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Abstract— We investigate the supervisor synthesis problem
for centralized partially-observed discrete event systems subject
to safety specifications. It is well known that this problem
does not have a unique supremal solution in general. Instead,
there may be several incomparable locally maximal solutions.
One then needs a mechanism to select one locally maximal
solution. Our approach in this paper is to consider a lower
bound specification on the controlled behavior, in addition to
the upper bound for the safety specification. This leads to
a generalized supervisory control problem called the range
control problem. While the upper bound captures the (prefix-
closed) legal behavior, the lower bound captures the (prefix-
closed) minimum required behavior. We provide a synthesis
algorithm that solves this problem by effectively constructing a
maximally-permissive safe supervisor that contains the required
lower bound behavior. This is the first algorithm with such
properties, as previous works solve either the maximally-
permissive safety problem (with no lower bound), or the lower
bound containment problem (without maximal permissiveness).

I. INTRODUCTION

We investigate the supervisor synthesis problem for
partially-observed Discrete Event Systems (DES) in the
framework of supervisory control theory [8]. In this problem,
one is interested in synthesizing a supervisor such that the
closed-loop system under control satisfies some requirement.
Formally, let G be a system and K ⊆ L(G) be a prefix-
closed specification language describing the legal behavior
for the controlled system. The goal is to find a supervisor S
such that L(S/G) ⊆ K, where L(S/G) denotes the language
generated by G under the control of S (closed-loop system).
Moreover, we want the supervisor S to be as permissive as
possible.

Let L ⊆ K be a sub-language of K. Under the partial
observation setting, it is well-known that there exists a
supervisor that exactly achieves L if and only if L is
controllable and observable [6], [7]. Since controllability is
preserved union, there exists a supremal controllable sub-
language of K; this is the unique supremal solution to the
synthesis problem when all events are observable. However,
the supervisor synthesis problem is much more challenging
under the partial observation setting, since observability is
not preserved under union. Therefore, the supervisor syn-
thesis problem may not have a unique supremal solution in
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Fig. 1. Let G be the system, K be the legal behavior and R be the required
behavior. Max1 and Max2 are two incomparable maximal solutions in K,
i.e., Max1 6⊂Max2 and Max2 6⊂Max1. However, Max1 contains the
required behavior R, while Max2 does not contain any string in R.

general. Instead, there may be several incomparable locally
maximal solutions.

Many different approaches have been proposed in the liter-
ature to tackle the supervisor synthesis problem under partial
observation; see, e.g., [1]–[3], [5], [10]–[12], [15], [16], [18].
One approach is to compute the supremal controllable and
normal sub-language of K [2], [5]. However, since normality
is stronger than observability, this solution is conservative
in general. In [3], [10], two different solutions that are
strictly more permissive than the supremal normal solution
were proposed, respectively. However, these solutions are not
maximal in general. In [1], an online approach was provided
to synthesize a maximal solution for case of prefix-closed
specifications. Recently, we showed in [15] that synthesizing
a maximally-permissive safe and nonblocking supervisor is
also decidable.

The algorithms in [1], [15] synthesize particular types
of maximal solutions. No consideration is given to includ-
ing some minimum required behavior in these solutions, a
meaningful criterion when choosing among locally maximal
solutions. This phenomenon is illustrated in Figure 1. In fact,
none of the synthesis algorithms in [1]–[3], [5], [10], [15],
[18] can handle a minimal behavior requirement.

In order to resolve the above issue, we consider in this
paper a generalized supervisor synthesis problem called the
Maximally-Permissive Range Control Problem. In this prob-
lem, we not only want to find a locally maximal supervisor,
but we also require that the synthesized maximal supervisor
contain a given behavior. Namely, we want to find a “mean-
ingful” maximal solution. More specifically, in addition to
the safety specification language K, which is also referred
to as the upper bound language, we consider a prefix-closed
lower bound language R ⊆ K, which models the required
behavior that the closed-loop system must achieve. To solve
the range problem, we present a new synthesis algorithm
based on the two notions of All Inclusive Controller (AIC)
and Control Simulation Relation (CSR) proposed in our
recent works [14], [15], respectively. In [15], the AIC is
used to synthesize an arbitrary maximal solution, with no
consideration to a lower bound behavior. In [14], the CSR
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is used to verify whether a given supervisor is maximal or
not. The present paper solves a supervisor synthesis problem,
which is fundamentally more difficult than the verification
problem studied in [14]. Throughout the paper, we only
consider prefix-closed languages, i.e., nonblockingness is
not considered. However, to the best of our knowledge, the
maximally-permissive range control problem we solve herein
was an open problem even in the prefix-closed case.

Due to space constraints, all proofs have been omitted and
they are available in [17].

II. PRELIMINARIES

Let Σ be a finite set of events. We denote by Σ∗ the set of
all finite strings over Σ, including the empty string ε. For any
string s ∈ Σ∗, |s| denotes its length, with |ε| = 0. A language
L is a subset of Σ∗. We denote by L the prefix-closure of
language L; L is said to be prefix-closed if L = L. A DES is
modeled as a finite-state automaton G = (X,Σ, δ, x0, Xm),
where X is the finite set of states, Σ is the finite set of events,
δ : X × Σ → X is the partial transition function, x0 ∈ X
is the initial state, and Xm ⊆ X is the set of marked states.
The transition function δ is extended to X×Σ∗ in the usual
manner; see, e.g., [4]. For brevity, we write δ(x, s) as δ(s)
if x = x0. We define L(G, x) := {s ∈ Σ∗ : δ(x, s)!} as the
language generated by G from state x, where ! means “is
defined”. We write L(G, x) as L(G) if x = x0. In this paper,
we will only deal with prefix-closed languages. Therefore,
we assume that Xm = X and denote an automaton by G =
(X,Σ, δ, x0).

Given two automata A = (XA,Σ, δA, xA,0) and B =
(XB ,Σ, δB , xB,0), we say that A is a sub-automaton of B,
denoted by A v B, if δA(xA,0, s) = δB(xB,0, s) for all
s ∈ L(A). We say that A is a strict sub-automaton of B,
denoted by A @ B, if (i) A v B; and (ii) ∀x, y ∈ XA,∀s ∈
Σ∗ : δB(x, s)=y ⇒ δA(x, s)=y.

In the supervisory control framework [8], the event set is
partitioned into two disjoint sets Σ = Σc∪̇Σuc, where Σc is
the set of controllable events and Σuc is the set of uncontrol-
lable events. A control decision γ ∈ 2Σ is a set of events with
the constraint that Σuc ⊆ γ, i.e., the supervisor should always
enable uncontrollable events. We denote by Γ the set of all
control decisions, i.e., Γ := {γ ∈ 2Σ : Σuc ⊆ γ}. Under the
partial observation setting [6], [7], the event set is further
partitioned into another two disjoint sets Σ = Σo∪̇Σuo,
where Σo is the set of observable events and Σuo is the set of
unobservable events. The natural projection P : Σ∗ → Σ∗o is
defined in the usual manner; see, e.g., [4]. The projection P is
extended to 2Σ∗

by P (L) = {t ∈ Σ∗o : ∃s∈L s.t. t=P (s)}
and P−1 denotes the inverse projection. A supervisor is a
function S : P (L(G))→ Γ, i.e., it enables events only based
on its observations. We denote by L(S/G) the language
generated by the closed-loop system under control which
can be computed recursively by: i) ε ∈ L(S/G); and ii)
s∈L(S/G)∧sσ∈L(G)∧σ∈S(P (s))⇔sσ∈L(S/G). We
refer the reader to [4] for the definitions of controllability
and observability in supervisory control theory.

Since we consider partially-observed DES, we define an
information state as a set of states and denote by I = 2X the
set of all information states. Let i ∈ I be an information state,
γ ∈ Γ be a control decision, and σ ∈ Σo be an observable
event. We define the following two operators:
URγ(i)={x∈X : ∃y∈ i,∃s∈(Σuo ∩ γ)∗ s.t. x=δ(y, s)};
Nextσ(i)={x ∈ X : ∃y ∈ i s.t. x = δ(y, σ)}.

III. PROBLEM FORMULATION

In this paper, we consider a generalized supervisory con-
trol synthesis problem, called the range control problem,
where we have two prefix-closed specification languages, the
upper bound language K=K⊆L(G) and the lower bound
language R = R ⊆ K. The upper bound K describes the
legal behavior of the system and we say that a supervisor
S is safe if L(S/G)⊆K. We say that a safe supervisor S
is maximally permissive (or maximal) if there does not exist
another safe supervisor S′, such that L(S/G)⊂ L(S′/G).
Note that the maximal supervisor may not be unique and
there may be two incomparable maximal supervisor S1 and
S2 such that L(S1/G) 6⊂L(S2/G) and L(S2/G) 6⊂L(S1/G).
In order to synthesize a “meaningful” maximal solution, we
introduce a lower bound language R describing the required
behavior that the closed-loop system must achieve. We now
formulate the Maximally Permissive Range Control Problem
(MPRCP):

Problem 1: (Maximally-Permissive Range Control Prob-
lem). Given system G, lower bound language R and upper
bound language K, synthesize a maximally permissive su-
pervisor S∗ : P (L(G))→ Γ such that R ⊆ L(S∗/G) ⊆ K.

Remark 1: We make several comments on MPRCP.
1) First, under the assumption that Σc ⊆ Σo, MPRCP has
a unique solution, if one exists. Specifically, it suffices to
compute the supremal controllable and normal sub-language
of K, denoted by K↑CN , and test whether or not R ⊆
K↑CN . If so, then K↑CN is the unique supremal solution;
otherwise, there does not exist a solution to MPRCP.
2) Second, when the lower bound requirement is relaxed,
i.e., R = {ε}, MPRCP is solved by the algorithms in [1],
[15], since it suffices to synthesize an arbitrary maximal
supervisor.
3) Finally, if the maximal permissiveness requirement is
relaxed, then we just need to compute the infimal prefix-
closed controllable and observable super-language of R
(see, e.g., [9]), denoted by R↓CO, and test whether or not
R↓CO ⊆ K. If so, then R↓CO is the most conservative
solution; otherwise, MPRCP does not have a solution.

Hence, many existing problems solved in the literature
are special cases of MPRCP. However, to the best of our
knowledge, MPRCP is still open for the general case, which
is clearly more difficult than the above special cases.

Throughout the paper, we use K = (XK ,Σ, δK , x0,K)
to denote the automaton generating K, and use R =
(XR,Σ, δR, x0,R) to denote the automaton generating R. For
the sake of simplicity and without loss of generality, we also
make the following assumptions:
A-1 R @ K @ G; and
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A-2 R is controllable and observable.
Assumption A-1 is w.l.o.g. since we can always refine the
state spaces of R,K and G such that A-1 holds; see, e.g.,
[5]. This assumption also says that legality of strings (w.r.t.
K) is fully captured by states of G. Namely, X \ XK is
the set of illegal states and any string s leads to an illegal
state iff s /∈ K. Assumption A-2 is also w.l.o.g.: if R is
not controllable or observable, then it suffices to compute
R↓CO to replace R, since any supervisor containing R must
contain R↓CO. Under this assumption, we know that there
exists a supervisor, denoted by SR, such that L(SR/G) = R.
We assume that R is controllable and observable only to
guarantee that supervisor SR exists. Finally, let y ∈ 2X be
an information state. We denote by y|R the restriction of y
to the state space of R, i.e., y|R = {x ∈ XR : x ∈ y}.

IV. ALL INCLUSIVE CONTROLLER

In order to solve MPRCP, we use the two structures
called Bipartite Transition System (BTS) and All Inclusive
Controller (AIC); these were introduced in [13], [15] to solve
supervisory control problems. For the sake of completeness
of this paper, we review in this section key definitions and
results from [15].

Definition 1: (Bipartite Transition System). A bipartite
transition system T w.r.t. G is a 7-tuple

T = (QTY , Q
T
Z , h

T
Y Z , h

T
ZY ,Σo,Γ, y0) (1)

where QTY ⊆ I = 2X is the set of Y -states; QTZ ⊆ I × Γ is
the set of Z-states and I(z) and Γ(z) denote, respectively,
the information state and the control decision components of
a Z-state z, so that z = (I(z),Γ(z)); hTY Z : QTY × Γ→ QTZ
is the partial transition function from Y -states to Z-states,
which satisfies the following constraint: for any y ∈ QTY , z ∈
QTZ and γ ∈ Γ, we have

hTY Z(y, γ) = z ⇒ [I(z)=URγ(y)] ∧ [Γ(z) = γ]; (2)

hTZY : QTZ×Σo → QTY is the partial transition function from
Z-states to Y -states, which satisfies the following constraint:
for any y ∈ QTY , z ∈ QTZ and σ ∈ Σo, we have

hTZY (z, σ) = y ⇔ σ∈Γ(z) ∧ y=Nextσ(I(z)); (3)

Σo is the set of observable events of G; Γ is the set of control
decisions of G; and y0 = {x0} ∈ QTY is the initial Y -state.

Intuitively, a BTS is a game structure between the system
(control decision) and the environment (event occurrence).
Each Y -state is a “system state” from which the supervisor
makes control decisions. Each Z-state is an “environment
state” from which (enabled) observable events occur. Since
the supervisor cannot choose which event will occur once
it has made a control decision, all enabled and feasible
observable events should be defined at a Z-state; this is
why we put “⇔” in Equation (3). We denote by CT (y)
the set of control decisions defined at y ∈ QTY in T , i.e.,
CT (y) = {γ ∈ Γ : hTY Z(y, γ)!}. We say that a BTS T is
• complete, if ∀y ∈ QTY : CT (y) 6= ∅; and
• deterministic, if ∀y ∈ QTY : |CT (y)| = 1.

If T is deterministic, then we also use notation cT (y) to
denote the unique control decision defined at y ∈ QTY , i.e.,
CT (y) = {cT (y)}.

For simplicity, we also write y
γ−→T z if z = hTY Z(y, γ)

and z
σ−→T y if z = hTZY (z, σ). Note that, for two BTSs

T1 and T2, we have that hT1

Y Z(y, γ) = hT2

Y Z(y, γ) whenever
they are defined. Therefore, we will drop the superscript in
hTY Z(y, γ) and write it as hY Z(y, γ) and y

γ−→ z if it is
defined for some T ; the same holds for hZY and z

σ−→ y.
We call γ0σ1γ1σ2 . . . σnγn, where γi ∈ Γ, σi ∈ Σo, a run.
A run also induces a sequence

y0
γ0−→ z0

σ1−→ y1
γ1−→ . . .

γn−1−−−→ zn−1
σn−−→ yn

γn−→ zn (4)

We say that a run is generated by T if its induced sequence
is defined in T .

Let S : P (L(G))→ Γ be a partial observation supervisor.
Then for any observed string s = σ1 . . . σn ∈ P (L(S/G)),
it induces a well-defined sequence

y0
S(ε)−−−→ z0

σ1−→ y1
S(σ1)−−−→ . . .

σn−−→ yn
S(σ1...σn)−−−−−−→ zn (5)

We denote by ISYS (s) and ISZS (s), the last Y -state and Z-
state in y0z0y1z2 . . . zn−1ynzn, respectively, i.e., ISYS (s) =
yn and ISZS (s) = zn. That is, ISYS (s) and ISZS (s) are the
Y -state and the Z-state that result from the occurrence of
string s under supervisor S, respectively.

Next, we define the supervisors included in a BTS.
Definition 2: A supervisor S is said to be included in a

BTS T if for any observable string s ∈ P (L(S/G)), the
control decision made by S is defined at the corresponding
Y -state, i.e., S(P (s)) ∈ CT (ISYS (s)). We denote by S(T )
the set of supervisors included in T .

In [15], the AIC structure is defined as the largest BTS
including only safe supervisors.

Definition 3: (All Inclusive Controller). The All Inclu-
sive Controller for G, AIC(G) = (QAICY , QAICZ , hAICY Z ,
hAICZY ,Σo,Γ, y0), is defined as the largest complete BTS such
that ∀z ∈ QAICZ : I(z) ⊆ XK .

Note that the AIC only depends on the system model G
and the upper bound automaton K; it does not depend on
the lower bound automaton R. We refer the reader to [15]
for more details and the construction of the AIC. Here we
recall the key property of the AIC from [15].

Theorem 1: A supervisor S is safe iff S ∈ S(AIC(G)).
Note that, if a BTS T is deterministic, then the supervisor
included in T is unique, since the control decision at each
Y -state is unique. In this case, we denote by ST the unique
supervisor included in T , i.e., S(T ) = {ST }. Essentially, T is
a realization of supervisor ST . However, not all supervisors
can be realized by a BTS, since a supervisor may issue
different control decisions at different visits to the same Y -
state. We say that a supervisor S is information-state-based
(IS-based) if for any strings s, t ∈ P (L(S/G)), we have that
ISYS (s) = ISYS (t) ⇒ S(s) = S(t). Then, a supervisor can
be realized by a BTS iff it is IS-based. In [14], we showed
that, under the assumption that R v G, SR is IS-based.
Therefore, we know that the supervisor achieving the lower
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(d) AIC(G)

Fig. 2. In the diagrams, rectangular states denote Y -states and oval states denote Z-states. Uncontrollable events are omitted in each control decision.
We also omit redundant events in each control decision, namely, events that are not feasible within the unobservable reach, e.g., event c1 at Y -state {1}.

bound language can be realized by a BTS; we denote this
BTS by TR, i.e., S(TR) = {SR} and L(SR/G) = R.

Example 1: Let us consider the system G shown in Fig-
ure 2(a). The upper bound automaton K is obtained by
removing the single illegal state 9 from G. Let Σc =
{c1, c2} and Σo = {o}. Then the AIC AIC(G) is shown
in Figure 2(d). From the initial Y -state y0 = {0}, we can
make control decision {c1}, which leads to a Z-state via

{0} {c1}−−−→ ({0, 3}, {c1}). By observing event o from this
Z-state, we move to the next Y -state by ({0, 3}, {c1})

o−→
{1, 5}. Note that we cannot make control decision {c2} from
Y -state {1, 5}, since this will unobservably lead to illegal
state 9. This is why {c2} is not defined at {1, 5} in AIC(G).
Next, let us consider a lower bound specification R, which
is generated by automaton R shown in Figure 2(b). We see
that R @ K @ G. The BTS TR that includes the supervisor
achieving R is shown in Figure 2(c). Clearly, both TR and
AIC(G) are complete. Moreover, TR is deterministic, since
the control decision defined at each Y -state in it is unique.

V. CONTROL SIMULATION RELATION

In [14], the notion of Control Simulation Relation (CSR)
was defined in order to verify whether a supervisor is
maximal or not. We will use this tool in order to synthesize
a maximal solution.

Definition 4: (Control Simulation Relation). Let T1 and
T2 be two BTSs. A relation Φ = ΦY ∪ΦZ ⊆ (QT1

Y ×Q
T2

Y )∪
(QT1

Z ×Q
T2

Z ) is said to be a control simulation relation from
T1 to T2 if the following conditions hold:
1. (y0, y0) ∈ Φ;
2. For every (y1, y2) ∈ ΦY we have that:
y1

γ1−→T1
z1 in T1 implies the existence of y2

γ2−→T2
z2 in

T2 such that γ1 ⊆ γ2 and (z1, z2) ∈ ΦZ ;
3. For every (z1, z2) ∈ ΦZ we have that:
z1

σ−→T1
y1 in T1 implies the existence of z2

σ−→T2
y2 in

T2 such that (y1, y2) ∈ ΦY .
We denote by T1 � T2 the case where there exists a CSR
from T1 to T2.

In order to check whether or not T1 � T2, we define the
following operator

F : 2Q
T1
Y ×Q

T2
Y ∪ 2Q

T1
Z ×Q

T2
Z → 2Q

T1
Y ×Q

T2
Y ∪ 2Q

T1
Y ×Q

T2
Y (6)

by, for any Φ=ΦY ∪ΦZ⊆(QT1

Y ×Q
T2

Y )∪(QT1

Z ×Q
T2

Z ),

1. (y1, y2) ∈ F (Φ) if (y1, y2) ∈ ΦY and for any transition
y1

γ1−→T1 z1 in T1, there exists y2
γ2−→T2 z2 in T2 such

that γ1 ⊆ γ2 and (z1, z2) ∈ ΦZ .
2. (z1, z2) ∈ F (Φ) if (z1, z2) ∈ ΦZ and for any transition
z1

σ−→T1
y1 in T1, there exists z2

σ−→T2
y2 in T2 such that

(y1, y2) ∈ ΦY .
We showed in [14] that the supremal fixed-point of F ,
denoted by Φ∗(T1, T2), exists and it can be computed by

Φ∗(T1, T2) = lim
k→∞

F k((QT1

Y ×Q
T2

Y ) ∪ (QT1

Z ×Q
T2

Z )) (7)

Therefore, T1 � T2, if and only if, (y0, y0) ∈ Φ∗(T1, T2)
and Φ∗(T1, T2) is the maximal CSR from T1 to T2.

It was shown in [14] that the CSR can be used to verify
maximality, which is stated by the following result.

Theorem 2: ([14]). Let S be an IS-based supervisor and
T be the deterministic BTS such that S(T ) = {S}. Then S
is not maximal iff there exists a decision γ ∈ CAIC(G)(y)
such that cT (y) ⊂ γ and (z, z′) ∈ Φ∗(T,AIC(G)), where
z = hY Z(y, cT (y)) and z′ = hY Z(y, γ).

Example 2: Let us consider the BTS TR and the AIC
AIC(G) shown in Figures 2(c) and 2(d), respectively. Clear-
ly, ({1}, {1, 5}) /∈ Φ∗(TR,AIC(G)), since decision {c1}
is defined at {1} but there is no decision containing {c1}
defined at {1, 5}. By Theorem 2, we know that SR is not
maximal, since for Y -state {2}, we can find a control deci-
sion {c2} ∈ CAIC(G)({2}), such that {c2} ⊃ cTR

({2}) = {}
and (({2}, {}), ({2, 8}, {c2})) ∈ Φ∗(TR,AIC(G)).

VI. SYNTHESIS OF A MAXIMAL SOLUTION

In this section, we present a new synthesis algorithm that
solves MPRCP. First, we briefly discuss the main difficulty
that arises in solving the range control problem and our
approach to overcome it.

In order to synthesize a maximal supervisor, the general
idea is to guarantee by construction that the control decision
made by the supervisor at each instance cannot be improved
any further. However, this is not an easy task. Suppose that
y ∈ QAICY is a Y -state in the AIC; by Theorem 1, we know
that any control decision in CAIC(G)(y) is a safe control
decision. Therefore, if there is no lower bound requirement
and one is only interested in the safety upper bound K,
then we can simply pick a “greedy maximal” decision from
CAIC(G)(y). This is essentially the “greedy” strategy we use
in [15]. Suppose that CAIC(G)(y) only contains two control
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decisions and one is strictly larger than the other one, i.e.,
CAIC(G)(y) = {γ1, γ2} and γ1 ⊂ γ2. If we are just interested
in finding a maximal safe supervisor without considering R,
we need to choose γ2, since the resulting supervisor is strictly
more permissive than that obtained by choosing γ1. However,
how to choose a control decision from CAIC(G)(y) becomes
much more complicated when the lower bound specification
R has to be considered. For example, in our running example
shown in Figure 2, there are two choices at the initial Y -state
y0 = {0}: enable c1 or disable c1. It seems that choosing
{c1} provides more behavior than choosing {}. However,
if we choose {c1}, then upon the occurrence of o, we can
only choose to disable c2, since we are not sure whether
the current state is 1 or 5. This fails to keep containing the
lower bound behavior R, since we need to enable c2 after o.
Therefore, the lower bound behavior can only be achieved
by choosing {} at the beginning rather than choosing {c1},
which is greedy maximal.

The above discussion illustrates the following issue. In
some scenario, enabling more events is not a good choice,
since it may introduce more information uncertainty. Conse-
quently, to maintain safety, the control decision may become
more conservative in the future due to this information
uncertainty. This may make the lower bound behavior un-
achievable. More problematically, we do not know whether
or not enabling an event will lead to failure to contain the
lower bound behavior, unless we get stuck at some instance
in the future, e.g., after observing event o in the previous
example. Moreover, we do not know a priori, when or
whether or not this phenomenon will occur in the future.
In other words, whether or not a decision defined in the AIC
is a “good” control decision depends on its effects in the
future. This future dependency is the fundamental difficulty
of the range control problem and it is in fact the essential
difference between MPRCP and the standard supervisor
synthesis problem without a lower bound requirement.

Fortunately, we can use the CSR to pre-process this future
dependency and transform it to purely local information.
Since it is required that the synthesized supervisor contains
the lower bound language R, we first compute the maximal
CSR between BTS TR and the AIC AIC(G). Recall that
TR is the deterministic BTS that includes the supervisor SR
achieving the lower bound R. Then we construct a new BTS,
denoted by T ∗, such that TR � T ∗. Now, suppose that y is
an information state at which we need to choose a control
decision. First, this control decision should be chosen from
CAIC(G)(y) in order to guarantee safety. In order to take
care of the lower bound behavior, we need to make sure that
this control decision preserves the CSR. The key question is:
Which CSR we should use, since we are constructing a new
BTS? We will show that looking at the CSR between TR
and AIC(G) is sufficient and there is not need to compute
the CSR between the newly constructed BTS and the AIC.

In order to formalize the above idea, let y ∈ QAICY be a
Y -state such that y|R 6= ∅ and Φ∗R := Φ∗(TR,AIC(G)) be
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(c) Another maximal solution

Fig. 3. Figures in Example 3.

the maximal CSR from TR to AIC(G). Then we define

Ξ(y) :=

{
γ ∈ Γ :

γ∈CAIC(G)(y) and γ⊇cTR
(y|R) and

(hY Z(y|R, cTR
(y|R)), hY Z(y, γ)) ∈ Φ∗R

}
(8)

Intuitively, γ ∈ Ξ(y) is a safe control decision at y such
that 1) it contains the corresponding control decision made
by SR, i.e., cTR

(y|R); and 2) any behavior that can occur
from the corresponding Y -state y|R in TR can still occur by
taking γ from y in the AIC.

Based on the above discussion, we present Algorithm
MAX-RANGE to solve MPRCP. Initially, we compute the
maximal CSR Φ∗(TR,AIC(G)) from TR to AIC(G). Then
we construct a new deterministic BTS T ∗ by a depth-first
search, which is implemented by the recursive procedure
called DoDFS. Procedure DoDFS picks one control decision
for each Y -state encountered and picks all observations for
each Z-state encountered. More specifically, for each Y -
state y, if y|R = ∅, then we just chose a locally maximal
decision in CAIC(G), since we know for sure that the string
is already outside of L(R); if y|R 6= ∅, then we choose a
locally maximal decision in Ξ(y), since we still need to be
able to match any behavior in R in the future. The entire
complexity of Algorithm MAX-RANGE is O(22|X|+|Σ|),
since it takes O(22|X|+|Σ|) to compute Φ∗(TR,AIC(G)) and
takes O(2|X|+|Σ|) to implement the depth-first search.

Example 3: Let us return to the running example. The
inputs TR and AIC(G′) are shown in Figs. 2(c) and 2(d),
respectively. We first start procedure DoDFS from the initial
Y -state y0 = {0}. Since (({0}, {}), ({0, 3}, {c1})) /∈ Φ∗R,
we know that Ξ({0}) = {∅}. Therefore, the only control
decision we can choose is {}. Then upon observing o, we
reach Y -state {1}. This time we still have Ξ({1}) = {{c2}},
which means that {c2} is still the only choice. Finally,
by observing o again, Y -state {2} is encountered. At this
state, we have Ξ({2}) = {∅, {c1}, {c2}}. We can choose
either {c1} or {c2}; let us choose {c1}. This completes
the depth-first search and returns the deterministic BTS T ∗

shown in Figure 3(a), which includes supervisor ST∗ such
that R ⊆ L(ST∗/G) ⊆ K, where L(ST∗/G) is shown
in Figure 3(b). (We will establish later that this supervisor
is indeed maximal.) One can also verify that the solution
shown in Figure 3(c) is also a maximal solution. In fact, this
solution is obtained by using the “greedy maximal” strategy
proposed in [1], [15], i.e., we pick a locally maximal decision
in CAIC(y) for each Y -state y and disregard the lower bound
requirement. However, this solution does not fully contain R
although it is maximal.
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Algorithm 1: MAX-RANGE(TR,AIC(G))

1 QT
∗

Y ← {y0}, QT
∗

Z ← ∅;
2 DoDFS(y0, T

∗);
3 return T ∗;

procedure DoDFS(y, T ∗);
4 if y|R 6= ∅ then
5 Find a locally maximal element Act in Ξ(y),

i.e., ∀γ ∈ Ξ(y) : Act 6⊂ γ;
else

6 Find a locally maximal element Act in
CAIC(G)(y), i.e., ∀γ ∈ CAIC(G) : Act 6⊂ γ;

7 z ← hY Z(y,Act);
8 Add transition y Act−−→ z to hT

∗

Y Z ;
9 if z /∈ QT∗

Z then
10 QT

∗

Z ← QT
∗

Z ∪ {z};
11 for σ ∈ Σo : hZY (z, σ)! do
12 y′ ← hZY (z, σ);
13 Add transition z σ−→ y′ to hT

∗

ZY ;
14 if y′ /∈ QT∗

Y then
15 QT

∗

Y ← QT
∗

Y ∪ {y′};
16 DoDFS(y′, T ∗);

Note that, given an arbitrary Y -state y, set Ξ(y) may be
empty. For example, in Figure 2, we have that Ξ({1, 5}) = ∅,
since cTR

({1, 5}|R) = cTR
({1}) = {c2} but the only control

decision defined at {1, 5} in the AIC is {}. If such a scenario
occurs, then Algorithm MAX-RANGE may get stuck before
it correctly returns T ∗. However, the following result reveals
that Ξ(y) is always non-empty for any Y -state y encountered
in Algorithm MAX-RANGE, i.e., the control decision Act in
line 5 of Algorithm MAX-RANGE is always well-defined.

Proposition 1: For any Y -state y reached in procedure
DoDFS, if y|R 6= ∅, then Ξ(y) 6= ∅.

VII. CORRECTNESS OF THE ALGORITHM

In this section, we establish that Algorithm MAX-RANGE
is correct, i.e., it effectively solves MPRCP.

Hereafter, we still denote by T ∗ the BTS returned by
Algorithm MAX-RANGE and denote by ST∗ the supervisor
induced by T ∗. First, we show that ST∗ is s a safe supervisor.

Lemma 1: L(ST∗/G) ⊆ K, i.e., ST∗ is safe.
Next, we show that language R is contained in L(ST∗/G).

Lemma 2: R = L(SR/G) ⊆ L(ST∗/G).
Finally, we show that ST∗ is maximal.
Lemma 3: ST∗ is a maximally permissive supervisor, i.e.,

for any safe supervisor S′, L(ST∗/G) 6⊂ L(S′/G).
Finally, combining Lemmas 2, 1 and 3 together, we have

the following theorem.
Theorem 3: ST∗ is a maximally permissive supervisor

such that R ⊆ L(ST∗/G) ⊆ K, i.e., Algorithm MAX-
RANGE effectively solves MPRCP.

Since the resulting supervisor ST∗ is realized by BTS T ∗,
we also have the following corollary.

Corollary 1: ST∗ is an IS-based solution, which implies
that the closed-loop language L(ST∗/G) is regular.

VIII. CONCLUSION

We have solved a generalized supervisor synthesis prob-
lem, called the range control problem, for partially-observed
DES. We considered both an upper bound specification that
describes the legal behavior and a lower bound specification
that describes the required behavior. We provided an effective
algorithm to solve this problem based on the notions of AIC
and CSR. This results in a “meaningful” maximally permis-
sive safe supervisor that contains a given behavior. Extending
the results of this paper to include nonblockingness (i.e., non-
prefix-closed specifications) remains an open problem.
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