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A B S T R A C T

There is a rapidly growing interest in the use of cloud computing for automotive vehicles to facilitate compu-
tation and data intensive tasks. Efficient utilization of on-demand cloud resources holds a significant potential to
improve future vehicle safety, comfort, and fuel economy. In the meanwhile, issues like cyber security and
resource allocation pose great challenges. In this paper, we treat the resource allocation problem for cloud-based
automotive systems. Both private and public cloud paradigms are considered where a private cloud provides an
internal, company-owned internet service dedicated to its own vehicles while a public cloud serves all subscribed
vehicles. This paper establishes comprehensive models of cloud resource provisioning for both private and public
cloud-based automotive systems. Complications such as stochastic communication delays and task deadlines are
explicitly considered. In particular, a centralized resource provisioning model is developed for private cloud and
chance constrained optimization is exploited to utilize the cloud resources for best Quality of Services. On the
other hand, a decentralized auction-based model is developed for public cloud and reinforcement learning is
employed to obtain an optimal bidding policy for a “selfish” agent. Numerical examples are presented to il-
lustrate the effectiveness of the developed techniques.

1. Introduction

There is growing interest in employing cloud computing in auto-
motive applications [4,8,14,17,25,30–32]. Ready access to distributed
information and computing resources can enable computation and data
intensive vehicular applications for improved safety, drivability, fuel
economy, and infotainment. Several cloud-based automotive applica-
tions have been identified. For instance, a cloud-based driving speed
optimizer is studied in [22] to improve fuel economy for everyday
driving. In [16], a cloud-aided comfort-based route planner is proto-
typed to improve driving comfort by considering both travel time and
ride comfort in route planning. A cloud-based semi-active suspension
control is studied in [15] to enhance suspension performance by uti-
lizing road preview and powerful computation resources on the cloud.

As such, cloud computing has been both an immense opportunity
and a crucial challenge for vehicular applications: opportunity because
of the great potential to improve safety, comfort, and enjoyment;
challenge because cyber-security and resource allocation are critical
issues that need to be carefully considered. A cloud resource allocation

scheme determines how a cloud server such as Amazon “EC2” or Google
Cloud Platform distributes resources to its many clients (vehicles in our
context) efficiently, effectively, and profitably. This allocation design
becomes even more challenging when it comes to cloud-based auto-
motive systems in which issues like communication delays and task
deadlines arise. These complexities make a good resource allocation
design a non-trivial, yet important task.

Not surprisingly, extensive studies have been dedicated to the de-
velopment of efficient and profitable cloud resource allocation schemes.
A dynamic bin packing method, MinTotal, is developed in [13] to
minimize the total service cost. In [5], a distributed and hierarchical
component placement algorithm is proposed for large-scale cloud sys-
tems. A series of game theoretical cloud resource allocation approaches
have also been developed, see e.g., [2,3,11,19]. However, as far as the
authors are aware, a resource allocation scheme for cloud-based auto-
motive systems that accounts for communication delays and task
deadlines is still lacking.

In this paper, we develop resource allocation schemes for cloud-based
automotive systems that optimally tradeoff costs and Quality of Service
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(QoS) with the presence of stochastic communication delays and task
deadlines. In particular, we consider allocation schemes under two cloud
paradigms, private and public cloud. A private cloud is a company-owned
resource center which provides computation, storage and network com-
munication services and is only accessible by cars made by the car company.
The private cloud therefore has a high level of security and information is
easy and safe to share and manage. On the other hand, a public cloud relies
on a third-party service provider (e.g., Amazon EC2) that provides services
to all subscribed vehicles. A public cloud can eliminate the capital expenses
for infrastructure acquisition and maintenance, and can provide the service
on an as-needed basis.

The objectives of resource allocation are quite different between
private and public cloud paradigms. Since the private cloud resources
are pre-acquired, the company basically “use them or waste them”.
Therefore, the goal of private cloud resource allocation is to best utilize
its resources to provide good QoS to its subscribed vehicles. Since the
information exchange between vehicles and the server is more secure
and convenient, the resource allocation can be achieved in a centralized
manner. On the other hand, public cloud provides services to sub-
scribed vehicles from a variety of makers, e.g., Ford, GM, Toyota, etc.
Due to security and privacy issues, these vehicles typically will not
share their information nor be interested in coordination; hence each
vehicle becomes a “selfish” agent. The goal of each agent is to minimize
its service cost while maintaining good QoS.

In this work, we develop mathematical models to formalize the
resource allocation problems for both private and public cloud para-
digms. Stochastic communication delays and onboard task deadlines
are explicitly considered. A centralized resource-provisioning scheme is
developed for private cloud and chance constrained optimization is
employed to obtain an optimal allocation strategy. On the other hand,
an auction-based bidding framework is developed for public cloud and
reinforcement learning is exploited to train an optimal bidding policy to
minimize the cost while maintaining good QoS. Numerical examples
are presented to demonstrate the effectiveness of the proposed schemes.

The main contributions of this paper include the following. Firstly,
compared to the previous literature on cloud resource allocation, issues
important to automotive vehicles such as communication delays and on-
board task deadlines are explicitly treated in this paper. Secondly, resource
allocation within a private cloud paradigm is formalized as a centralized
resource partitioning problem. Chance constrained optimization techniques
are employed to obtain the optimal partitioning by solving a convex opti-
mization problem. Thirdly, a decentralized, auction-based bidding frame-
work is developed for public cloud-based resource allocation and the best
response dynamics assuming a constant time delay and bidding is derived.
Furthermore, a Deep Deterministic Policy Gradient (DDPG) algorithm is
exploited to train the optimal bidding policy with stochastic time delay and
unknown bidding from other vehicles. Sensitivity analysis is also performed
to show how the bidding policy can change by varying task parameters such
as workload and deadline.

The rest of our paper is organized as follows. Section 2 describes the
model of cloud resource provisioning for private cloud-based automotive
systems. The problem formulation and a chance constrained optimization
approach are also presented. In Section 3, a numerical example is given to
illustrate the allocation scheme for private cloud. The resource allocation
problem with a public cloud is formalized in Section 4. The best response
dynamics with constant time delay and bidding is also derived. A DDPG
algorithm is exploited in Section 5 to train the optimal bidding policy with
stochastic time delay and unknown bidding from other vehicles. A nu-
merical case study is also presented with sensitivity analysis on task para-
meters. Finally, conclusions are drawn in Section 6.

2. Centralized resource allocation with a private cloud

It is more secure and manageable for automotive manufacturers to
acquire and maintain its own private cloud infrastructure which pro-
vides computation, data storage and network services only to vehicles

made by the manufacturer. A schematic diagram of resource allocation
for private cloud-based automotive systems is illustrated in Fig. 1.
Suppose that a set of cloud-based vehicular applications are available
(e.g., cloud-based route planning, cloud-based suspension control, etc.)
and we consider a general case that each vehicle runs a subset of these
applications. Let us consider a total number of N applications running
on M vehicles as in Fig. 1. Each application = …i i N, 1, 2, , , corre-
sponds to a periodic task associated with a tuple, T = T w d τ{ , , , },i i i i i
where

• Ti is the period of task i in seconds;

• wi is the workload of task i in million instructions;

• di≤ Ti is the deadline of task i in seconds;

• τi is a random time delay of the communication channel associated
with task i in seconds.

For each task i, the Quality of Service (QoS) is characterized by the
following cost function adopted from [33]:

=
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where γi is the process rate that the cloud resource allocator assigns to
task i and ∑ == γ γi

N
i1 with γ being the total resource available on the

cloud; � �→+ +B (·):i is a non-decreasing function reflecting the QoS of
task i; Mi≥ Bi(di) is a positive scalar representing the penalty for
missing the deadline; the condition + >τ dw

γ i i
i

i
indicates that the

deadline has been missed. Note that task priorities are reflected in the
deadline-missing penalty Mi. For safety-critical tasks (e.g., cloud-based
functions involved in powertrain or vehicle control), a large penalty, M,
should be given while a small M can be assigned to some non-critical
tasks such as online video streaming.

Since a private cloud is a pre-acquired “use it or waste it” capability,
the goal of resource allocation for private cloud-based automotive
systems is to distribute the cloud resources to the N tasks such that the
total expected QoS cost as in (1) is minimized. Basically, the cloud
collects task information (i.e., workload, deadline, time delay statis-
tics2) of the N tasks and determines how optimally to partition the total
resources into N parts so that the expected QoS cost is minimized. The
problem can be mathematically formalized as a constrained optimiza-
tion problem

Fig. 1. Schematic diagram of private cloud-based resource allocation.

2 Note that the task period Ti is not used here but we include it as one of the four task
attributes for completeness. The task period will appear when it comes to the public
cloud-based resource allocation in Section 4.
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where = ⋯γ γ γΓ [ , , , ]N1 2
T is the vector of process rates to be optimized.

We note that the problem (2) is challenging to solve due to the
randomness of communication delay τi and the discontinuity of the cost
function represented in (1). Motivated by the chance constrained for-
mulation in Stochastic Model Predictive Control developments
[7,21,23], we re-formulate problem (2) by imposing chance constraints.
Instead of penalty for missing deadline as in (1), we impose chance
constraints for missing deadlines of the form,

⎜ ⎟
⎛
⎝

+ ≤ ⎞
⎠
≥ −w

γ
τ d αPr 1 ,i

i
i i i

(3)

where αi∈ (0, 1) is a scalar representing the chance constraint of
missing a deadline, = ⋯i N1, , . The notion of α can be interpreted as
the upper limit of deadline missing rate specified in the QoS require-
ments. Applications with harsh consequences of missing a deadline can
be characterized by a small α while larger α can be used for applications
with mild consequences of missing a deadline.

Note that the deadline-missing penalty M and the chance constraint
α are transformable. For instance, one can use the following function to
map deadline-missing penalties to chance constraints:

= + −
−

−α α α α
M M

M M( ),i imax
min max

max min
min (4)

where αmin and αmax are, respectively, the lower and upper bounds of
the chance constraints while Mmin and Mmax are the corresponding
lower and upper bounds of the deadline-violation penalties, respec-
tively. These parameters need to be chosen compatibly to reflect the
same QoS requirements. The example transformation in (4) is illu-
strated in Fig. 2. Now let us assume that the communication delays can
be modeled as independent Gaussian random variables, i.e.,

N∼τ τ σ( , )i i i
2 . From basic probability theory, the probability of the

delay taking values between a and b,
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where ∫= −x e terf( ) dπ
x t2

0
2 is the error function.

As a result, from (3) and (5), it follows that
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We next apply the inverse error function −erf (·)1 to both sides of (6).
Since −erf (·)1 is continuous and increasing, we have

− − ≥ −−d w
γ

τ σ α2 erf (1 2 ).i
i

i
i i i

1

(7)

Note that (7) requires the term − − −−d τ σ α2 erf (1 2 )i i i i
1 to be

positive so that γi is feasible. This condition means that the mean of the
delay τi cannot be greater than the deadline di. Also, given deadline di,
delay mean τi and standard deviation σi, the minimum achievable
chance constraint level, α* is

= −
−

α
erf d τ

σ
* 1

2
( )

2 2
,i i

i (8)

which defines a maximum performance bound regardless of allocated
resources. For example, if =d 0.3,i =τ 0.2,i and =σ 0.1,i then from (8)
we have =α* 0.3976, which means that no matter how many resources
are allocated for task i, the probability of missing a deadline is no less
than =α* 0.3976 due to communication delays. On the other hand,

α*<0 means that the probability of not missing deadline can be in-
finitely close to 1 with enough resources.

Re-arranging terms in (7) leads to

≥ =
− − −−γ ρ w

d τ σ α2 erf (1 2 )
.i i

i

i i i i
1 (9)

So far we showed that (9) and (3) are equivalent. Therefore, the
problem in (2) can be re-stated as:
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where ρi are assumed to be positive and defined by (9).
Note that if we choose B( · ) to be a convex function of γi, as we will

show in the next section, problem (10) reduces to a convex optimization
problem which can be efficiently solved with good scalability [9].

3. A numerical example with a linear QoS function

In this section, we consider a linear QoS function in the form of

+ = +( ) ( )B τ b τ·i
w
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w
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i
with bi>0. The problem (10) becomes
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We show that the above problem is a convex optimization problem.
We first demonstrate that the cost function J(Γ) in (11) is strictly convex
in the domain = ⋯ > ∀ = ⋯γ γ γ i N{Γ [ , , ] : 0, 1, 2, }N i1

T . Towards that
end, we compute the Hessian of the cost function J as

= ⎧
⎨⎩

⋯ ⎫
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H J diag b w
γ

b w
γ

( (Γ)) 2 , , 2 ,xx
N N

N

1 1

1
3 3

(12)

where Hxx(·) represents the Hessian matrix and diag{·} denotes the di-
agonal matrix with the arguments as the entries in the diagonal. Since

Fig. 2. Linear mapping from deadline-missing penalty to chance constraint.
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bi, wi, γi are positive for = ⋯i N1, 2, , , we have Hxx(J(Γ)) being positive
definite, which means that the cost function J(Γ) is strictly convex.
Furthermore, the constraints in (11) are polytopic. Therefore, (11) is a
convex optimization problem that can be efficiently solved by many
numerical solvers. This means even if N is large, an optimal resource
allocation can be efficiently computed.

We next give a numerical example with four tasks. The parameters
are given in Table 1 and we consider a total resource of 1, i.e., =γ 1.
The fmincon function in MATLAB was exploited to solve (11) and the
optimized allocation strategy is,

= = = =γ γ γ γ0.1608, 0.1495, 0.3585, 0.3312.1 2 3 4 (13)

To verify the chance constraints with the optimized allocation
scheme, we run simulations under the allocation policy (13) for 106

times with the random delays specified in Table 1. The deadline vio-
lation rates for the four applications are, respectively,
0.0961, 0.0482, 0.01991, and −1.3*10 ,5 which are all smaller than the
specified chance constraints in Table 1. This means that the specified
chance constraints are satisfied under the allocation scheme (13).

4. Decentralized resource allocation for public cloud paradigm

4.1. Problem formulation

An automotive manufacturer may choose to subscribe its cloud-
based automotive applications to a public cloud without acquiring and
maintaining its own infrastructure. A public cloud such as Amazon EC2
offers an on-demand and pay-as-you-go access over a shared pool of
computation resources. This public cloud provides services to a large
number of automobiles from a variety of manufacturers. These vehicles
may not want to share either their resource policies or task information
with other vehicles, which makes it impossible to run a centralized
allocation scheme as in the private cloud paradigm. Instead, each ve-
hicle becomes a “selfish” client that seeks to minimize its own cost
while maintaining good QoS.

We consider a decentralized auction-based resource allocation
model as illustrated in Fig. 3. For the considered vehicle, let N denote
the number of tasks that are running in the vehicle and each task is
associated with the same tuple T = T w d τ{ , , , }i i i i i as defined in
Section 2. The public cloud is running an auction-based resource allo-
cation scheme, that is, each vehicular task = ⋯i i N, 1, , , submits a bid
pi (in US dollars per second) and obtains a proportion of the total cloud
resources as:

= =
+ ∑−

=

γ
p
P

γ
p

P p
γ· · ,i

i i

i
N

i1 (14)

where P is the sum of all bids the cloud receives from all vehicles;
= − ∑−

=P P pi
N

i1 is the cumulative bid from all other vehicles; and γ
quantifies the total resources available on the cloud.

Since there are many other vehicles subscribed to the public cloud,
it is reasonable to assume that >>∑−

=P pi
N

i1 . From (14) it follows that

≈ −γ
p

P
γ,i

i
(15)

which implies that the bidding policy of the tasks can be considered
independently.

We consider a general bidding model in which the time period be-
tween the beginning of a period and the deadline is composed of
multiple bidding steps. As illustrated in Fig. 4, there are l, l≥ 1, bidding
steps before the deadline in each task period. With the QoS cost mod-
eled in (1), the overall cost of task i in its period Ti is,

∑= +
=

J p t C γ τ· ( ; ),i
t

l

i t s i t i
1

,
(16)

where pi, t is the bidding for task i at bidding step t; =ts
d
l is the bidding

time interval; and Ci(γt; τi) is the QoS cost defined in (1). The goal of the
vehicle is to find an optimal bidding policy to minimize the accumu-
lated cost (16) for each task. We next derive the optimal bidding
strategy with a preliminary assumption that −P and τ are known and
constant. In Section 5, this assumption is removed.

4.2. Best response dynamics with constant −P and τ

In this subsection, we seek to find the optimal bidding if bids from
other vehicles ( −P ) and the communication delays (τ) are known and
constant. Since −P is constant, all it matters is the total bidding. For task
i, the optimal average bidding in the interval −d τ[0, ]i i is defined as

=

≜ − +

p J p

p d τ C p τ

* argmin ( )

argmin ·( ) ( ; ),

i
p

i i

p
i i i i i

i

i (17)

where Ci(pi; τ) is defined in (1) and from (15) it follows that
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i

i
i i

(18)

Table 1
Parameters for numerical example.

Attribute\Task One Two Three Four

Workload (wi, in Million instructions) 0.02 0.03 0.1 0.12
Deadline (di, in seconds) 0.25 0.35 0.4 0.6
QoS cost scalar (bi, in $/s) 1 2 2 3
Delay mean (τ ,i in seconds) 0.1 0.1 0.08 0.11
Delay standard deviation (σi, in second) 0.02 0.03 0.02 0.03
Chance limit (α *i from (8)) −2.47 −2.76 −5.67 −5.53
Chance constraint (αi, unitless) 0.1 0.05 0.02 0.01

Fig. 3. Schematic diagram of public cloud resource allocation .

Fig. 4. A general bidding model with l bidding steps in one task period.
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As a result, the overall cost function J(pi) becomes

=
⎧
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p d τ B τ p

p d τ M
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·( ) , if

·( ) , Otherwise.
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i i i i
w P
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i

i

i
i i

(19)

Consider the linear QoS function =B x b x( ) ·i i with bi>0 as in
Section 3. Then there are two local minimizers in (19): one associated
with no bidding ( =p* 0i ), the other corresponds to the optimal bidding
with no deadline missing. The second minimizer can be represented as

= ⎧
⎨⎩ − −

⎫
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− −
p b w P

d τ γ
w P

d τ γ
* max

( )
,

( )
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depending whether the minimizer of the function

− + +
−( )p d τ B τ·( ) ,i i i i

w P
p γ i
i

i
i.e.,

−

−
,b w P

γ d τ·( )
i i

i i
can avoid deadline missing.

An example of the cost function (19) with =w 0.06,i =d 0.4, =τ 0.1,
=b 8,i =−P 20, =M 5,i =t 0.05,s and =γ 10 is illustrated in Fig. 5. The

global minimizer is =
−

1.7889b w P
γ t·

i i
s

.

The assumption that the −P and τ are constant and known is un-
realistic in many applications. We next exploit a reinforcement learning
framework to obtain the optimal bidding policy with no assumptions on
the prior knowledge of −P and τ.

5. Training optimal bidding policy using RL

5.1. Introduction to RL

Reinforcement learning (RL) is a data-driven approach for adap-
tively evolving optimal control policies based on the real-time mea-
surements. Unlike traditional methods, RL models the stochastic am-
biguity within the framework of Markov decision processes (MDP) [6],
and learns the policy according to transition data observations [26].
There are commonly three types of RL algorithms: Q-learning, policy
gradient, and actor-critic. The Q-learning (or approximate Q-learning)
is the traditional RL algorithm that learns a Q-function Qθ(s, a) with
model parameter θ to estimate the delayed total reward of the current
state and action a, and performs control as ̂ ∈a Q s aargmax ( , )a θ [28]
based on the learned policy. The Q-learning updates the Q-function
parameters based on each observed temporal difference using sto-
chastic gradient descent:

← +θ θ η ϕ s aΔ ( , ),t t t (21)

where η is the learning rate, ϕ(st, at) is the input feature vector for the
learning model, and Δt is the sampled temporal difference with stage
reward rt and discount factor α:

= + −+r α Q s a Q s aΔ max ( , ) ( , ).t t
a

θ t θ t t1 (22)

In the policy gradient approach, the stochastic optimal action dis-
tribution πθ(a|s) with model parameter θ is learned directly, and con-
trol action is determined as ̂ ∈a π a sargmax ( )a θ [27]. Policy gradient
updates the policy distribution based on each observed advantage
function:

 ← + ∇ −θ θ η π a s Q s a V slog ( )( ( , ) ( )),θ θ t t
π

t t t (23)

where Q s a( , )π
t t is the sampled Q-value of (st, at) by following policy πθ

and V s( )t is the sampled optimal value of st.
The actor-critic approach can be regarded as a combination of both

since it learns both the policy πθ(a|s) and the corresponding Q-function
of the policyQ s a( , )β

π [12]. The details of the actor-critic updates will be
covered in the following subsection.

All the above algorithms typically assume the discrete action space
which, in particular, simplifies the search for ̂a . However, in our re-
source allocation problem, it is more natural to consider a continuous
action space since the bid should be a continuous numerical number.
For this case, deterministic policy gradient algorithm was developed
recently that allows to directly learn the policy μ(s) instead of the policy
distribution π(a|s), and the control is simply performed as ̂ =a μ s( )
[24]. Then instead of the traditional −ϵ greedy exploration or Boltzmann
exploration for Q-learning, we need to perform Ornstein–Uhlenbeck
noise [29] to explore with the deterministic continuous policy.

In the following sections, we first formulate the bidding-based re-
source allocation problem. We then propose the corresponding MDP
formulation for this stochastic optimal control problem. Further, we
implement a deep network based actor-critic algorithm to learn the
optimal bidding strategy using deterministic policy gradient. Finally,
we evaluate the performance of this algorithm using various numerical
experiments.

5.2. Training optimal bidding policy with deep deterministic policy gradient

In this section, we exploit RL to seek the optimal bidding policy.
Towards that end, we first model the bidding process as a MDP,
M S A= P r α{ , , , , }, where

• S = −w w a d{ , Δ , , }t t t t1 represents the state space, where wt is the
remaining workload at time t; = −−w w wΔ t t t1 is the recent pro-
cessed work; −at 1 represents the last bid, and dt represents the re-
maining time until deadline. At the beginning of each period, the
initial state is simply =s w d[ , 0, 0, ]0 ;

• A ∈ +∞[0, ) is the action space representing the bidding for the
task;

• P is the transition matrix where each element
P �= = ′ = =′ +S s S s A a[ , ]ss

a
t t t1 is the probability that the system

transfers to s′ from s given the current action a.

• r is a stage reward function given after each bidding to guide the
optimal decision-making: �= = =r s a r S s A a( , ) [ , ]t t t .

• α∈ [0, 1) is a discount factor that differentiates the importance of
future rewards and present rewards.

Since the bidding of other vehicles is unknown so the transition
matrixP , traditional MDP optimizers such as Policy iteration and Value
iteration cannot be directly applied. In this study, we exploit RL to learn
an optimal bidding policy for each application. Furthermore, since the
action space A = +∞[0, ) is continuous, approximate Q-learning and
stochastic policy gradient algorithms cannot be applied without action
discretization. To resolve this difficulty, we exploit the deterministic
actor-critic (DAC) algorithm. In particular, we learn both a para-
meterized deterministic policy function S A→μ :θ to perform the
bidding action, and another parameterized critic Q-function

S A �× →Q :β to evaluate the bidding strategy. The bidding and
learning procedure with a typical DAC algorithm is:
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Fig. 5. Overall cost as a function of total bidding with =w 0.06,i =d 0.4, =τ 0.1, =b 8,i
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1. At each time step t≤ l, observe the state st.
2. Perform a bid ̂at based on the actor policy plus some random ex-

ploration perturbations, i.e., ̂ = +a μ s( )t θ t perturbations.
3. Receive the cloud resource allocation γt, and update the states as

= = − = −+ + + +w γ t w w w d d tΔ · , Δ , .t t s t t t t t s1 1 1 1 (24)

4. Terminate whenever the procedure is completed: ≤ ≥+ +w d0, 0,t t1 1

or aborted: > =+ +w d0, 0t t1 1 .
5. Receive the current reward. If the procedure is aborted, receive a

deadline-missing penalty = −r Mt ; if the procedure is completed, a
cost = −r b t·t with b be a positive scalar representing the QoS cost
coefficient is received; otherwise the agent receives the following
state stage cost

̂= −r a t· .t t s (25)

In Step 2, instead of performing an −ϵ greedy exploration over the
entire action space, we add some Ornstein–Uhlenbeck noises into ̂at to
explore actions in the vicinity. A replay buffer is employed to store
recent transitions +s a s r( , , , )t t t t1 so that random transitions can be
sampled to train the parameterized models to reduce the effects of data
correlation [20]. When the replay buffer is filled, we can update both β
and θ in the models by exploiting W randomly selected transitions from
the buffer. The update of β is similar to the one in Q-learning: First we
estimate the temporal difference from each selected transition:

= + −+ +r αQ s μ s Q s aΔ ( , ( )) ( , ),t t β t θ t β t t1 1 (26)

where α∈ [0, 1) is the discount factor. We then update the parameter in
the critic Q-function using stochastic gradient descent, i.e.,

∑← + ∇
=

β β
η
W

Q s aΔ ( , ).β

t

W

t β β t t
1 (27)

Finally, we update the parameter of the actor policy function based on
the Q-function estimation

∑← + ∇ ∇
= =

θ θ
η
W

μ s Q s a( ) ( , ) .θ

t

W

θ θ t a β t

a μ s1 ( )θ (28)

Here ηβ and ηθ are positive constants representing the learning rates. In
this study, we apply deep neural networks as the approximation func-
tions for both the actor and critic. This specific implementation of the
deterministic actor-critic (DAC) algorithm is referred to as the deep
deterministic policy gradient (DDPG) [18]. Furthermore, techniques
such as experience replay [20] and batch normalization [10] are also
employed to improve the learning performance.

The complete DDPG algorithm is shown in Algorithm 1. The algo-
rithm parameters include: the discount factor α, learning rates ηβ, and ηθ
in (26), (27), and (28), respectively; bidding horizon l as in Fig. 4; re-
play buffer size K; mini-batch size W, W<K; task workload w; task
deadline d; total cloud resource γ, and parameter smoothing scalar
δ∈ (0, 1). Specifically, Line 1 initializes the network parameters and the

Table 2
Parameters of vehicular applications for simulation.

Attribute\Application One Two Three Four

Workload (w, in million instructions) 0.02 0.06 0.1 0.12
Deadline (d, in seconds) 0.5 0.4 0.4 0.6
Penalty for missing deadline (M, in $) 2 2 10 10

Fig. 6. Three sampled −P bidding trajectories from Ornstein–Uhlenbeck process.

Fig. 7. Total rewards vs. training episodes. Left: application 1 and 2, right: application 3 and 4.

Table 3
Bidding policies for vehicular applications with fixed environment.

Variable\Application One Two Three Four

Best episode 2200 4700 700 4000
Best average total reward −0.96 −2.00 −3.94 −4.75
Total bid (in $) 0.72 0.00 3.39 4.36
Equivalent bidding rate (in $/second) 1.80 0 11.30 8.72
Optimal bidding rate (in $/second) 1.83 0 11.00 7.92
Assigned workload (in million instructions) 0.02 0.00 0.10 0.13
Completion time (in seconds) 0.05 NA 0.15 0.20
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target network parameters for smooth updating. Line 2 initializes an
experience replayD that stores the K most recent transition samples. At
the beginning of each training episode (periodic task), we reset the state
and sample time delay. At each time step, Line 6 performs exploration
with some sampled Ornstein–Uhlenbeck noise ϵOU; Line 7 samples −P
from the environment; Lines 8–9 observe the system transition and add
the current transition sample to the replay buffer; Lines 10–12 update
the networks based on the sampled minibatch from the experience re-
play; Line 13 updates the corresponding target networks with a
weighted sum to smooth the training.

5.3. Numerical experiments

5.3.1. Simulation setup
In this subsection, we perform simulations to illustrate the DDPG

approach in Algorithm 1. Four tasks are considered in the host vehicle.
The task specifications are listed in Table 2. The bidding policy of each
application is trained separately. We define the total cloud resource as
=γ 1 million instructions/second. The time delays of all applications

are assumed to be the same and are N∼τ (0.1, 0.0025) in seconds.
The bidding period ts is set to 0.05 s so 20d gives bidding horizon l in
steps and 20τ gives the delay in steps. We sample −P from an Orn-
stein–Uhlenbeck process with = = =μ θ σ33, 1, 1.5 $/s to reflect si-
milar prices from Amazon EC2 [1]. Three sampled trajectories of the
Ornstein–Uhlenbeck process are illustrated in Fig. 6. We set =b 2 in the
cost functions for all tasks.

For DDPG training, we train 5000 task periods with =α 0.99,
=δ 0.001, =K 50000, =M 32. The actor network we use has two

hidden layers with sizes 20 and 15, and the learning rate =η 0.00001θ .
We build the critic network using the same structure with learning rate
is =η 0.0001β . We also bound the bidding at each time step as 1.5
$/0.05 s to scale the output of DDPG. Our implementation is based on
an open-source package DDPG.3

5.3.2. Training results
We train the actor and critic networks with the simulation setup as

described above. The training history of the bidding policy for the four
applications is shown in Fig. 7. The figure shows the total rewards (line
is the average value and shade is the standard deviation) over 20 testing
episodes from every 100 training episodes. As we can observe, the best
bidding policy for application 2 is not bidding since the cost of bidding
so that the deadline is not missing is more than the deadline missing
penalty.

However, the bidding policies for tasks 1, 3, and 4 do not converge.
The reason is that as we show in Section 4.2, there are two local minima
in the cost function: no bidding, and minimum bidding for completing
the job before deadline. Note that the second minimizer is unstable
since a further small reduction on bidding may result in the con-
vergence to the fist minimizer. So instead of using the DDPG model
after the entire training, the final choice of our model is the best model
during the training procedure based on the testing results as in Fig. 7.

Next, in order to validate the optimality of our obtained policy, we
investigate the trained policies with fixed =−P 33 $/s and =τ 0.1 s so
that we can compare with the analytical form of best bidding in
Section 4.2. The results and the comparison are listed in Table 3. We
can see that DDPG almost captures either of the two local minima,
depending on the amount of penalty. We also estimate the equivalent
bidding rate as

 =
∑
−
=p

a
d τ

,t
l

t1
(29)

so we can compare it with the optimal bidding rate given in (20). We
can see there is a small difference between p and p*, which may be due
to the fact that we discretize the time horizon and round up the com-
pletion time to steps of 0.05 s. Fig. 8 illustrates the detailed bidding
policy at each time step for each application, where the y axis shows the
actual bid per step instead of the bidding rate for easier comparison. We
can see that DDPG tends to complete the process with fewer time steps
but to split the bids equally among these steps.

5.3.3. Sensitivity analysis
In this subsection, we perform sensitivity analysis of different

parameters, i.e., investigate how the bidding policy changes over task
parameter variations. We choose application 2 to analyze how work-
load, deadline, and deadline-missing penalty can influence the obtained
bidding policy. We first fix =w 0.06 million instruction, =d 0.4 s, and
let =M 2, 2.5, 3, 3.5 $, respectively. The results are shown in Fig. 9. We
can see as the penalty increases, the bidding strategy switches from
zero-bidding to minimum bidding for job completion. However, when
=M 2.5$, the total rewards of these two bidding strategies are very

close, so the learned policy is slightly worse than the optimal policy
with total bid 2.06$ and assigned workload 0.06 million instructions.
When M increases further, the learned policy becomes stable and op-
timal.

Next, we fix =d 0.4 s, =M 3.5 $, and change
=w 0.06, 0.08, 0.1, 0.12 million instruction, respectively. The results are

shown in Fig. 10. We can see as the workload increases, the total bid
also increases accordingly. When the total bid and QoS cost becomes

Fig. 8. Trained bidding vs. time steps. Left: application 1 and 2, right: application 3 and 4.

3 Package site: https://github.com/songrotek/DDPG.
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larger than the penalty, the bidding strategy switches to zero-bidding.
Finally, we fix =w 0.06 million instruction, =M 3.5 $, and change
=d 0.15, 0.2, 0.3, 0.4 s. Similar results can be observed in Fig. 11: when

the deadline is long enough, DDPG always bids, when the deadline is so
short ( −d τ may be a single step) that the application can not be
completed even with the maximum bid bound, DDPG switches to zero-
bidding.

6. Conclusions

In this paper, we studied the problem of resource allocation for
cloud-based automotive systems. Resource provisioning under both
private and public cloud paradigms were modeled and treated. Task
deadlines and random communication delays were explicitly con-
sidered in these models. In particular, a centralized resource provi-
sioning scheme was used to model the dynamics of private cloud

Fig. 9. The impact of penalty on trained policy (in $). Left: rewards during training procedure, right: total bid vs. penalty.

Fig. 10. The impact of workload on trained policy (in million instructions). Left: rewards during training procedure, right: total bid vs. workload.

Fig. 11. The impact of deadline on trained policy (in seconds). Left: rewards during training procedure, right: total bid vs. deadline.
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provisioning and chance-constrained optimization was exploited to
utilize the cloud resource to minimize the Quality of Service (QoS) cost
while satisfying specified chance constraints. A decentralized auction-
based bidding scheme was developed to model the public cloud re-
source provisioning. Best dynamics with constant bidding and constant
time delays were first derived and a deep deterministic policy gradient
was exploited to obtain the best bidding policy with random time de-
lays and no prior knowledge on the random bidding from other ve-
hicles. Numerical examples were presented to demonstrate the devel-
oped framework. We showed how the optimal bidding policy changes
with parameters such as task workload and deadline.

Future work will include a demonstration with real-world vehicle
applications. We will also consider a game theoretical formulation of
the autonotive resource allocation problem in our future work.
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