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Abstract— This paper investigates the problem of driver dis-
traction detection using driving performance indicators from
onboard kinematic measurements. First, naturalistic driving
data from the integrated vehicle-based safety system program
are processed, and cabin camera data are manually inspected
to determine the driver’s state (i.e., distracted or attentive).
Second, existing driving performance metrics, such as steering
entropy, steering wheel reversal rate, and lane offset variance,
are reviewed against the processed naturalistic driving data.
Furthermore, a nonlinear autoregressive exogenous (NARX)
driving model is developed to predict vehicle speed based on
the range (distance headway), range rate, and speed history. For
each driver, the NARX model is then trained on the attentive
driving data. We show that the prediction error is correlated
with driver distraction. Finally, two features, steering entropy
and mean absolute speed prediction error from the NARX model
are selected, and a support vector machine is trained to detect
driving distraction. Prediction performances are reported.

Index Terms— Distraction detection, driver modeling, nonlin-
ear autoregressive exogenous model, steering entropy, support
vector machines.

I. INTRODUCTION

DRIVER distraction is of growing concern to transporta-
tion safety. Based on a report from National Highway

Traffic Safety Administration, in 2014, ten percent of fatal
crashes and 18 percent of injury crashes were due to dis-
traction [1]. From 2010 to 2014, the number of people who
are injured from distraction related crashes increased from
416,000 to 431,000 [1]. Drivers can get distracted with various
activities, from cell phone use, eating, to day dreaming. Recent
advances in in-vehicle technologies and electronic devices
place additional sources of distractions that may contribute to
the increased distraction-affected accidents [2], [3]. Distraction
detection and mitigation systems can play an important role
in improving driving safety.
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Depending on the activity that diverts driver’s attention,
driver distraction can be categorized as visual, auditory, cog-
nitive or visual-manual [4]. For instance, making a phone
call while driving causes cognitive distraction whereas texting
while driving requires multiple, concurrent resources from
drivers including intense visual, manual, and cognitive engage-
ment. While all types of driver distraction represent potential
hazards for driving safety, visual-manual distraction has the
most significant impact on vehicle handling since driving is
a vision-intensive task while visual-manual tasks lead to fre-
quent eye movements away from the roadway and significant
performance drop in vehicle controls [5]. This paper focuses
on developing algorithms to detect visual-manual distracted
driving.

Current available distraction detection and mitigation
systems have been prototyped using cameras or eye-
tracking devices. For example, Saab’s Driver Attention Sys-
tem (AttenD) exploits two cameras that directly face the driver
to monitor whether the driver’s gaze is within the “field
relevant for driving (FRD)”. A warning will be given by
vibrating the seat if the driver’s gaze is outside the FRD
for two seconds. In [6], a distraction detection system is
developed by measuring eye glances using an eye-tracking
system. While eye movement can be a direct indication of
driving distraction, accuracy and robustness of the measure-
ments pose great challenges. Factors such as eye glasses,
lighting conditions, and head rotations can disturb the tracking
system. Furthermore, high-performance eye tracking systems
for real on-road application are yet available and are typically
prohibitively costly for mass production.

In this paper, we pursue the development of a distraction
detection algorithm using kinematic signals from the vehicle
Controller Area Network (CAN) bus. Exploitation of the
readily available signals can avoid adding costly or obtrusive
hardware. Towards this end, many steering wheel signal-based
metrics have been proposed as indicators of driver distrac-
tion, from simple steering wheel standard deviation [7] to
more comprehensive metrics such as steering entropy [8], [9]
and high frequency steering content [10]. Longitudinal met-
rics, e.g., based on speed variation and distance headway
variations, have also been identified as potential distraction
indicators [11]–[13].

While good correlations have been reported for these
approaches, their use for driver distraction detection
needs further validation for the following reasons. Firstly,
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in [8], [9], and [11]–[13] driver simulators are used to evaluate
the proposed metrics. While state-of-the-art simulators were
employed, the differences between simulated driving and nat-
uralistic driving are not negligible. Secondly, while additional
field experiments were conducted to validate the proposed
metrics [7], [11]–[14], in these studies driver distraction was
identified using indirect physiological measurements such as
electrocardiography [7], [11]–[13] or using the prototyped
distraction detection system AttenD [14], which inevitably
introduced detection errors. Thirdly, in several existing stud-
ies secondary visual tasks were imposed to simulate dis-
tracted driving and results were compared to a base-line
drive with the same drive task but without imposing distrac-
tions [7], [11]–[14]. This setup neglects the fact that chances
of driver distraction are much lower when the driving task
itself is demanding. Driver distractions tend to happen when
the driving workload is light.

To address the above issues, in this paper, vehicle kinematic
data from naturalistic driving study program [15] are used to
develop driver distraction algorithm. These data have been
recorded continuously on everyday driven vehicles without
specified base lines. Cabin video data were captured and
manually inspected to identify attentive or distracted cases;
the resulting labels were used to facilitate the development
and validation of the algorithms. In particular, in this paper,
the afore-mentioned performance metrics are compared against
the processed data. In addition, a Nonlinear Autoregressive
Exogenous (NARX) model is developed for vehicle speed
prediction. Based on this model, the mean of the absolute
prediction error is proposed as a new metric for distraction
detection. A support vector machine is then exploited for
distraction detection with the identified features. Promising
detection performance results are reported.

The rest of the paper is organized as follows. Section II
describes the data acquisition and data processing. Perfor-
mance metrics from the previous literature are reviewed and
discussed in Section III. In Section IV, a NARX vehicle
speed prediction model is defined and trained on attentive
driving data for each subject. In Section V, support vector
machines (SVMs) are trained to identify driver distractions;
classification accuracy results are reported. Finally, conclu-
sions are drawn in Section VI.

II. DATA ACQUISITION AND PROCESSING

To achieve the objectives of this study, data from the
Integrated Vehicle based Safety System (IVBSS) program
were used [15]. The IVBSS program was designed to support
the development and testing of an integrated in-vehicle
crash warning system including Forward Crash Warning,
Lane Departure Warning, Lane Change/Merge Warning
and Curve Speed Warning systems. Sixteen 2006 and
2007 Honda Accord vehicles were used for data collection,
see Figure 1. Each vehicle was instrumented to capture
information regarding the driving environment, driver activity,
system behavior, and vehicle kinematics, with data collection
frequency from 10 to 50 Hz.

A total of 108 randomly sampled, passenger-car drivers
participated in the IVBSS study, with the sample stratified

Fig. 1. Experimental vehicles used in the IVBSS program.

by age and gender. The age groups examined were younger
drivers between 20 and 30 years old, middle-aged drivers
between 40 and 50 years old, and older drivers between
60 and 70 years old. All drivers were required to have a valid
driverâŁ™s license.

Drivers used the test vehicles as their personal vehicles for
a 40-day period. The first 12 days of vehicle use served as
a baseline period during which warning functions were not
provided to drivers, but all sensors and computations were
still operating in the background and all data were recorded.
The following 28 days constituted the treatment period during
which functions were enabled and warnings were provided
to drivers when appropriate. Only assigned participants were
permitted to drive the vehicles during the test period, except
for emergencies. Drivers were informed that their driving
behaviors were being documented and video recorded during
the whole test period and will only be used for the purpose of
transportation safety research.

The cabin instrumentation in the experimental vehicles is
shown in Figure 2. For this study, the data analyzed are from
16 drivers in the first 12 days of data collection, during which
all warning systems were disabled. Since we need to manually
inspect the cabin video frame by frame to determine the
driver’s state (attentive or distracted), due to limited resources
we only processed datasets from 16 drivers which we believe
is adequate for this study. The distracted driving episodes of
interest are visual-manual tasks by the driver (e.g., texting,
dialing, etc.). Cabin camera clips are manually inspected to
determine the driver’s status (distracted or attentive). In this
study, for each driver, ten 20-second distracted episodes are
identified and 50 matched control clips, in which drivers
did not engage in any secondary tasks, are also identified.
Kinematic signals such as steering angle, vehicle speed, and
distance to the lead vehicle are recorded for the analysis and
algorithm design. Note that to better analyze the correlation
between the longitudinal operation and driver distraction, all
clips correspond to not being in cruise control mode.

III. PERFORMANCE METRICS FOR DRIVER DISTRACTION

While a variety of driving performance metrics have been
proposed for distraction detection and promising correla-
tions have been demonstrated in previous publications, it is
imperative to evaluate these metrics when applied to actual
naturalistic driving data to be certain of their reference for
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Fig. 2. Cabin instrumentation in the experimental vehicles including cameras
and CAN signals.

Fig. 3. High frequency steering content calculation by integrating the steering
power in the 0.35-0.6 Hz frequency band. Top: steering wheel angle. Bottom:
power spectrum of zero mean signal.

distraction detection. Towards this end, in this section we
perform evaluations of the reported metrics using our acquired
data from Section II.

A. High-Frequency Steering Content

It is reported in [10] that high frequency steering
wheel (HFSW) content (in 0.35-0.6 Hz frequency band) is sen-
sitive to both primary and secondary task loads. The compu-
tation of HFSW involves three main steps: (1) subtracting the
mean from the steering signal in a time window (e.g., 20 s);
(2) performing a Fourier transform to obtain the power spec-
trum of the resulting zero-mean steering wheel signal; and
(3) integrating the steering power in the 0.35-0.6 Hz frequency
band. A sample steering wheel signal trace and the power
spectrum of the corresponding zero-mean signal are illustrated
in Figure 3. The HFSW is then computed by integrating the
power spectrum in the 0.35-0.6 Hz frequency band (magenta
area in Figure 3).

The HFSW of attentive and distracted driving for the ten
drivers are shown in Figure 4. The filled bars represent
25 to 75 percentile data and the horizontal red line inside each
bar represents the medium. The red “+”s are data classified

Fig. 4. Box plots of high frequency steering wheel for attentive and distracted
driving comparisons.

as outliers. From Figure 4 we see that the magnitude of
HFSW varies significantly between individual drivers. This
may be due to the fact that some drivers tend to move the
steering wheel more frequently than others. Also, the reported
correlation between higher HFSW and driver distraction [10]
is not consistently implied among the drivers. For Drivers 3, 7,
8 and 9, HFSW is lower when the driver is distracted, which
indicates that HFSW may not be a good universal metric for
distraction detection.

B. Steering Entropy

Steering entropy is an indication of steering smoothness and
predicability. The rationale for using it is that attentive drivers
continuously assess the environment and unconsciously apply
smooth and predictable steering control. On the other hand,
distracted drivers tend to introduce large maneuvers for error
correction, leading to decreased predicability.

Steering entropy is proposed in [8] to quantify the steering
predicability. As illustrated in Figure 5, at each time stamp
t , a second-order Taylor expansion is exploited to predict the
steer θp(t) based on previous samples of the steering wheel
angle, θ , as follows:

θp(t) = θ(t − 1) + (
θ(t − 1) − θ(t − 2)

)

+1

2

(
(θ(t − 1) − θ(t − 2)) − (θ(t − 2) − θ(t − 3))

)
,

(1)

which can be simplified as

θp(t) = 5

2
θ(t − 1) − 2θ(t − 2) + 1

2
θ(t − 3). (2)

The prediction error e(t) is then calculated as the difference
between the actual value θ(t) and the predicted value θp(t)
from Equation (2):

e(t) = θ(t) − θp(t). (3)

It is recommended in [8] that the prediction period should
be shorter than 150 ms, which corresponds to the lowest
frequency that can be used to represent a human driver’s
control response in manual tracking tasks. In this study,
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Fig. 5. Steering wheel prediction.

Fig. 6. Box plots of steering entropy for attentive and distracted driving
comparisons.

the prediction period is chosen to be the sampling time used
in the data, i.e., 100 ms.

The error distribution in a time window (e.g., a 10 sec
window) can then be computed and the value α such that
90% error falls in the [−α, α] interval can be calculated. The
error distribution is then divided into nine bins based on α
(see [8] for details). The steering entropy H p is calculated as

H p =
9∑

i=1

−pi log9 pi , (4)

where pi represents the proportion of error data that falls into
the i th bin.

We compute the steering entropy on the collected naturalis-
tic driving data and show comparisons between attentive and
distracted driving for the 10 drivers in Figure 6.

A clear correlation between high steering entropy and driver
distraction can be seen in Figure 6 for all drivers except for
Driver 8 which shows comparable results. These comparisons
show that steering entropy can be a good metric for online
distraction detection. We thus use steering entropy as one of
the features for online distraction detection in Section V

Fig. 7. Box plots of steering standard deviation for attentive and distracted
driving comparisons.

C. Steering Wheel Standard Deviation

As a quantification of steering variation, steering wheel
standard deviation is proposed by Liu and Lee as a metric
for distraction detection [7]. In a time window with N steering
samples, the steering wheel standard deviation, σ , is computed

as σ =
√∑N

i=1(θ(i) − θ̄ )2 with θ̄ = 1
N

∑N
i=1 θ(i) being the

steering mean. In this subsection, we check the proposition
using the collected naturalistic driving data. The comparisons
between distracted and attentive driving for the ten drivers are
shown in Figure 7.

We observe from Figure 7 that the correlation between
driver distraction and higher steering standard deviation exists
for Drivers 2, 5, and 10. At the same time, the other seven
drivers show the opposite correlation. Therefore, we do not
use this metric as a feature for distraction detection.

D. Speed Variations and Distance Headway Variations

Longitudinal metrics such as speed variations and distance
headway variations have also been proposed as driving distrac-
tion indicators [11]–[13]. The rationale is that attentive drivers
tend to produce less jerks while distractions can cause large
corrective maneuvers.

The standard deviations of vehicle speed and distance
headway based on the naturalistic driving data are illus-
trated in Figures 8 and 9, respectively. It appears that for
most of the drivers the reported correlations between higher
speed or distance headway variations and driver distraction
are not reflected in the collected naturalistic driving data.
The reason for this may be that speed and distance headway
are highly dependent on the driving environment. In the next
section, in an attempt to improve the correlation, we develop a
driver model by considering the distance headway and vehicle
speed jointly.

As demonstrated in Figures 6-9, clear correlations can be
found between high steering entropy and driving distraction
across the drivers while no clear correlations between driving
distraction and other factors are found. Furthermore, the steer-
ing entropy varies significantly across the drivers. To robustly
use this metric for prediction, we use driver-dependent scaling



2532 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 19, NO. 8, AUGUST 2018

Fig. 8. Box plots of vehicle speed standard deviation for comparing attentive
and distracted driving.

Fig. 9. Box plots of distance headway standard deviation for comparing
attentive and distracted driving.

factors (i.e., minimum and maximum) to scale the steering
entropy between 0 and 1.

IV. NARX SPEED PREDICTION MODELING

In Section III-D, preliminary longitudinal metrics such as
standard deviation of vehicle speed and standard deviation
of distance headway proposed in [11]–[13] are shown to be
lacking as distraction indicators. We hypothesize that this
happens for the reason that longitudinal metrics may highly
depend on driving environment, e.g., traffic density and lead
vehicle dynamics. For example, following an aggressive driver
in a congested traffic flow can produce a fair amount of
jerks even when the driver is attentive. Furthermore, distance
headway and vehicle speed could be considered together to
improve the correlation.

In the sequel, we develop a driver model that consid-
ers both the speed-distance correlation and driving dynam-
ics. While physics-based models such as Optimal Velocity
Model (OVM) [16]–[19] are available, certain parameters
need to be tuned for each driver. In this paper, we pursue
a data-driven approach since the driving data are readily
available to avoid the tunings. The schematic diagram of the
proposed model is shown in Figure 10. The driver reacts
to the range (distance to lead vehicle, denoted by d), range

Fig. 10. Schematic diagram of the proposed driver model for vehicle speed
control. At each time step, the driver perceives current vehicle speed, evaluates
the vehicleâŁ™s range and range rate from the vehicle ahead, and then adjusts
its speed using gas/brake pedal. The range and range rate will be updated at
next time step through interaction with the vehicle ahead.

rate (distance change rate to lead vehicle, denoted by d ′)
and ego vehicle speed (denoted by v), and then applies the
gas or brake pedal to adjust the speed. The vehicle then
interacts with the environment, updating the range and range
rate which closes the system loop. Note that the model
considers both the driving dynamics (reflected in range and
range rate) and range-speed correlations.

The driver model can be used to emulate the driver’s
reaction and predict vehicle speed based on the near history
of range, range rate and vehicle speed. We hypothesize that
the prediction error for distracted driving would be larger
than that of normal driving since distracted driving is more
“unpredictable”. It is noted that different drivers may have
different sense of “safe” distance, potentially requiring in dif-
ferent driver models. Therefore, the driver model is customized
for each driver.

In this paper, we use a Nonlinear Autoregressive Exoge-
nous (NARX) model [20]–[22] to represent the driver’s speed
control:

Y (t) = f (Y (t − 1), · · · , Y (t − Ny), U(t − 1), U(t − Nu)),

(5)

where Y (t) represents the output of the model and Y (t) = v(t)
represents the vehicle speed; U(t) = {d(t), d ′(t)} represents
the input vector including range and range rate. The parameters
Nu and Ny are the input delay and output delay, respectively.

We employ an Artificial Neural Network (ANN) as the
function approximator for the NARX model in Equation (5).
The model is trained for each driver on the attentive driving
data set. The size of hidden neurons in the ANN is cho-
sen as ten based on five-fold cross validation. Specifically,
we randomly partition the training data into five sets. We then
run five training runs and for each run one of the five sets
is used to test the prediction performance and the rest four
sets are used for ANN training. The prediction errors are then
averaged over the five runs. We tried different combinations
of parameters Ny and Nu and picked ten as the hidden size
since no clear improvements are found with more neurons.
The Ny and Nu are parameters that are related to driver’s
response time. The driver’s response time are typically around
0.45-1 second [18], [19]. We tune these two parameters also
based on the average prediction error of the five-fold cross-
validation illustrated in Figure 11. The parameters are chosen
as Ny = 1 and Nu = 5 to balance small error and required
buffer size.
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Fig. 11. Distribution of five-fold cross-validation prediction error over
parameters Ny and Nu .

Fig. 12. Box plots of mean absolute ANN prediction error for attentive and
distracted driving comparisons.

For each driver, we train its driving model using 60% of the
attentive driving data and the rest 40% are used for testing.
The mean absolute prediction error box plots for the ten drivers
are illustrated in Figure 12 with distracted and attentive drives
plotted side by side. It can be seen that the model is able to
predict the vehicle speed accurately for attentive driving (less
than 0.1 m/s). Furthermore, distracted driving cases clearly
yield higher prediction errors than attentive driving cases for
all drivers except Driver 8, which has similar prediction error
for distracted and attentive driving. Nonetheless, the prediction
error generated from the NARX model (5) appears to be a
good distraction indicator. We next exploit machine learning
techniques for distraction detection.

Remark 1: In this paper, we train separate ANN-based
NARX models for different drivers since drivers tend to
have very different driving behaviors as demonstrated in
Figures 6-9 and Figure 12. For practical implementations,
the training data can be obtained by sampling, that is,
we randomly sample the driver’s driving data for a fixed
time window through, for example, vehicle-to-cloud com-
munication or onboard storage. Since distracted driving is
generally much less frequent than attentive driving, with an
appropriate sampling size, the sampled data is representative
of the driver’s attentive driving. This sampling strategy will
be considered in our future work. With the trained model,
the distraction prediction system can start functioning.

V. SVM DISTRACTION DETECTION

In Section III and Section IV, we identified metrics such as
steering entropy and speed prediction error from the NARX

driving model as feasible distraction indicators. In this section,
we exploit machine learning algorithms that can be imple-
mented in real-time for distraction detection. Specifically,
we use a support vector machine (SVM) to classify distracted
and attentive driving.

Given a set of N data points xi ∈ R
n, i = 1, · · · N and

associated binary class labels yi ∈ {−1,+1}, i = 1, · · · N ,
a standard classification problem is to find a mapping function
f (x) to accurately separate the two classes. The Support
Vector Machine (SVM) is based on supervised learning that
has been successfully used for many applications including in
the field of pattern recognition [23], [24], financial engineer-
ing [25]–[27], and automotive engineering [28]–[30]. SVM
advantages over alternative techniques include substantial the-
ory foundation, effective computational algorithms known to
yield global optima, and good generalization ability [29].
In SVM training, two parameters γ and C are typically
tuned through cross-validation where γ > 0 controls the
generalization ability of the SVM classifier and C > 0 is
a positive scaler to penalize the constraint violations. More
technical details on SVM can be referred to [29], [31], and
references therein.

We use the SVM to classify distracted and attentive driving
based on the identified features, i.e., steering entropy and
mean absolute speed prediction error from the NARX model
we developed in Section IV. For each driver, we train an
SVM over the processed driving data (the two features and
manually examined driving status, i.e., attentive or distracted)
for about 60 episodes. Note that the kernel scaling factor γ
and constraint violation penalty weight C need to be specified
before the SVM training. We run the ten-fold cross-validation
procedure to determine an optimal γ and C . Specifically,
we vary γ and C in a large range and for each (γ, C) pair
we randomly partition the data into ten sets. We then run ten
training runs and for each run one of the ten sets is reserved to
test the SVM prediction performance and the rest nine sets are
used for SVM training. The classification accuracy, averaged
over the ten runs, is referred to as the ten-fold cross-validation
accuracy.

The contour plot of the ten-fold cross-validation accuracy
in the log(γ ) − log(C) plane for Driver 6 is illustrated
in Figure 13. The best cross-validation accuracy is 93.8% and
can be obtained by choosing C = 1 and γ = 0.01. The same
tuning process is used for all other drivers to select γ and C
for the SVM training.

With tuned γ and C , we train the SVM over the data of
Drivers 1-10 and we test the SVM prediction using the data
from Drivers 11-16. The prediction performance of testing
for the six drivers are illustrated in Table I. The term True
positive means the number of correctly identified distraction
cases while True negative represents the number of correctly
identified attentive cases. On the other hand, False negative
and False positive represent, respectively, the number of
missed detection of distraction and the number of attentive
driving cases that are incorrectly classified as distracted.

As we can observe from Table I, the overall accuracy across
all drivers can be as high as around 95%. Specifically, the False
positive cases are very few; only Driver 14 has one attentive
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Fig. 13. Cross-validation accuracy of SVM classification as a function of γ
and C for Driver 6.

TABLE I

DISTRACTION DETECTION PERFORMANCE WITH THE SVMs

driving case that is mislabeled as distracted driving. On the
other hand, the average false negative rate, defined as F N

F N+T N ,
is 78.3% over all drivers; this is a promising initial result
which can be further improved on. Future work will include
exploiting Recurrent Neural Networks [32] to improve the
detection performance.

VI. CONCLUSIONS

In this paper, we processed naturalistic driving data from
the Integrated Vehicle Based Safety System (IVBSS) program
and manually inspected the cabin camera data to determine the
driver’s state (i.e, distracted or attentive). Based on the data,
we reviewed existing performance metrics for driver distrac-
tion and showed good correlation between driver distraction
and steering entropy, whereas the correlation is lacking for
other metrics. Furthermore, we developed a Nonlinear Autore-
gressive Exogenous (NARX) driving model to predict vehicle
speed based on range, range rate, and speed history. An artifi-
cial neural network was used as the function approximator and
trained with attentive driving data. We demonstrated that driver
distraction yields higher prediction error than attentive driving.
Finally, we used steering entropy and the absolute mean of
speed prediction error as features to develop a support vector
machine for driver distraction detection. The SVM approach
is capable of achieving a high overall accuracy of 95% and
a false positive rate about 78.3% when trained on individual
driver specific data.
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