
On Maximal Permissiveness in Partially-Observed Discrete Event
Systems: Verification and Synthesis

Xiang Yin and Stéphane Lafortune

Abstract— The notion of maximal permissiveness plays an
important role in synthesis problems in the supervisory control
framework. It is well known that the supervisor synthesis
problem has a unique supremal solution when all the events
are observable. However, under the partial observation setting,
no supremal solution exists in general and there may exist
several locally maximal solutions. In this paper, we tackle the
supervisory control problem under partial observation from a
new angle. First, we propose an approach to verify whether
a given supervisor is maximal or not. If a supervisor is not
maximal, then we provide an algorithm that synthesizes a new
supervisor that is strictly more permissive than the given one. To
the best of our knowledge, both the verification of maximality
and the synthesis of a larger solution were previously open
problems; our algorithms are the first ones of their kind.

I. INTRODUCTION

We consider the supervisor synthesis problem for partially-
observed Discrete Event Systems (DES) in the supervisory
control framework initialed in [9]. Given a specification
language and a plant model, the supervisor existence problem
asks whether or not the spcecification can be exactly achieved
by a supervisor. When a language cannot be exactly achieved,
then the synthesis problem asks to find a supervisor that
achieves a sublanguage of the specification language. It is
well known that controllability and observability provide
the necessary and sufficient conditions for the existence of
a supervisor under the partial observation setting [6], [8].
When all the events are observable, the synthesis problem has
a unique supremal solution, namely the supremal controllable
sublanguage. However, since observability is not preserved
under union in general, the synthesis problem is much
more challenging under the partial observation setting. In
particular, instead of a unique supremal solution, several
incomparable locally maximal solutions may exist.

Several approaches have been proposed in the literature
in order to tackle the synthesis problem; see, e.g., [1]–[3],
[5], [7], [12], [13], [15]–[17]. One approach is to compute
the supremal controllable and normal solution, which was
initially proposed in [6], [8]; see, also [2], [5] for its
computation. When all controllable events are observable,
normality and controllability coincide with observability and
controllability, which implies that the synthesis problem
has a supremal solution for this special case. However, the
supremal normal solution may be conservative in general,

This work was partially supported by the US National Science Foundation
grants CCF-1138860 (Expeditions in Computing project ExCAPE: Expedi-
tions in Computer Augmented Program Engineering) and CNS-1446298.

Xiang Yin and Stéphane Lafortune are with the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109, USA. {xiangyin,stephane}@umich.edu.

when there are controllable events that are unobservable. In
[1], an online approach was proposed in order to compute a
maximal solution. In our recent work [14], [15], we showed
that the problem of synthesizing a maximally permissive safe
and non-blocking supervisor for partially-observed DES is
also decidable.

Although maximal solutions have been reported in the
literature in [1], [15], the maximal solutions obtained so
far are just a particular type of maximal solutions, namely,
greedy maximal solutions. In a greedy maximal solution, the
supervisor tries to enable as many events as possible at each
control decision instant. Since no supervisor can enable more
events at any instant, this greedy strategy yields a locally
maximal solution. However, greedy maximal solutions may
not be good solutions for the following reasons. First, en-
abling fewer events at some particular instant may allow to
enable more events at later instants, thereby yielding more
behaviors in the future post-language. Second, the greedy
maximal solution may not contain a given behavior.

In order to resolve the limitations of greedy maximal
solutions, we tackle the synthesis problem from a new angle.
Specifically, we consider the following problems:

(1) Verify whether a given supervisor is maximal or not.
(2) Synthesize a new supervisor that is strictly more permis-

sive than a given non-maximal supervisor.

We refer to the first problem as the verification problem and
to the second problem as the synthesis problem. Clearly, the
verification problem is the first step towards the synthesis
problems: if the given supervisor is verified to be maximal,
then there is no need to solve the synthesis problems. The
synthesis problems considered here can also be viewed as
synthesis problems with a strict lower bound specification,
since the given supervisor could model the lower bound
behavior that a newly synthesized supervisor must achieve.
To the best of our knowledge, the maximality verification
problem is still open in the literature. Moreover, the synthesis
problem formulated above is also open.

The contributions of this paper are as follows. First,
we provide complete solutions to problems (1) and (2)
formulated above in the case of prefix-closed specifications.
Specifically, we provide an approach to verify whether a
given supervisor is maximal or not. Moreover, when the
answer to the verification problem is negative, an algorithm is
proposed in order to synthesize a new supervisor that strictly
contains the behavior generated by the given supervisor.
The proposed approaches rely on the AIC investigated in
our previous work. However, the new notions of control

Proceedings of WODES 2016: 13th Int. Workshop on Discrete Event
Systems, Xi'an, China, May 30 - June 1, 2016

Mo_1_A.1

1

simulation relation and control replacement are proposed in
order to solve the new problems.

Due to space constraints, all proofs have been omitted.

II. PRELIMINARIES

Let Σ be a finite set of events. We denote by Σ∗ the
set of all finite strings over Σ, including the empty string
ε. A language L is a subset of Σ∗. We denote by L the
prefix-closure of language L ⊆ Σ∗. A DES is modeled as
a finite-state automaton G = (X,Σ, δ, x0, Xm), where X
is the finite set of states, Σ is the finite set of events, δ :
X × Σ → X is the partial transition function, x0 ∈ X is
the initial state, and Xm ⊆ X is the set of marked states.
The transition function δ is extended to X×Σ∗ in the usual
manner and the extended function is still denoted by δ; see,
e.g., [4]. For brevity, we write δ(x, s) as δ(s) if x = x0.
We denote by L(G, x) the language generated by G from
state x, i.e., L(G, x) := {s ∈ Σ∗ : δ(x, s)!}, where ! means
“is defined”. We write L(G, x) as L(G) if x = x0; it is
the language generated by G. In this paper, we will only
deal with prefix-closed languages. Therefore, we assume that
Xm = X and denote an automaton by G = (X,Σ, δ, x0).

Given two automata A = (XA,Σ, δA, xA,0) and B =
(XB ,Σ, δB , xB,0), we say that A is a sub-automaton of B,
denoted by A v B, if δA(xA,0, s) = δB(xB,0, s) for all
s ∈ L(A). We say that A is a strict sub-automaton of B,
denoted by A @ B, if (i) A v B; and (ii) ∀x, y ∈ XA,∀s ∈
Σ∗ : δB(x, s) =y ⇒ δA(x, s) =y. For any two automata A
and B such that L(A) ⊆ L(B), we can always refine the
state spaces of A and B such that A @ B; see, e.g., [5].

In the framework of supervisory control [9], we assume
that Σ = Σc∪̇Σuc, where Σc and Σuc are the set of
controllable events and the set of uncontrollable events,
respectively. A control decision γ ∈ 2Σ is a set of events that
a supervisor may enable, with the constraint that Σuc ⊆ γ.
We denote by Γ the set of all control decisions, i.e., Γ :=
{γ ∈ 2Σ : Σuc ⊆ γ}. Due to limited sensing capabilities,
a supervisor may not be able to observe the occurrence of
every event. Under the partial observation setting [6], [8],
we further assume that Σ = Σo∪̇Σuo, where Σo and Σuo
are the set of observable events and the set of unobservable
events, respectively. The natural projection P : Σ∗ → Σ∗o is
defined in the usual manner; see, e.g., [4]. The projection P
is extended to 2Σ∗ by P (L) = {t : ∃s∈L s.t. t=P (s)} and
P−1 denotes the inverse projection. A partial-observation
supervisor is a function S : P (L(G)) → Γ. We use S/G to
represent the closed-loop system under control. The language
generated by S/G is denoted by L(S/G); see, e.g., [4].

Let S ⊆ X be a subset of states, γ ∈ Γ be a control
decision, and σ ∈ Σo be an observable event. We define the
following two operators:
URγ(S)={x∈X : ∃u∈S,∃s∈(Σuo ∩ γ)∗ s.t. x=δ(u, s)};
Nextσ(S)={x ∈ X : ∃u ∈ S s.t. x = δ(u, σ)}.

III. PROBLEM FORMULATION

In the supervisor synthesis problem, one is interested in
designing a supervisor such that the closed-loop behavior

satisfies some specification. In this paper, we only con-
sider prefix-closed languages, i.e., we only consider safety
specifications; non-blockingness is not considered. Hence,
the specification is given as a prefix-closed sublanguage
K = K ⊆ L(G). In words, all strings in K are legal and all
strings in L(G) \K are illegal. Let K = (XK ,Σ, δK , x0,K)
be an automaton generating K, i.e., K = L(K). We assume
w.l.o.g. that K @ G. This assumption essentially says that
all states in XK are legal and all states in X \XK are illegal.

It is well known that there exists a supervisor S such
that L(S/G) = K iff K is controllable and observable; the
reader is referred to [4] for definitions of these properties.
When K cannot be exactly achieved, the synthesis problem
asks to find a sublanguage of K that is “as large as
possible”. Since observability is not preserved under union
in general, there does not exist a supremal controllable and
observable sublanguage. This is the fundamental difficulty in
the synthesis problem under partial observation. Therefore,
instead of computing a supremal controllable and observable
sublanguage, one is interested in computing a locally maxi-
mal controllable and observable sublanguage of K. Formally,
we say that a supervisor S is safe if L(S/G) ⊆ K and we
say that S is maximal if
(i) S is safe; and
(ii) For any safe S′, we have L(S/G) 6⊂L(S′/G).

Previous efforts in the literature have only addressed a
particular type of maximal solution, namely, a greedy maxi-
mal solution. However, as was discussed in the introduction,
greedy maximal solutions have drawbacks in general. In this
paper, instead of synthesizing a greedy maximal solution, we
tackle the synthesis problem from a different angle:
“Suppose that there exists a supervisor that achieves a
desired lower bound behavior. We wish to determine whether
or not we can improve this supervisor by synthesizing a new
supervisor whose closed-loop behavior is strictly larger than
the given one.”
Let us denote by R ⊆ K ⊆ L(G) the lower bound
specification that the supervisor must achieve. Let R =
(XR,Σ, δR, x0,R) be an automaton generating R, i.e.,
L(R) = R. We denote by SR the supervisor that achieves
R, i.e., L(SR/G) = R. We are interested in whether or
not we can improve this lower bound supervisor, namely,
find a new supervisor S′ such that R ⊂ L(S′/G). Note
that the existence of SR achieving R implicitly assumes
that R is controllable and observable. This assumption is
w.l.o.g. since we can always compute the infimal prefix-
closed superlanguage of R if R is not controllable or
observable; see, e.g., [10].

In order to solve this problem, we first need to verify
whether the given supervisor SR is already maximal or not.
If so, then we cannot improve it any further. Therefore, we
define the maximality verification problem as follows.

Problem 1: Given a supervisor SR such that L(SR/G) ⊆
K, verify whether or not SR is maximal.

If the answer to the verification problem is negative, then
we consider the following synthesis problem.

Problem 2: Given a non-maximal supervisor SR such

2

that L(SR/G) ⊆ K, find a safe supervisor S such that
L(SR/G) ⊂ L(S/G).

IV. ALL INCLUSIVE CONTROLLER

In this section, we first review the notion of bipartite
transition system (BTS) and the notion of all inclusive
controller (AIC) from our earlier work [15]. Then we discuss
how to realize a supervisor by using a BTS.

Since we consider partially-observed systems, we define
an information state as a set of states and denote by I = 2X

the set of information states. First, we recall the definition
of BTS from [15].

Definition 1: (Bipartite Transition System). A bipartite
transition system T w.r.t. G is a 7-tuple

T = (QTY , Q
T
Z , h

T
Y Z , h

T
ZY ,Σo,Γ, y0) (1)

where QTY ⊆ I is the set of Y -states; QTZ ⊆ I × Γ is the
set of Z-states and I(z) and Γ(z) denote, respectively, the
information state and the control decision components of a
Z-state z, so that z = (I(z),Γ(z)); hTY Z : QTY × Γ → QTZ
is the partial transition function from Y -states to Z-states,
which satisfies the following constraint: for any y ∈ QTY , z ∈
QTZ and γ ∈ Γ, we have

hTY Z(y, γ) = z ⇒ [I(z)=URγ(y)] ∧ [Γ(z) = γ]; (2)

hTZY : QTZ×Σo → QTY is the partial transition function from
Z-states to Y -states, which satisfies the following constraint:
for any y ∈ QTY , z ∈ QTZ and e ∈ Σo, we have

hTZY (z, e) = y ⇒ e∈Γ(z) ∧ y=Nexte(I(z)); (3)

Σo is the set of observable events of G; Γ is the set of control
decisions of G; and y0 ∈ QTY is the initial Y -state, where
y0 = {x0}.

Unless otherwise specified, all BTSs in this paper are
defined w.r.t. the system model G. Intuitively, a BTS is a
game structure between the system (control decision) and
the environment (event occurrence). Specifically, each Y -
state is a system state from which control decisions are
made. Similarly, each Z-state is an environment state from
which observable events occur. The structure is bipartite due
to the alternating nature between control and observation.
We denote by CT (y) the set of control decisions defined
at y ∈ QTY in T , i.e., CT (y) = {γ ∈ Γ : hTY Z(y, γ)!}. For
simplicity, hereafter, we also write y

γ−→T z if z = hTY Z(y, γ)
and z

σ−→T y if z = hTZY (z, σ). For two BTSs T1 and T2,
we have that hT1

Y Z(y, γ) = hT2

Y Z(y, γ) whenever they are
defined. Therefore, we will drop the superscript in hTY Z(y, γ)

and write it as hY Z(y, γ) and y
γ−→ z if it is defined for

some T ; the same holds for hZY and z
σ−→ y. We call

a sequence γ0σ1γ1σ2 . . . σnγn, where γi ∈ Γ, σi ∈ Σo, a
run. Then a BTS essentially generates a set of runs and we
denote by R(T, y) the set of runs generated by T from state
y ∈ QTY , i.e., R(T, y) = {γ0σ1 . . . σnγn : y

γ0−→T y1
σ1−→T

z1 . . .
σn−−→T zn

γn−→T yn+1}.
Definition 1 provides the general definition of a BTS.

However, for the purpose of control, we also want a BTS
to be complete. Formally, we say a BTS T is complete if:

1. ∀y ∈ QTY : [CT (y) 6= ∅]; and
2. ∀z ∈ QTZ ,∀e ∈ Γ(z) ∩ Σo : [(∃x ∈ I(z) : δ(x, e)!) ⇒
hTZY (z, e)!]

A supervisor S for G works as follows. Initially, it makes
control decision S(ε). Then new control decision S(σ) is
made upon the occurrence of (enabled) observable event
σ, and so forth. Let s = σ1 . . . σn ∈ P (L(S/G)) be an
observed string. Then the execution of s induces the run

ρS(s) := γ0σ1γ1 . . . γn−1σnγn (4)

where γ0 = S(ε) and γi = S(σ1 . . . σi), i ≤ n. The run
ρS(s) again yields an alternating sequence of Y -and Z-states

y0
γ0−→ z0

σ1−→ y1
γ1−→ . . .

γn−1−−−→ zn−1
σn−−→ yn

γn−→ zn (5)

We denote by ISYS (s) and ISZS (s), the last Y -state and Z-
state in y0z0y1z2 . . . zn−1ynzn, respectively, i.e., ISYS (s) =
yn and ISZS (s) = zn. That is, ISYS (s) and ISZS (s) are the
Y -state and the Z-state that result from the occurrence of
string s under supervisor S, respectively.

With the above notions, we can “decode” supervisors from
a BTS as explained in the following definition.

Definition 2: Let T be a complete BTS. A supervisor S
is said to be included in T if for any observed string s ∈
P (L(S/G)), we have that S(s) ∈ CT (ISYS (s)). We denote
by S(T) the set of supervisors included in T .

In [15], the AIC structure is defined as the largest BTS
including only safe supervisors.

Definition 3: (All Inclusive Controller). The All Inclusive
Controller for G, AIC(G) = (QAICGY , QAICGZ , hAICGY Z ,
hAICGZY ,Σo,Γ, y0), is defined as the largest complete BTS
such that ∀z ∈ QAICGZ : I(z) ⊆ XK .

The reader is referred to [15] for more details on the AIC.
Here we recall one important property of the AIC from [15].

Theorem 1: A supervisor S is safe iff S ∈ S(AIC(G)).
Example 1: Consider the system G and the specification

K in Fig. 1. We have that K @ G and state 7 is the
unique illegal state. Let Σo = {a, b} and Σc = {c1, c2}.
Then the AIC for this system is shown in Fig. 1(c), which
is also a complete BTS. For the initial Y -state y0 = {0},
by making control decision {c1}, we will reach Z-state
z = ({0, 1}, {c1}). From z, both observable events a and
b can occur. If a occurs, then the next Y -state is y1 = {3}.
At Y -state {3}, we can either choose to enable c1 or c2,
but we cannot make control decision {c1, c2}, since it will
unobservably lead to illegal state 7. This is why this control
decision is not defined at {3} in the AIC.

A. BTS Realization of Supervisor

In general, there may be multiple control decisions defined
at a Y -state in a BTS. We say that a complete BTS T
is deterministic if ∀y ∈ QTY : |CT (y)| = 1. If T is
deterministic, then we denote by cT (y) the unique control
decision defined at y. A deterministic BTS includes a unique
supervisor and we denote by ST the unique supervisor
included in T . Then T essentially is a finite realization of
the supervisor ST .

3

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { }

4

3 , { }

3,4

3,4 , { }

0

3,5 , {𝑐1}

3,6 , {𝑐2}

3,6 , {𝑐2} 3,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

0

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏
{𝑐1} {𝑐2}

{ }
{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }
{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

(a) K

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { }

4

3 , { }

3,4

3,4 , { }

0

3,5 , {𝑐1}

3,6 , {𝑐2}

3,6 , {𝑐2} 3,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

0

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏
{𝑐1} {𝑐2}

{ }
{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }
{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

(b) G

{ }

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 4,6 , {𝑐2} 4,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

4 4 , { } 3,4 3,4 , { }

0

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

3 3 , { } 0 , { } 0

3,5 , {𝑐1}

3,6′ , {𝑐2} 4,6 , {𝑐2} 4,6′ , {𝑐1} 3′, 4,5′ , {𝑐1} 3′, 4,6,6′ , {𝑐2}

𝑎

𝑏 𝑏

{𝑐1}
{𝑐2} {𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2} 4 4 , { } 3′, 4 3′, 4 , { }

3,4′, 5,5′ , {𝑐1}

3,4′, 6′ , {𝑐2}

{𝑐1}
{𝑐2}

{ } 𝑎
0,1 , {𝑐1} 3,4′ , { } 3,4′

(c) The AIC AIC(G).

Fig. 1. For G, we have Σo = {a, b} and Σc = {c1, c2}. In the AIC,
rectangular states represent Y -states and oval states represent Z-states. For
the sake of simplicity, uncontrollable events, e.g., a and b, are omitted in
each control decision in the figure. We also omit redundant events in each
control decision, namely events that are not feasible within the unobservable
reach, e.g., event c2 at Y -state {0}.

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 3,6 , {𝑐2} 3,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

4 3 , { } 3,4 3,4 , { }

0

(a) R

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 3,6 , {𝑐2} 3,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

4 3 , { } 3,4 3,4 , { }

0

(b) BTS TR s.t. S(TR) = {SR}
Fig. 2. Lower bound supervisor SR and its BTS realization TR.

We say that a supervisor S is information-state-based (IS-
based) if ∀s, t ∈ P (L(S/G)), we have that ISYS (s) =
ISYS (t) ⇒ S(s) = S(t). Given the system model G, a
supervisor S has a BTS realization, if and only if, S is an IS-
based supervisor. Note that not all supervisors are IS-based,
since a supervisor may issue different control decisions upon
different visits to the same Y -state. However, the following
result reveals that, by suitable state-space refinement, any
finite memory supervisor can be expressed as an IS-based
supervisor; therefore, it can be realized by a BTS.

Proposition 1: Let SR be a supervisor and R be an
automaton such that L(SR/G) = L(R). If R v G, then
supervisor SR is an IS-based supervisor.

Based on the above result, hereafter we assume w.l.o.g.
that R v G. Therefore SR is an IS-based supervisor and it
can be realized by a deterministic BTS, denoted by TR.

Example 2: Let us consider the lower bound specification
R generated by automaton R shown in Fig. 2(a). Since R v
G, we know that supervisor SR achieving R can be realized
by the deterministic BTS TR shown in Fig. 2(b).

V. CONTROL SIMULATION RELATION

Let us return to Problem 1, in which R is the lower
bound specification, SR is the corresponding supervisor that
achieves R, and TR is the deterministic BTS that realizes

(or includes) SR. In order to verify whether or not SR is
maximal, the idea is to “compare” TR with AIC(G) and to
check whether or not we can find a supervisor included in
the AIC that is strictly more permissive than SR. In order to
compare TR with AIC(G), we need to establish a formal
relationship between states in TR and states inAIC(G). This
is formalized by the notion of control simulation relation
(CSR) defined as follows.

Definition 4: (Control Simulation Relation). Let T1 and
T2 be two BTSs. A relation Φ = ΦY ∪ΦZ ⊆ (QT1

Y ×Q
T2

Y)∪
(QT1

Z ×Q
T2

Z) is said to be a control simulation relation from
T1 to T2 if the following conditions hold:
1. (y0, y0) ∈ Φ;
2. For every (y1, y2) ∈ ΦY we have that:
y1

γ1−→T1 z1 in T1 implies the existence of y2
γ2−→T2 z2 in

T2 such that γ1 ⊆ γ2 and (z1, z2) ∈ ΦZ ;
3. For every (z1, z2) ∈ ΦZ we have that:
z1

σ−→T1
y1 in T1 implies the existence of z2

σ−→T2
y2 in

T2 such that (y1, y2) ∈ ΦY .
We say that T1 is control-simulated by T2 or that T2 control-
simulates T1, denoted by T1 � T2, if there exists a control
simulation relation from T1 to T2.

Intuitively, the control simulation relation captures
whether or not T2 is able to match an arbitrary control
decision made by T1 by either taking the same control
decision or a control decision that is strictly larger than the
one made by T2 and maintain this ability for all possible
future behaviors.

Given two BTSs T1 and T2, a relevant question is whether
or not there exists a CSR from T1 to T2. To answer this
question, we define an operator

F : 2Q
T1
Y ×Q

T2
Y ∪ 2Q

T1
Z ×Q

T2
Z → 2Q

T1
Y ×Q

T2
Y ∪ 2Q

T1
Y ×Q

T2
Y (6)

as follows. For any Φ = ΦY ∪ΦZ ⊆ (QT1

Y ×Q
T2

Y)∪ (QT1

Z ×
QT2

Z), we have
1. (y1, y2) ∈ F (ΦY) if (y1, y2) ∈ ΦY and for any transition
y1

γ1−→T1 z1 in T1, there exists y2
γ2−→T2 z2 in T2 such

that γ1 ⊆ γ2 and (z1, z2) ∈ ΦZ .
2. (z1, z2) ∈ F (ΦZ) if (z1, z2) ∈ ΦZ and for any transition
z1

σ−→T1
y1 in T1, there exists z2

σ−→T2
y2 in T2 such that

(y1, y2) ∈ ΦY .
Proposition 2: The operation F has following properties

1. Φ is a control simulation relation from T1 to T2, if and
only if, Φ ⊆ F (Φ) and (y0, y0) ∈ Φ;

2. Φ1 ⊆ Φ2 ⇒ F (Φ1) ⊆ F (Φ2).
The above results have the following implications. First,

since Φ ⊆ F (Φ) for any CSR Φ, we know that the maximal
relation Φ is a fixed-point of operator F , i.e., F (Φ) = Φ.
Note that F (Φ) ⊆ Φ always holds. By the second property
in Proposition 2, we know that F is monotone. Therefore,
by Tarski’s fixed-point theorem, we know that the supremal
fixed-point of F , denoted by Φ∗(T1, T2), exists and it can
be computed as follows

Φ∗(T1, T2) = lim
k→∞

F k((QT1

Y ×Q
T2

Y) ∪ (QT1

Z ×Q
T2

Z)) (7)

4

In other words, Φ∗(T1, T2) is a maximal control simulation
relation from T1 to T2 if (y0, y0) ∈ Φ∗(T1, T2). Otherwise,
T1 6� T2 if (y0, y0) 6∈ Φ∗(T1, T2). This is similar to
the standard simulation relation; see, e.g., [11]. Note that
the limit in Equation (7) can be achieved within at most
|QT1

Y ||Q
T2

Y |+ |Q
T1

Z ||Q
T2

Z | iterations.

VI. VERIFICATION OF MAXIMALITY

In this section, we show how to verify maximality using
the notion of CSR.

First, we introduce the notion of control replacement.
Definition 5: Let T be a deterministic BTS. Then we say

that γ ∈ Γ is a control replacement for T at y ∈ QTY (or a
(y, T)-replacement) if cT (y) ⊂ γ and

(∀cT (y)σ1γ1 . . . σnγn ∈ R(T, y)) (8)
(∃γσ1γ

′
1 . . . σnγ

′
n ∈ R(AIC(G), y))[γi ⊆ γ′i,∀i ≤ n]

When γ is a (y, T)-replacement, this implies that if we
replace the original control decision defined at y in T ,
cT (y), by γ, then we are still able to (safely) match all
behaviors generated by T in the future. It worth noting that
not every decision γ ∈ CAIC(G)(y) such that cT (y) ⊂ γ is
a (y, T)-replacement. This is because enabling more events
may introduce more uncertainty and the supervisor must be
more conservative in the future in order to maintain safety.
We see that the definition of control replacement is very
similar to that of CSR. In fact, the following theorem reveals
that checking whether or not a control decision is a (y, T)-
replacement can be done by using the CSR.

Theorem 2: Let T be a deterministic BTS and y ∈ QTY be
a Y -state. Then γ ∈ CAIC(G)(y) is a (y, T)-replacement, if
and only if, cT (y) ⊂ γ and (z, z′) ∈ Φ∗(T,AIC(G)), where
z = hY Z(y, cT (y)) and z′ = hY Z(y, γ).

We are now ready to present the theorem that provides a
necessary and sufficient condition for maximality.

Theorem 3: Let S be an IS-based supervisor and T be the
deterministic BTS s.t. S(T) = {S}. Then S is maximal iff

(∀y∈QTY)(∀γ∈CAIC(G)(y))[γ is not a (y, T)-replacement]
Proof: (Sketch only)

(⇒) By contraposition. Suppose that there exists a Y -
state y ∈ QTY and a control decision γ ∈ CAIC(G)(y))
such that γ is a (y, T)-replacement. We construct supervisor
S′ : P (L(G))→ Γ as follows:

S′(t)=


S(t), if t ∈ P (L(S/G))∧

[ISYS (t) 6=y ∨ (∃s∈{t}\{t} : ISYS (s)=y)]
γ, if t ∈ P (L(S/G)) ∧ ISYS (t) = y

∧(∀s ∈ {t} \ {t})[ISYS (s) 6= y]
Σuc, else

(9)
For the above constructed S′, we can show that L(S/G) ⊂
L(S′/G) ⊆ K. Therefore, S is not a maximal solution.

(⇐) By contraposition. Suppose that ∃S′ ∈ S(AIC(G))
such that L(S/G) ⊂ L(S′/G). Then ∃t ∈ P (L(S/G)) such
that S(t) ⊂ S′(t) and S(t′) = S′(t′),∀t′ ∈ {t} \ {t}. We
know that ISYS (t) = ISYS′(t); call this Y -state y. Then we
can show that S′(t) is a (y, T)-replacement.

By Theorems 2 and 3, it is clear that, in order to verify
whether or not SR is maximal, we need to first compute the
maximal control simulation relation Φ∗(TR,AIC(G)) from
TR to AIC(G). Then we need to check, for each Y -state y
in TR, whether or not there exists a (y, T)-replacement by
using Φ∗(TR,AIC(G)). If not, then the supervisor SR is
maximal. The above procedure is formally summarized by
Algorithm MAX-VER. The overall complexity of Algorithm
MAX-VER is O(22|X|+2|Σc|), since it takes O(22|X|+2|Σc|)
to compute Φ∗(TR,AIC(G)) and O(2|X| × 2|Σc|) to check
all possible control decisions for each Y -state.

Algorithm 1: MAX-VER(TR,AIC(G))

1 Compute Φ := Φ∗(TR,AIC(G));
2 for y ∈ QTR

Y do
3 for γ ∈ CAIC(G)(y) : cTR

(y) ⊂ γ do
4 if (hY Z(y, cTR

(y)), hY Z(y, γ)) ∈ Φ then
5 return “No” and y;

6 return “Yes”;

Example 3: Let us return to the system G shown in
Fig. 1(b) and the lower bound automaton R shown in
Fig. 2(a). The corresponding BTS TR that realizes SR and
the AIC AIC(G) have already been shown in Figs. 2(b)
and 1(c), respectively. Let us consider the initial Y -state y0 =
{0} in TR. Clearly, control decision {c1} ∈ CAIC(G)(y0)
is a (y0, TR)-replacement. For example, if we replace the
original control decision cTR

(y0) = {} by {c1}, then after
observing event a Y -state {3, 4} is reached and we can still
take control decision {c1} that was originally defined at state
{3} in order to maintain safety. Similarly, if event b occurs,
then Y -state {3, 4} is reached and we can still take control
decision {c2} which is defined at {4} in TR. Therefore, we
know that SR is not a maximal solution.

VII. THE ROLE OF STRICT SUB-AUTOMATON

The proof of Theorem 3 is constructive. Specifically, we
construct a new supervisor S′ such that L(S′/G) is strictly
larger than L(S/G). However, this is not sufficient for
the purpose of synthesis, since S′ is defined in terms of
languages and it is still not clear how to realize this S′.
One may conjecture that there always exists an IS-based
supervisor that is strictly more permissive than a given IS-
based supervisor if it is not maximal. However, this is not
true. One can check that supervisor SR, which is realized
by BTS TR in Fig. 2(b), is a maximal IS-based supervisor
(w.r.t. the state space of G), since we cannot find another
BTS T ′ such that TR � T ′. However, we have already shown
in Example 3 that SR is not a maximal supervisor.

The reason why there may not exist an IS-based supervisor
that is more permissive than a non-maximal IS-based super-
visor is explained as follows. It is possible that two different
information states under the original control strategy can be
merged as a single information state under the new (more
permissive) control strategy. As a consequence, information

5

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 3,6 , {𝑐2} 3,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

4 3 , { } 3,4 3,4 , { }

0

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

3 3 , { } 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 3,6 , {𝑐2} 3,5 , {𝑐1} 3′, 4,5′ , {𝑐1} 3,4,6′ , {𝑐2}

𝑎

𝑏 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2} 4 3 , { } 3′, 4 3′, 4 , { }

3,4′, 5′ , {𝑐1}

3,4′, 6′ , {𝑐2}

{𝑐1}
{𝑐2}

{ } 𝑎
0,1 , {𝑐1} 3,4′ , { } 3,4′

(a) K′ and G′

{ }

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2

𝑐2

𝑐2

𝑐1

𝑐1

0

4 3

5 6

𝑎 𝑏

𝑐1 𝑐2

3 3 , { } 0,1 , {𝑐1} 0 , { } 0

3,5 , {𝑐1}

3,6 , {𝑐2} 4,6 , {𝑐2} 4,5 , {𝑐1} 3,4,5 , {𝑐1} 3,4,6 , {𝑐2} 3,6 , {𝑐2}

4 0 , { } 3

3,5 , {𝑐1}

𝑎

𝑏 𝑎, 𝑏

{𝑐1} {𝑐2}

{ }

{𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2}
𝑎 𝑏

{𝑐2}

{ }

{𝑐1}

0

1 4 3

5 6

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1 𝑐2 𝑐2 𝑐1

4 4 , { } 3,4 3,4 , { }

0

0

1 4 3

5 6 7

𝑎

𝑏

𝑏

𝑎
𝑐1

𝑐1
𝑐2

𝑐2

𝑐2

𝑐1

𝑐1
3 ’ 4 ’

5 6 ’ ’

𝑐2 𝑐1

𝑐2 𝑐1

𝑐2 𝑐1

3 3 , { } 0 , { } 0

3,5 , {𝑐1}

3,6′ , {𝑐2} 4,6 , {𝑐2} 4,5′ , {𝑐1} 3′, 4,5′ , {𝑐1} 3′, 4,6,6′ , {𝑐2}

𝑎

𝑏 𝑏

{𝑐1}
{𝑐2} {𝑐1} {𝑐2}

{ }

{ } {𝑐1} { }

{𝑐1}

{𝑐2} 4 4 , { } 3′, 4 3′, 4 , { }

3,4′, 5,5′ , {𝑐1}

3,4′, 6′ , {𝑐2}

{𝑐1}
{𝑐2}

{ } 𝑎
0,1 , {𝑐1} 3,4′ , { } 3,4′

(b) AIC(G′)

Fig. 3. In Figure 3(a), G′ is the entire automaton and K′ is obtained by removing illegal state 7 from G′.

is lost by using the newly reached information state. We call
this phenomenon information merge. For example, for BTS
TR shown in Fig. 2(b), if we replace the original control
decision {} defined at the initial state by {c1}, then the two
different Y -states {3} and {4} in TR, which are reached by
observing a and b, respectively, are merged as a single state
{3, 4}. However, simply knowing state {3, 4} is not sufficient
for making control decisions in order to contain the original
behavior. To find an IS-based solution, state {3, 4} has to be
split into two states: one is reached by observing a and the
other is reached by observing b.

Let y ∈ 2X be an information state. We denote by y|R
the restriction of y to the state space of R, i.e., XR. The
following result says that the state merging phenomenon
described above will not occur when R @ K.

Lemma 1: Assume that R @ K @ G. Then for any
supervisor S′ s.t. R = L(R) ⊂ L(S′/G), we have that
1. ∀s∈P (R) : ISYS′(s)|R = ISYSR

(s);
2. ∀s, t∈P (R) : ISYSR

(s) 6=ISYSR
(t)⇒ISYS′(s) 6=ISYS′(t).

Recall that we have assumed in Section IV-A that R v G.
Based on Lemma 1, hereafter, we assume w.l.o.g. that R @
K @ G, which implies that XK ⊆ XG ⊆ X .

Example 4: Let us return to the running example. The
automata R and K in Fig. 1 do not satisfy the assumption
that R @ K. Therefore, we refine the state-spaces of K and
G and obtain new automata K′ and G′ shown in Fig. 3(a)
such that R @ K′ @ G′, L(K) = L(K′) and L(G) =
L(G′). The AIC for the refined system is shown in Fig. 3(b).
We see that the original state {3, 4} in AIC(G) splits into
two states {3′, 4} and {3, 4′} in AIC(G′).

VIII. SYNTHESIS OF A LARGER SOLUTION

We tackle synthesis Problem 2 in this section. We continue
to denote by SR the IS-based supervisor that achieves R and
by TR the deterministic BTS that realizes SR. Suppose that
S′ is a new supervisor such that L(SR/G) ⊂ L(S′/G). Let
y = ISYS′(s) for some s ∈ P (L(S′/G)). If y|R = ∅, then
it implies that s 6∈ P (L(R)). In other words, the supervisor
knows for sure that the system has already gone outside the
lower bound language. If y|R 6= ∅, then the supervisor is not
sure whether or not the system has already gone outside R.
In this case, according to Lemma 1, y|R uniquely determines
a corresponding Y -state ISYSR

(s) under SR.
Based on the above discussion, Algorithm GROW is

proposed in order to synthesize a safe supervisor S′ such that

Algorithm 2: GROW(TR,AIC(G))

1 if MAX-VER(TR,AIC(G))=“Yes” then
2 return T ∗ ← TR

else
3 Let ỹ be the Y -state returned by MAX-VER and

γ̃max be a locally maximal
(ỹ, TR)-replacement;

4 QYT∗ ← {y0}, QZT∗ ← ∅;
5 DoDFS(y0, T

∗);
6 return T ∗;

procedureDoDFS(y, T ∗);
7 if y|R 6= ∅ then
8 if y = ỹ then
9 Act← γ̃max;

else
10 Act← cTR

(y|R);

else
11 Find a locally maximal control decision Act s.t.

∀γ ∈ CAIC(G)(y) : Act 6⊂ γ;

12 z ← hY Z(y,Act);
13 Add transition y Act−−→ z to hT

∗

Y Z ;
14 if z /∈ QT∗Z then
15 QT

∗

Z ← QT
∗

Z ∪ {z};
16 for σ ∈ Σo : hZY (z, σ)! do
17 y′ ← hZY (z, σ);
18 Add transition z σ−→ y′ to hT

∗

ZY ;
19 if y′ /∈ QT∗Y then
20 QT

∗

Y ← QT
∗

Y ∪ {y′};
21 DoDFS(y′, T ∗);

L(SR/G) ⊂ L(S′/G). First, we apply Algorithm MAX-
VER to check whether or not SR is maximal. If not, then
MAX-VER will return a Y -state, denoted by ỹ. Therefore,
we can replace the original control decision at ỹ by some
larger control decision in CAIC(G)(ỹ). We denote by γ̃max ∈
CAIC(G)(ỹ) a locally maximal (ỹ, TR)-replacement, i.e.,

∀γ∈CAIC(G)(ỹ) : γ is a (ỹ, TR)-replacement⇒ γ̃max 6⊂γ

Next, we construct a new deterministic BTS T ∗ in which
the original control decision at ỹ is replaced by γ̃max. More
specifically, T ∗ is constructed by a depth-first search from

6

the initial Y -state according to the following rules: for each
Y -state y encountered:

1. If y|R = ∅, then we take a locally maximal control
decision in the AIC, since we know for sure that the
string is already outside of P (L(R)) and there is no need
to match the lower bound behavior.

2. If y|R 6= ∅ and y = ỹ, then we take control decision γ̃max
to replace the original one.

3. If y|R 6= ∅ and y 6= ỹ, then we take the same control
decision taken by SR at y|R, i.e., cTR

(y|R).

The above three rules and the depth-first search are imple-
mented by procedure DoDFS, in which a recursive call is
made in order to to traverse the entire state space. Since there
are at most 2|X|+|Σc| + |Σo| × 2|X|+|Σc| transitions in T ∗,
the complexity of procedure DoDFS is O(|Σo| × 2|X|+|Σc|).
Moreover, it takes O(22|X|+2|Σc|) to execute Algorithm
MAX-VER. Therefore, the entire complexity of Algorithm
GROW is O(22|X|+2|Σ|).

We illustrate Algorithm GROW by the following example.
Example 5: Let us return to the running example. The

inputs of Algorithm GROW are TR and AIC(G′) shown
in Figs. 2(b) and 3(b), respectively. By executing Algorithm
MAX-VER, as shown in Example 3, we know that SR is
not maximal and it returns Y -state ỹ = {0}. Then we start
procedure DoDFS from the initial Y -state y0 = {0}. Since
{0}|R 6= ∅ = ỹ, we take a locally maximal control replace-
ment, say γ̃max = {c1}, and move to Z-state ({0, 1}, {c1}).
Then we need to consider all possible event occurrences from
this Z-state. If a occurs, then Y -state {3, 4′} is reached.
Since {3, 4′}|R = {3} 6= ∅ 6= ỹ, we need to take control
decision cTR

({3}) = {c1} that is originally defined in TR.
Similarly, we need to take control decision {c2} if Y -state
{3′, 4} is reached. The above procedure yields a deterministic
BTS T ∗, which is the part highlighted in Fig. 3(b).

Now we present the correctness of Algorithm GROW.
Theorem 4: Let T ∗ be the BTS returned by Algorithm

GROW and ST∗ be the unique supervisor included in T ∗.
Then we have that: (i) ST∗ is a safe supervisor; and (ii) if
SR is not maximal, then L(SR/G) ⊂ L(ST∗/G).

Remark 1: By Theorem 4, we know that Problem 2 is
solved by Algorithm GROW. However, Problem 2 only
requires to synthesize a supervisor that is strictly more
permissive than SR and the synthesized supervisor may still
not be maximal. Therefore, one may also be interested in the
following problem:

“Given a non-maximal supervisor SR such that
L(SR/G) ⊆ K, find a maximal supervisor S such that
L(SR/G) ⊂ L(S/G).”

The solution to Problem 2 provides a straightforward way
to find a solution to the above problem, namely, we can
keep growing the behavior generated by the supervisor by
iteratively applying Algorithm GROW. If this iteration ter-
minates, then the solution obtained is a maximal solution that
contains R. However, it is not straightforward to determine if
this approach will terminate in a finite number steps. This is
because, each time we apply Algorithm GROW, we need to

make sure that the assumption that R @ K @ G holds. As
a consequence, state space refinement of G may be required
and the size of the new AIC may be larger than the previous
one. Therefore, the solution space may be unbounded. So far,
we have not elucidated if or when finite convergence occurs;
this is an important topic for future work.

IX. CONCLUSION

We have presented new results on the verification and
synthesis of maximally permissive supervisors in partial-
observed DES. First, we provided an algorithm to verify
whether or not a supervisor is maximal. If the answer to
the verification problem is negative, then an algorithm was
proposed in order to synthesize a supervisor that strictly
contains the behavior generated by the given non-maximal
supervisor.

REFERENCES

[1] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin. Centralized and
distributed algorithms for on-line synthesis of maximal control policies
under partial observation. Discrete Event Dynamic Systems: Theory
& Applications, 6(4):379–427, 1996.

[2] R. Brandt, V. Garg, R. Kumar, F. Lin, S.I. Marcus, and W.M.
Wonham. Formulas for calculating supremal controllable and normal
sublanguages. Syst. & Contr. Lett., 15(2):111–117, 1990.

[3] K. Cai, R. Zhang, and W.M. Wonham. Relative observability of
discrete-event systems and its supremal sublanguages. IEEE Trans.
Autom. Control, 60(3):659–670, 2015.

[4] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event
Systems. Springer, 2nd edition, 2008.

[5] H. Cho and S.I. Marcus. On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation. Math. Contr. Sig. Syst., 2(1):47–69, 1989.

[6] R. Cieslak, C. Desclaux, A.S. Fawaz, and P. Varaiya. Supervisory
control of discrete-event processes with partial observations. IEEE
Trans. Autom. Control, 33(3):249–260, 1988.

[7] K. Inan. Nondeterministic supervision under partial observations. In
11th Int. Conf. Analy. Optim. Syst.: Discr. Event Syst., pages 39–48.
Springer, 1994.

[8] F. Lin and W.M. Wonham. On observability of discrete-event systems.
Inform. Sciences, 44(3):173–198, 1988.

[9] P.J. Ramadge and W.M. Wonham. Supervisory control of a class of
discrete event processes. SIAM J. Cont. Opt., 25(1):206–230, 1987.

[10] K. Rudie and W.M. Wonham. The infimal prefix-closed and observable
superlanguange of a given language. Syst. & Contr. Let., 15(5):361–
371, 1990.

[11] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic
Approach. Springer, 2009.

[12] S. Takai and T. Ushio. Effective computation of an Lm(G)-closed,
controllable, and observable sublanguage arising in supervisory con-
trol. Syst. & Contr. Let., 49(3):191–200, 2003.

[13] X. Yin and S. Lafortune. A general approach for synthesis of
supervisors for partially-observed discrete-event systems. In 19th IFAC
World Congress, pages 2422–2428, 2014.

[14] X. Yin and S. Lafortune. Synthesis of maximally permissive non-
blocking supervisors for partially observed discrete event systems. In
53rd IEEE Conf. Decision and Control, pages 5156–5162, 2014.

[15] X. Yin and S. Lafortune. Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems. IEEE Trans. Autom.
Contr., 2016. Doi 10.1109/TAC.2015.2460391.

[16] X. Yin and S. Lafortune. A uniform approach for synthesiz-
ing property-enforcing supervisors for partially-observed discrete-
event systems. IEEE Trans. Autom. Contr., 2016. Doi
10.1109/TAC.2015.2484359.

[17] T.-S. Yoo and S. Lafortune. Solvability of centralized supervisory
control under partial observation. Discrete Event Dynamic Systems:
Theory & Applications, 16(4):527–553, 2006.

7

