know that ∀s ∈ L(Ĥ) = L(H) : ωi(s) =
ωi,G̃(s). Therefore, Pωi(s) = Pωi(t) ⇒ [σ ∈ ωi(s) ⇔ σ ∈ ωi(t)]
also implies that Pωi,G̃

(s) = Pωi,G̃
(t) ⇒ [σ ∈ ωi,G̃(s) ⇔ σ ∈

ωi,G̃(t)]. If σ ∈ {cj : j ∈ F }, then by the definition of ωi,G̃, we
know that σ ∉ ωi,G̃(s),∀s ∈ L(G̃). Therefore, it is always true that
Pωi,G̃

(s) = Pωi,G̃
(t) ⇒ [σ ∈ ωi,G̃(s) ⇔ σ ∈ ωi,G̃(t)]. Thus, ωi,G̃ is

also feasible for G̃. �
The above theorem provides an approach for the synthesis
of optimal sensor activation policies for K -codiagnosability. The
results in Cassez and Tripakis (2008) and Thorsley and Teneketzis
(2007) only pertain to the centralized sensor activation problem
while the algorithm developed in Wang, Lafortune, Girard et al.
(2010) is for codiagnosability, not for K -codiagnosability. To the
best of our knowledge, the problem of synthesizing an optimal
sensor activation policy for K -codiagnosability had remained an
open problem. (The verification of K -codiagnosability has been
studied in Cassez, 2012.) This problem can now be solved by
applying transformation Algorithm KCOD–COOB-II of Section 3
together with the algorithm in Wang, Lafortune, Lin et al. (2010).
Suppose that H is the system to be diagnosed; H̃ and G̃ are the
transformed systems produced by Algorithm KCOD–COOB-II. We
can then apply AlgorithmMin-Sen-Co inWang, Lafortune, Lin et al.
(2010) to obtain the optimal sensor activation policy ωi,G̃ ensuring
coobservability for the transformed systems H̃ and G̃. Then an
optimal sensor activation policy ωi for K -codiagnosability can be
calculated by setting ωi(s) = ωi,G̃(s) for all s ∈ L(H).

6. Conclusion

We have presented a new transformation algorithm that shows
that the property of language-based K -codiagnosability can be
transformed to the property of language-based coobservability,
where the integer K is given a priori. Moreover, we have pre-
sented a new approach for the verification of transition-based
codiagnosability. A new upper bound of the diagnosis delay for
decentralized diagnosis under transition-based observations has
been derived. We have shown that, when the observation prop-
erties are transition-based, [co]diagnosability is transformable to
[co]observability. These new results complement those in Wang
et al. (2011) that pertain to the reverse transformation, from coob-
servability to codiagnosability, thereby resulting in a thorough
characterization of the relationship between the two notions of
codiagnosability and coobservability and their verification, sum-
marized in the diagram in Fig. 6. The new results in this pa-
per also allow the leveraging of the large existing literature on
solution methodologies for problems of decentralized control to
solve corresponding problems of decentralized fault diagnosis. One
such instance is the problem of optimal sensor activation for K -
codiagnosability, forwhichwepresent the first solution procedure.
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Appendix. Proofs not contained in main body

Proof of Lemma 4. We prove the case i = 1 by induction on the
length of string t . If |t| = 0, i.e., t = (ϵ, ϵ, ϵ), then (18) holds
trivially. Assume that (18) is true for |t| = p and consider the string
tσ ∈ L(V ), σ ∈ EV with length p+ 1. We have that

PΩ1(θ0(tσ)) = PΩ1(θ0(t)θ0(σ ))

= PΩ1(θ0(t))I1(δ
G(θ0(t)), θ0(σ )) (A.1)

PΩ1(θ1(tσ)) = PΩ1(θ1(t)θ1(σ ))

= PΩ1(θ1(t))I1(δ
G(θ1(t)), θ1(σ )) (A.2)

where, I1 : XG
× EG

→ EG
∪ {ϵ} is defined by I1(x, σ ) = σ if

(x, σ ) ∈ Ω1 and I1(x, σ ) = ϵ if (x, σ ) ∉ Ω1.
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If θ0(σ ) ∈ EF , then θ1(σ ) = ϵ and we know that I1(δG(θ0(t)),
θ0(σ )) = I1(δG(θ1(t)), θ1(σ )) = ϵ. Therefore, we assume that
θ0(σ ) ∈ EG

\ EF . By the definition of V , we know that one
of the following cases is true: (i) θ0(σ ) = θ1(σ ) ≠ ϵ; or
(ii) θ0(σ ) ≠ ϵ, θ1(σ ) = ϵ; or (iii)θ0(σ ) = ϵ, θ1(σ ) ≠ ϵ;
or (iv) θ0(σ ) = θ1(σ ) = ϵ. If (i) is true, then we know
that A.1, A.3 or A.4 holds at δV (xV0 , t) for θ0(σ ), which means
that I1(δG(θ0(t)), θ0(σ )) = I1(δG(θ1(t)), θ1(σ )) = θ0(σ ). If (ii)
is true, then we know that C.1, C.3, C.4, D.1, D.3 or D.4 holds
at δV (xV0 , t) for θ0(σ ). Under any of these cases, we have that
I1(δG(θ0(t)), θ0(σ )) = I1(δG(θ1(t)), θ1(σ )) = ϵ. Similarly, we
can also verify that I1(δG(θ0(t)), θ0(σ )) = I1(δG(θ1(t)), θ1(σ )) still
holds if (iii) or (iv) is true. Moreover, by the induction hypothe-
sis, we know that PΩ1(θ0(t)) = PΩ1(θ1(t)). Thus, PΩ1(θ0(tσ)) =
PΩ1(θ1(tσ)), which completes the induction. �

Proof of Lemma 5. We prove by induction on the length of s0, s1
and s2. Let spi , i = 0, 1, 2 denote the string that consists of the
first p events in si and σ

p
i denote the (p + 1)th event in si, so that

s0i = ϵ, s1i = σ 0
i , etc. Without loss of generality, we assume that

|s0| = |s1| = |s2| and PΩi(s
p
0) = PΩi(s

p
i ),∀p = 1, . . . , |s0|, i = 1, 2,

since these assumptions always hold if we consider ϵ as a single
event. Initially, when s00 = s01 = s02 = ϵ, we can take t = (ϵ, ϵ, ϵ)

such that θ0(t) = s0i ,∀i = 0, 1, 2. Assume that for |s0| = p, there
exists tp ∈ L(V ) such that θi(tp) = si,∀i = 0, 1, 2. In order to
show that the above assumption is also true for |s0| = p + 1, i.e.,
si = spi σ

p
i , i = 0, 1, 2, we need to consider the following cases:

(i) σ
p
0 ≠ ϵ, σ

p
1 = ϵ and σ

p
2 = ϵ

(ii) σ
p
0 = ϵ, σ

p
1 ≠ ϵ and σ

p
2 = ϵ

(iii) σ
p
0 = ϵ, σ

p
1 = ϵ and σ

p
2 ≠ ϵ

(iv) σ
p
0 ≠ ϵ, σ

p
1 ≠ ϵ and σ

p
2 = ϵ

(v) σ
p
0 ≠ ϵ, σ

p
1 = ϵ and σ

p
2 ≠ ϵ

(vi) σ
p
0 = ϵ, σ

p
1 ≠ ϵ and σ

p
2 ≠ ϵ

(vii) σ
p
0 ≠ ϵ, σ

p
1 ≠ ϵ and σ

p
2 ≠ ϵ.

First, let us suppose that (i) is true. By PΩ1(s
p
0σ

p
0 ) = PΩ1(s

p
1ϵ)

and PΩ2(s
p
0σ

p
0 ) = PΩ2(s

p
2ϵ), we know that (δG(xG0 , s

p
0), σ

p
0 ) ∉

Ωi, i = 1, 2. Therefore, event (σ
p
0 , ϵ, ϵ) is defined at δV (xV0 , tp).

By the induction hypothesis, we know that there exists tp+1 =
tp(σ p

0 , ϵ, ϵ) ∈ L(V ) such that θi(tp+1) = spi σ
p
i ,∀i = 0, 1, 2.

Similarly, we can show that the induction step also holds for (ii)
and (iii).

Suppose that (iv) is true. First, by PΩ2(s
p
0σ

p
0 ) = PΩ2(s

p
2ϵ),

we know that (δG(xG0 , s
p
0), σ

p
0 ) ∉ Ω2. Also, since PΩ1(s

p
0σ

p
0 ) =

PΩ1(s
p
1σ

p
1 ), we know that either (a) (δG(xG0 , s

p
0), σ

p
0 ) ∈ Ω1,

(δGN (xGN0 , sp1), σ
p
1 ) ∈ Ω1 and σ

p
0 = σ

p
1 ; or (b) (δG(xG0 , s

p
0), σ

p
0 ) ∉ Ω1

and (δGN (xGN0 , sp1), σ
p
1 ) ∉ Ω1. If (a) is true, we know that A.3 or

A.4 holds, which implies that there exists tp+1 = tp(σ p
0 , σ

p
0 , ϵ) ∈

L(V ) such that θi(tp+1) = spi σ
p
i ,∀i = 0, 1, 2. If (b) is true,

we know that D.3 or D.4 holds. Therefore, there exists tp+1 =
tp(σ p

0 , ϵ, ϵ)(ϵ, σ
p
1 , ϵ) ∈ L(V ) or tp+1 = tp(ϵ, σ p

1 , ϵ)(σ
p
0 , ϵ, ϵ) ∈

L(V ) such that θi(tp+1) = spi σ
p
i ,∀i = 0, 1, 2. Similarly, we can

show that the induction step holds for (v), (vi) and (vii).

References

Carvalho, L. K., Basilio, J. C., & Moreira, M. V. (2012). Robust diagnosis of discrete
event systems against intermittent loss of observations. Automatica, 48(9),
2068–2078.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete event systems (2nd
ed.). Springer.

Cassez, F. (2012). The complexity of codiagnosability for discrete event and timed
systems. IEEE Transactions on Automatic Control, 57(7), 1752–1764.

Cassez, F., & Tripakis, S. (2008). Fault diagnosis with static and dynamic observers.
Fundamenta Informaticae, 88(4), 497–540.
Cieslak, R., Desclaux, C., Fawaz, A. S., & Varaiya, P. (1988). Supervisory control
of discrete-event processes with partial observations. IEEE Transactions on
Automatic Control, 33(3), 249–260.

Debouk, R., Lafortune, S., & Teneketzis, D. (2000). Coordinated decentralized
protocols for failure diagnosis of discrete event systems.Discrete Event Dynamic
Systems: Theory and Applications, 10(1–2), 33–86.

Hashtrudi Zad, S., Kwong, R. H., & Wonham, W. M. (2003). Fault diagnosis in
discrete-event systems: framework and model reduction. IEEE Transactions on
Automatic Control, 48(7), 1199–1212.

Huang, Y., Rudie, K., & Lin, F. (2008). Decentralized control of discrete-event systems
when supervisors observe particular event occurrences. IEEE Transactions on
Automatic Control, 53(1), 384–388.

Jiang, S., Huang, Z., Chandra, V., & Kumar, R. (2001). A polynomial algorithm for
testing diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 46(8), 1318–1321.

Lin, F. (1994). Diagnosability of discrete event systems and its applications. Discrete
Event Dynamic Systems: Theory and Applications, 4(2), 197–212.

Lin, F. (2014). Control of networked discrete event systems: dealing with
communication delays and losses. SIAM Journal on Control and Optimization,
52(2), 1276–1298.

Lin, F., & Wonham, W. M. (1988). On observability of discrete-event systems.
Information Sciences, 44(3), 173–198.

Moreira, M. V., Jesus, T. C., & Basilio, J. C. (2011). Polynomial time verification of
decentralized diagnosability of discrete event systems. IEEE Transactions on
Automatic Control, 56(7), 1679–1684.

Overkamp, A., & van Schuppen, J. H. (2000). Maximal solutions in decentralized
supervisory control. SIAM Journal on Control and Optimization, 39(2), 492–511.

Pencolé, Y., & Cordier, M. (2005). A formal framework for the decentralised
diagnosis of large scale discrete event systems and its application to
telecommunication networks. Artificial Intelligence, 164(1), 121–170.

Qiu, W., & Kumar, R. (2006). Decentralized failure diagnosis of discrete event
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A, 36(2),
384–395.

Rudie, K., Lafortune, S., & Lin, F. (2003). Minimal communication in a distributed
discrete-event system. IEEE Transactions on Automatic Control, 48(6), 957–975.

Rudie, K., & Willems, J. C. (1995). The computational complexity of decentralized
discrete-event control problems. IEEE Transactions on Automatic Control, 40(7),
1313–1319.

Rudie, K., & Wonham, W. M. (1992). Think globally, act locally: Decentralized
supervisory control. IEEE Transactions on Automatic Control, 37(11), 1692–1708.

Sampath,M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995).
Diagnosability of discrete-event systems. IEEE Transactions on Automatic
Control, 40(9), 1555–1575.

Sears, D., & Rudie, K. (2013a). Computing sensor activation decisions from state
equivalence classes in discrete-event systems. In 52nd IEEE conference on
decision and control (pp. 6972–6977).

Sears, D., & Rudie, K. (2013b). Efficient computation of sensor activation decisions
in discrete-event systems. In 52nd IEEE conference on decision and control (pp.
6966–6971).

Sears, D., & Rudie, K. (2015). Minimal sensor activation and minimal communica-
tion in discrete-event systems. Discrete Event Dynamic Systems: Theory and Ap-
plications,.

Seatzu, C., Silva, M., & Van Schuppen, J. H. (2013). Control of discrete-event systems.
automata and petri net perspectives. London: Springer.

Su, R., & Wonham, W. M. (2005). Global and local consistencies in distributed fault
diagnosis for discrete-event systems. IEEE Transactions on Automatic Control,
50(12), 1923–1935.

Thorsley, D., & Teneketzis, D. (2007). Active acquisition of information for diagnosis
and supervisory control of discrete event systems. Discrete Event Dynamic
Systems: Theory and Applications, 17(4), 531–583.

Tripakis, S. (2004). Undecidable problems of decentralized observation and control
on regular languages. Information Processing Letters, 90(1), 21–28.

Wang, W., Girard, A. R., Lafortune, S., & Lin, F. (2011). On codiagnosability and
coobservability with dynamic observations. IEEE Transactions on Automatic
Control, 56(7), 1551–1566.

Wang, W., Lafortune, S., Girard, A. R., & Lin, F. (2010). Optimal sensor activation for
diagnosing discrete event systems. Automatica, 46(7), 1165–1175.

Wang, W., Lafortune, S., & Lin, F. (2007). An algorithm for calculating indistinguish-
able states and clusters in finite-state automata with partially observable tran-
sitions. Systems & Control Letters, 56(9), 656–661.

Wang, W., Lafortune, S., Lin, F., & Girard, A. R. (2010). Minimization of dynamic
sensor activation in discrete event systems for the purpose of control. IEEE
Transactions on Automatic Control, 55(11), 2447–2461.

Wang, Y., Yoo, T.-S., & Lafortune, S. (2007). Diagnosis of discrete event systems
using decentralized architectures. Discrete Event Dynamic Systems: Theory and
Applications, 17(2), 233–263.

Yin, X., & Lafortune, S. (2015). On the relationship between codiagnosability and
coobservability under dynamic observations. In American control conference
(pp. 390–395).

Yoo, T.-S., &Garcia, H. E. (2009). Event counting of partially-observeddiscrete-event
systems with uniformly and nonuniformly bounded diagnosis delays. Discrete
Event Dynamic Systems: Theory and Applications, 19(2), 167–187.

http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref1
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref2
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref3
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref4
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref5
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref6
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref7
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref8
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref9
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref10
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref11
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref12
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref13
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref14
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref15
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref16
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref17
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref18
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref19
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref20
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref23
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref24
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref25
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref26
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref27
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref28
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref29
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref30
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref31
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref32
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref34


252 X. Yin, S. Lafortune / Automatica 61 (2015) 241–252
Yoo, T.-S., & Lafortune, S. (2002). Polynomial-time verification of diagnosability
of partially observed discrete-event systems. IEEE Transactions on Automatic
Control, 47(9), 1491–1495.

Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for discrete
event systems. Annual Reviews in Control, 37(2), 308–320.

Zaytoon, J., & Sayed-Mouchaweh, M. (2012). Discussion on fault diagnosis methods
of discrete event systems. In Proceedings of the 11th international workshop on
discrete event systems (pp. 9–12).

Xiang Yin was born in Anhui, China, in 1991. He received
the B.Eng. degree from Zhejiang University in 2012 and
the M.S. degree from the University of Michigan, Ann
Arbor, in 2013, both in Electrical Engineering. He is
currently a Ph.D. candidate in the Electrical Engineering:
System program at the University of Michigan, Ann
Arbor. His research interests include supervisory control
of discrete-event systems, model-based fault diagnosis,
formal methods, game theory and their applications to
cyber and cyber–physical systems.
Stéphane Lafortune received the B.Eng. degree fromEcole
Polytechnique de Montréal in 1980, the M.Eng. degree
from McGill University in 1982, and the Ph.D. degree
from the University of California at Berkeley in 1986,
all in Electrical Engineering. Since September 1986, he
has been with the University of Michigan, Ann Arbor,
where he is a Professor of Electrical Engineering and
Computer Science. He is a Fellow of the IEEE (1999). He
received the Presidential Young Investigator Award from
the National Science Foundation in 1990 and the George
S. Axelby Outstanding Paper Award from the Control

Systems Society of the IEEE in 1994 (for a paper co-authored with S.-L. Chung
and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). His research
interests are in discrete event systems and include multiple problem domains:
modeling, diagnosis, control, optimization, and applications to computer and
software systems. He is the lead developer of the software package UMDES and
co-developer of DESUMA with L. Ricker. He co-authored, with C. Cassandras, the
textbook Introduction to Discrete Event Systems—Second Edition (Springer, 2008).
He is Editor-in-Chief of the Journal of Discrete Event Dynamic Systems: Theory and
Applications.

http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref35
http://refhub.elsevier.com/S0005-1098(15)00349-0/sbref36

	Codiagnosability and coobservability under dynamic observations: Transformation and verification
	Introduction
	Preliminaries
	System model
	Control and diagnosis under dynamic observations

	From  K -codiagnosability to coobservability
	Case of one fault type
	Case of multiple fault types
	Case of event-based observations
	Case of language-based observations

	Verification of transition-based codiagnosability: a verifier approach
	T-verifier
	Case of multiple agents
	Discussion and summary of results

	Application to optimization of sensor activation
	Conclusion
	Acknowledgments
	Proofs not contained in main body
	References


