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Abstract: We investigate the problem of synthesizing dynamic masks that preserve infinite-step
opacity in the context of discrete-event systems. A system equipped with a dynamic mask, which
acquires information dynamically by turning sensors on/off, is said to be infinite-step opaque
if an outside intruder that can access all information acquired can never infer that the system
was at some secret state for some specific previous instant. Existing works on the dynamic mask
synthesis problem only consider current-state opacity. However, synthesizing dynamic masks for
infinite-step opacity, a notion stronger than current-state opacity, is much more challenging.
The main reason is that delayed information is involved in this problem and whether or not a
current secret will be revealed depends on sensing decisions to be synthesized in the future. In
this paper, a new type of information state is proposed to capture all delayed information in
the infinite-step opacity problem. An effective algorithm is then presented to solve the synthesis
problem. Our result extends existing dynamic mask synthesis techniques from current-state
opacity to infinite-step opacity.
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1. INTRODUCTION

In this paper, we investigate an information-flow property
called opacity in the context of Discrete-Event Systems
(DES) Cassandras and Lafortune [2008]. Opacity is a con-
fidentiality property that captures the plausible deniability
of the system’s “secret behavior”, i.e., the secret of the
system should can never be revealed to a passive observer
(intruder) that is potentially malicious. In the context
of DES, opacity has drawn considerable attention in the
past decade; see, e.g., Badouel et al. [2007], Bryans et al.
[2008], Lin [2011], Saboori and Hadjicostis [2012], Chédor
et al. [2015], Yin and Lafortune [2017], Tong et al. [2017].
The reader is referred to Jacob et al. [2016] for a more
comprehensive literature review.

When the original system is not opaque, one important
problem in opacity is to synthesize an opaque system.
This problem has recently been widely studied in the
literature and several different synthesis mechanisms have
been investigated. For example, in Takai and Oka [2008],
Dubreil et al. [2010], Yin and Lafortune [2015b, 2016b],
the authors investigated how to synthesize a supervisory
controller such that the closed-loop system is opaque. In
Wu and Lafortune [2014], the problem of synthesizing an
insertion function that enforces opacity was studied. In
Falcone and Marchand [2014], runtime mechanism is used
to enforce opacity.

In this paper, we consider the problem of synthesizing
dynamic masks that preserve opacity. Dynamic mask is
an information acquisition mechanism that acquires infor-
mation from the system by dynamically turning on/off the
associated sensors. The dynamic mask synthesis problem
is also referred to as the dynamic sensor activation prob-
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lem in the DES literature; see, e.g., Cassez and Tripakis
[2008], Shu et al. [2013], Yin and Lafortune [2015a], Zhang
et al. [2015], Sears and Rudie [2016]. In particular, in
Cassez et al. [2012], the authors investigated the problem
of synthesizing dynamic masks that preserve current-state
opacity, where an algorithm with exponential complexity
was provided. Note that current-state opacity only requires
that the intruder should never know that the system is
currently at a secret state. As a stronger security re-
quirement, infinite-step opacity Saboori and Hadjicostis
[2012] requires that the intruder should never know that
the system was at a secret state for any specific previous
instant.

We tackle the problem of synthesizing dynamic masks for
infinite-step opacity by addressing the above mentioned
key difficulty. Specifically, the main contributions of this
paper are as follows. First, we propose a new type of
information state in order to capture all possible delayed
information in this problem. The proposed information
state is general than the subset-based information state
that is widely used in partially-observed synthesis prob-
lems related to current information. Based on the novel in-
formation state proposed, an effectively algorithm is then
presented to solve the dynamic mask synthesis problem.

2. PRELIMINARY
2.1 System Model

Let X be a finite set of events; a string s =0y ...0,,0; € &
is a finite sequence of events, where |s| denotes its length.
We denote by ¥* the set of all strings over ¥ including
the empty string e. A language L C X* is a set of strings;
L ={se¥*:3teX* s.t. st L} denotes its prefix-closure.



=T, if [ T/[<K+1,

T; CT, T = K+ 1, if [Tj)|>K+1.
Clearly, if T =T (when [T]| < K +1), we have T; N (X '\
S) =T;N(X\S) #0. 1 T; C T (i.e., when |T]| > K +1),
then |T;| = K + 1; thus, since we take K > [S|, T; has
at least one element outside S and we can conclude that
T;N(X\S) # 0. Thus, we conclude that if a solution exists

(i.e., we can find a path in the digraph of DFA Gy,), we
can also find a path in the digraph of NFA Ggrq. O

Remark 4. If, in the proof of the above theorem, we use
a construction of Ggrq where K = 1 (i.e., if we use the
standard detector, which relates to a standard verifier or
twin-plant construction), it will not be possible to obtain
a solution to the problem of interest (not unless S has
only one element). To see this, consider the following: if
a path can be found using the standard detector (i.e.,
if we can find a path that involves nodes (i.e., states
of Gyrq) where each detector component is associated
with a pair of system states, of which at least one state
is in X \ S, the corresponding sequence of inputs along
this path will indeed be a solution to the problem of
interest. The problem is the reverse direction: if a solution
using Ggrqg with K = 1 is not found, that does not
imply that a solution does not exist. The reason is that
an appropriate sequence of inputs ¢ does not necessarily
need to be “protected” by the same sequence of inputs
s at all instants (multiple sequences could be providing
“protection” at different points during the observation
process). This should be contrasted with the situation
in fault diagnosis where a fault event at a certain point
implies that continuing state trajectories will always be
associated with a fault condition.

Remark 5. Indirectly, since the sequence of inputs induces
a path in the digraph of Ggpg4, which can be made acyclic
(by removing any cycles), the above theorem says that
if there exists a solution, namely a sequence of n inputs
with the desirable properties, that sequence does not have
to be longer than |Xggq| — 1 < |X|K*! — 1 (where | Xgpq)
is the number of states of the product of the system and
the detector). This was not evident from the solution using
Algorithm 1, which would suggest that the sequence would
not have to be longer than |Xg,| — 1 < |X[2X] — 1.

It should be evident that weak current state opacity with
respect to a set of secret states S (see Definition 3) can be
verified by constructing a K-detector as long as K > |S].
The key observation is that if there is an (infinite) sequence
of events that causes a sequence of observations that
satisfy current-state opacity constraints at all times, this
will also be reflected in the K-detector.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed how controlled finite automata
can be steered from one state (initial location) to another
state (target location), while maintaining, in the process,
certain privacy guarantees. In the future, we plan to con-
sider settings where control may not be deterministic (or
there may be uncontrollable events, as well as extensions
to problems that involve the enforcement of other types of
opacity constraints.
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a given (possibly non-deterministic) finite automaton.
Though strong K-detectability is not of interest in this
paper, the construction of the K-detector will prove useful
if we take K = |S| or larger (where |S| is the number of
secret states). Please note that the work in (Hadjicostis
and Seatzu, 2016) established several important relation-
ships between the observer and the K-detector of a given
system (see the proof of Theorem 4 in that paper).

Definition 4. (K-Detector (Hadjicostis and Seatzu, 2016))
Consider DFA Gy = (X,%,,z¢) under an output map-
ping A : ¥ — Y U {e} (assuming initial uncertainty
Xo with zg € XO at the observer and taking Xg .55 =
UR(Xy)). The K-detector Grg = (Xia, Y, 0rd, Xo.ka) is a
non-deterministic finite automaton, where

(1) Xia = {XO,kd} UX,U Xp with
(i) Xo.ra = UR(X)) being the set of all possible initial
states for DFA G before any observation is made;
(ii) Xg = {Ts | Ts € X AN |Ts| < K}; and
(i) X, ={T, | T, C X N |T,| = K + 1}.
(2) Oka : Xka X Y — Xy captures the state transitions
and is defined, for zrq € Xiq and y € Y, as follows:
Okd(Trd, y) =
{Ts € X, | T = R(xkdvy)}a if |R(~rkd,y)| < K?
{Tp S Xp | Tp - R(a:kd,y)}, if |R(:L‘kd,y)| > K.

To solve the problem formulated in Section 3, we can
follow a similar approach as in Section 4.1, to track the
state of the system and the knowledge (state estimate)
at the observer/intruder. The difference is that this time,
instead of using an observer, we use a K-detector (with
K > |S|). More specifically, to simultaneously track the
state of the system and the state of the K-detector, we
use a parallel-like composition of G4 and Gpg4, which is
an NFA Garqg = AC(Xara. X, dara, Xo,dka) constructed as
follows:

(1) Xara = X X Xpa

(2) Xo.aka = (%0, Xo,kd)

(3) The function d4x4 is defined as follows:
(i) For z € X and xgq € Xk, and all o € ¥ such that
Ao) €Y (observable o), we have

baka((z, Tka), 0) = {6(z,0)} X Opa(Tra, M(0))
(ii) For z € X and xkxq € Xg4, and all ¢ € ¥ such
that A(0) = € (unobservable), we have

Sard((z, Trd), 0) = {(6(2,0), Tka) }
(Note that dgxq((x, zkq), o) is taken to be the empty
set if §(x, o) is undefined.)

Algorithm 2 below can be advantageous when the set of
secret states S is of relatively small cardinality.

Algorithm 2: Consider the problem formulation in Sec-
tion 3, where we would like to find (if possible) a sequence
of inputs ¢t € ¥*, such that 0(zg,t) = z¢ and for each s € ¢,

we have X (A(s)) N (X \ S) # 0.

Step 1: We construct the K-detector (for K > |[S])
Gra = (Xkd, Y, Okd, Xo kd)-

Step 2: We construct the parallel-like composition DFA
Gard = AC(Xakd, 2, 0drd: Xo,dkd)-

Step 3: In the transition digraph of Ggx4, we eliminate
nodes (states) of the form (z,z4rq) for which zgrq N

(X\S) = 0.
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Step 4: In what remains of the transition digraph of
Grd, we (i) mark states (nodes) of the form (z,xqrq)
(for some x4xq) as potential final states; and (ii) look for
a path that starts from state Xo axa = (To, Xoxq) and
ends at a marked state. If a path can be found, then
we have one possible sequence of inputs that solves the
problem of interest; if no path can be found, then no
solution exists.

Theorem 3. Consider DFA G4 = (X,X,0,29) under an
output mapping A : ¥ — Y U {e}. Given a target state
zy € X, a set of secret states S,  C X, and initial state
uncertainty Xo at the observer, Algorithm 2 solves the
problem formulated in Section 3.

Proof. The first direction is straightforward: if Algo-
rithm 2 finds, in the digraph of G4i4, a path, say of length
n, from the initial state Xoaxa = (zo,Xo,xd) to some
marked state (¢, 2xq), this path corresponds to a sequence
of inputs t = 0y,04,...04, € ¥* such that §(xo,t) = x5.
Furthermore, the path in the digraph of Ggiq defines a
specific sequence of states in the K-detector, say

To = Xo,kd, 11, T3, ..
where T} is the state of the K-detector following the
occurrence of o5, . [Note that if a certain o;, is unobservable
(i.e., A(oy;) = €), then T; | = T (as expected, the K-
detector does not change state).] If we view the states of
the K-detector as subsets of X, we have that

T;N(X\S)#0,7=0,1,...,n.
We can easily establish (e.g., by induction) that
Tj - R(X07)‘(Ui10i2-~'gij)) ,j = 0, ]., e,
where for j = 0 we have Ty = Xogg = UR(XO)
R(Xo,€). Thus, since Tj N (X \ S) # 0, we also have
R(Xo,\(04,04,...04;)) V(X \ S) #0 for j =0,1,...,n. We

conclude that that the sequence of inputs t = o;,04,...04,
is a solution to the problem of interest.

Ty = Tpq ,

To establish the reverse direction, we need to argue that
if Algorithm 2 returns no solution (no path with the
desirable properties is found in the digraph of Ggxq4), then
no solution to the problem formulation of Section 3 exists.
We prove the contrapositive: if there is a solution to the
problem of interest, which means that there is a path, say
of length n, in the digraph of DFA Gy, of Algorithm 1,
then we necessarily have a path of length n in the digraph
of the Ggrq of Algorithm 2.

Suppose that the sequence of inputs t = 0;,04,...04, in
the digraph of DFA Gy, is such that §(xo,t) = z; and
the sequence of states visited in the digraph of Gy, is
associated with state estimates

T(S = XO,obsaTlla '-'7T2/a ,TrIL = Tkd
such that 77 N (X \ S) # 0 for j = 1,2,...,n. [Note that
if a certain oy, is unobservable (i.e., A(o;;) = ¢), then
_y = Tj (this would not be a transition in the observer
construction).]

From the property of the K-detector outlined Theorem 4
of (Hadjicostis and Seatzu, 2016), we have that the se-
quence t in the digraph of NFA Ggiq induces at least one
sequence of states Ty = Xo,kq, 11,12, ..., Ty, = kg in the
detector that satisfies for j = 1,...,n:



(starting location) xg, zg € X, we want to get to some
target state (destination) zf, xy € X, by a applying
a sequence of inputs (events) t € ¥* (i.e., we need to
choose t such that 6(zo,t) = 2y). In addition, we assume
that there is an output mapping A : ¥ — Y U {e} with
respect to certain outputs Y (sensor information) that
become available at an external observer. We would like
the automaton (vehicle) controller to choose t so that,
after each observation, the current state (present location)
of the vehicle is kept opaque with respect to a given set
S, 8 C X, of secret/critical states. If such a sequence of
inputs ¢t exists, we would like to find one. More formally,
the problem can be expressed as follows.

Problem Formulation: Consider DFA Gy = (X, X, 6, 7¢)
under an output mapping A @ ¥ — Y U {e}. Given a
target state z; € X, a set of secret states S, S C X, and
initial state uncertainty X, at the observer (we assume
2o € Xo), find (if possible) a sequence of inputs t € X%,
such that (i) 0(xo,t) = z¢, and (ii) for each s € ¢, we have
X(A(s))N(X\S) #£0 (i.e., at no point in time does the
external observer know that the state of the system lies
strictly within S.

Remark 1. Given the set of secret states S, the following
question would be directly related to current (or delayed,
or initial) state opacity: are we guaranteed that, no matter
how the vehicle moves, the external observer will never be
able to isolate the current (or delayed or initial) location
of the vehicle within the set of critical locations S? The
answer to this question is essentially equivalent to the
question of verifying current (or delayed or initial) state
opacity in a given NFA, problem that have been shown
to be NP-hard. In this paper, we ask the question from
the point of the vehicle controller: can the vehicle be
navigated in such a way so that its current (more generally,
delayed, or initial) location cannot be isolated within the
set of critical locations S7 This question is related to weak
current-state opacity (see Definition 3) and in the next
section we develop two algorithms to solve this problem.

Remark 2. An alternative to the above problem formula-
tion is to modify the observations that are generated by the
system so as to keep the observer/intruder uncertain (see,
for example, the strategies in Wu and Lafortune (2014)
which insert label among the actual labels).

4. ALGORITHMIC SOLUTIONS

We describe two possible algorithmic solutions to the prob-
lem formulated in the previous section. One approach is via
the use of a parallel construction that involves the given
system and its observer, in order to capture simultaneously
the (actual) state of the system and the set of system
states perceived (estimated) at the observer/intruder; this
approach has complexity O(| X |21X1) (where X is the set of
states of the given system) and is similar to a methodology
(for a different problem) proposed in (Hadjicostis, 2010).
The second approach uses a parallel construction that

in (Hadjicostis and Seatzu, 2016); this approach has com-
plexity O(| X [1¥1%2) and would be preferable in cases where
the number |S| of secret/critical states is relatively small.
We leave to future work extensions that try to obtain
trajectories that are also optimal under some appropriate
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criterion of interest and focus on finding feasible (current-
state opacity-preserving) trajectories.

4.1 Parallel Composition of System and Observer

Given a DFA G4 = (X,X,6,20) under an output map-
ping A : ¥ — Y U {e}, we can construct its observer
Gobs = (Xobs, Y, dobs, X0,0bs) (assuming initial uncertainty
Xo with 9 € Xy and taking Xo s = UR(Xy)). We
can simultaneously track the state of the system and the
state of the observer via a parallel-like composition of Gy
and Gops, which is a DFA Gy, = AC(X40, %, 0do, To,do)
constructed as follows:

(1) Xdo =X X Xobs

(2) L0,do — (31/'07 XO,obs))

(3) The function d4, is defined as follows:
(i) For z € X and z,s € Xops, and all 0 € 3 such
that A(o) € Y (observable o), we have

5d0(($a xobs)a U) = (5(17, O')a 601)3 (zobs, )\(U)))

(ii) For z € X and xops € Xops, and all o € 3 such
that A(o) = e (unobservable), we have

0do((T, Tops ), 0) = (6(x,0), Tobs)

(Note that 040((x, Tops), o) is undefined if 6(z, o) is
undefined.)

Effectively, G4, simultaneously tracks the state of the sys-
tem (which is tightly associated with the control options
at each state, e.g., the possible moves of the vehicle in
the path planning example) and the state of the observer
(knowledge of the intruder). In terms of the problem we are
interested in, we would like to find a path in the transition
digraph of G4, that starts from state o 40 = (0, X0,0bs)
and ends at a state of the form (x;,zs) (for some
ZTobs € Xobs), such that all states that are visited along
this path (including starting and ending states) are of the
form (a',2,,) where !, N (X \ S) # 0. If no such path
can be found, then the problem of interest has no solution.
The procedure is summarized as Algorithm 1 below.

Algorithm 1: Consider the problem formulation in Sec-
tion 3, where we would like to find (if possible) a sequence
of inputs t € ¥*, such that d(x¢,t) = 2y and for cach s € ¢,
we have X(A(s)) N (X \ S) # 0.

Step 1: We construct the observer of the given system
Gobs = (Xob37 Y7 601)37 X07obs)-

Step 2: We construct DFA Gy, = AC(X 4o, 2, ddo: Z0,do)-

Step 3: In the transition digraph of Gg4,, we eliminate
nodes (states) of the form (z, zops) for which xgps N (X \
S) =10.

Step 4: In what remains of the transition digraph of Gg,,
we (1) mark states (nodes) of the form (zy, o) (for
some Zops) as potential final states, and (ii) look for a
path that starts from state x40 = (zo,U R(Xo)) and
ends at a marked state. If a path can be found, then we
have the desirable sequence of inputs; if no path can be
found, then no solution exists.

4.2 Parallel Composition of System and K -Detector

The K-detector was introduced in (Hadjicostis and Seatzu,
2016) to solve the problem of strong K-detectability for



possible? initial states Xp). We use X (w) to denote the
set of states that the system might reside in, given that
the sequence of outputs w has been observed, and refer to

it as the current-state estimate of the external observer.
Notice that X (w) = R(Xp,w).

Given the DFA Gy = (X,X,6,29), under the out-
put mapping A with outputs Y, we can construct its
current-state estimator (or observer), denoted by Gops =
(Xobs, Y, obs, X0.0bs) in & straightforward manner (see, for
example, (Cassandras and Lafortune, 2009)). The impor-
tant property of this construction is that each state of Gps
is associated with a unique subset of states of the original
DFA Gg4 (so that X,ps C 2% ie., there are at most 2/
states) and 0ops is defined so that, when the sequence of
inputs t € ¥* is applied generating the sequence of outputs
w = A(t), we have

X(W) = Gobs (XO,obs» W) .

Note that Xo 065 = UR(X0) (so that X(e) = X0,0bs)-

2.2 Current-State Opacity

Definition 2. (Current-State Opacity). Consider a DFA
Gq=(X,%,0,x0), with initial state uncertainty X, under
an output mapping A : ¥ — Y U{e} (where Y is the set of
outputs). Given a set of secret states S C X, automaton
G, is current-state opaque with respect to S if Vt € ¥,
the following is true
{0(x0,t) € S} =
{3s € £, 3z € Xo{A(s) = A(t), (x5, 5) ¢ S}

More specifically, given DFA G; = (X,X%,d,z9) with
output set Y and output mapping A, we define the secret
behavior of the system to be behavior that leads the
system to a state within the secret set of states S, S C X.
Note that the definition above is slightly different from the
standard one, because in this paper we are dealing with a
DFA with unknown initial state, and we are interested in
ensuring opacity for all possible behavior from this initial
state.

The above notion of opacity is sometimes referred to as
strong current-state opacity. Weak current-state opacity
is defined similarly except that it only requires the above
property to hold for one (infinite) sequence of events. Here
we define weak current-state opacity with respect to the
DFA G, assuming that Gg is live (i.e., from each state
there is at least one transition that is defined).
Definition 3. (Weak Current-State Opacity). Consider a
live DFA Gy = (X, X, §, 2¢), with initial state uncertainty
X, under an output mapping A : ¥ — Y U {e} (where Y
is the set of outputs). Given a set of secret states S C X,
automaton Gg is weak current-state opaque with respect
to S if there exists an infinite ¢t € L(Gq,xo) such that for
all s € ¥ we have
{0(=0, s) eSt=
{3’ € %, 3af € Xo{A(s') = A(s),6(p, ') ¢ S}} -

Other state-based notions of opacity have also been de-

veloped, including initial-state opacity (Saboori and Had-
jicostis, 2008), K-step opacity (Saboori and Hadjicostis,

2 We assume that X’o necessarily includes the true initial state xg
(this can be easily ensured, e.g., by setting Xo = X).
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2011a), and probabilistic opacity (Lakhnech and Mazaré,
2005; Saboori and Hadjicostis, 2014).

3. MOTIVATION AND PROBLEM FORMULATION

As motivation for studying trajectory planning under
current-state opacity constraints, we discuss below an ex-
ample in the context of vehicle tracking (see also (Sa-
boori and Hadjicostis, 2011b)). For a related example
that captures privacy notions when offering location-based
services, refer to (Wu et al., 2014).

Consider a vehicle that moves on a grid, such as the
toy 2 x 2 grid on the left of Fig. 1, where each cell
corresponds to a location. The moves that are allowed at
each location depend on the particular terrain and the
vehicle specifications/capabilities, and can be summarized
by a kinematic model, i.e., a deterministic finite automaton
whose states match the locations (cells) in the grid and
whose transitions match the movements that the vehicle
is allowed or is capable of making at each position (up,
down, left, right, diagonal, etc.).

Suppose that an external observer/intruder is trying to
locate the position of the vehicle in the grid based on
certain observations that are generated by sensors that
are available in the system. Note that more than one
sensor may simultancously emit a signal in case the vehicle
is in a cell covered by multiple sensors. An observer
with access to this sensory information could attempt to
locate the vehicle (i.e., identify its current, past, or initial
location) based on the sequence of observations it sees. To
capture sensor information, the kinematic model can be
enhanced with output (observation) symbols, denoted by
Y = {y1,¥2,...,yv|} that are generated from the sensors
that are available via some output mapping \. This implies
that the vehicle setting we described can be modeled via a
DFA under some output mapping of the type we described
in Section 2. In Fig. 1, a distinct event is associated with
each transition of the kinematic model on the right; e.g.,
the transition o971 is the event that takes us from state a1
to state xo (not shown in the figure) and outputs ys = 3.

Yo =
e
Ty ) s = af n=a
hn =«
x3 x4 Yz = af ys = af
(H——=®
(a) (b)

Fig. 1. Grid in which a vehicle can move (left) and
kinematic model for a vehicle in the grid (right).

Since we are viewing each cell as the state (location) of the
vehicle, we can think of a state sequence in the kinematic
model as a vehicle trajectory (path). In fact, the starting
position of the trajectory will correspond to the initial
state of the finite automaton that captures the kinematic
model, whereas the ending position of the vehicle will be
the final (present or current) state of this finite automaton.

Consider the following challenge and its relationship to
the motivating application above: given a DFA G4; =
(X,3,0,79) (vehicle) that starts at some initial state



to a final (target) state is relatively straightforward and
possible as long as the target state is reachable from
the initial state: any sequence of inputs that takes the
deterministic system from the initial state to the final state
would be an acceptable solution to the (unconstrained)
trajectory (or path) planning problem. The main challenge
for the control mechanism is the presence of an external
(but passive) observer/intruder and the need to ensure
that this observer is never in position to determine, with
certainty, that the state of the system lies within a subset
of states S that captures secret/critical states.

In terms of the opacity notions described above, the
goal of the controller is to drive the system from the
initial state to the final state by applying a sequence
of inputs such that current-state opacity with respect
to the set of secret states S is not violated at any
point (from the perspective of the external observer that
observes the sequence of outputs generated by the system
while following the chosen trajectory). We develop two
algorithms to find an appropriate sequence of inputs (if
one exists). The first algorithm relies on the construction
of an observer (Hadjicostis, 2010) and has exponential
complexity in N (where N is the number of the states of
the given system). The second algorithm, which relies on
the use of a K-detector (where K is the number of secret
states), has complexity polynomial in N and exponential
in K.

2. BACKGROUND AND MOTIVATION
2.1 Preliminaries, Notation, and Observation Model

We use ¥ to denote an alphabet of symbols and ¥* to
denote the set of all finite-length strings of elements of X,
including the empty string e. Given a string t, t € X%,
we use |t| to denote the length of ¢ (with |¢] = 0). Given
strings s,t € ¥*, the string st denotes the concatenation of
s and t, i.e., the sequence of events captured by s followed
by the sequence of events captured by t. For a string s, s
denotes the prefiz-closure of s, and is defined as the set of
strings §:= {t € ¥* | 3t' € T*{tt' = s}}.

A deterministic finite automaton (DFA) is denoted by
Gq = (X,%,0,x0), where! X = {x1,x2,...,2x|} is the
(finite) set of states, ¥ = {01, 02,...,0)x} is the (finite) set
of inputs or events, § : X x ¥ — X is the deterministic,
possibly partially defined, transition function, and xy € X
is the initial state. The function § can be extended from the
domain X x 3 to the domain X X ¥* in the routine recursive
manner: for 2; € X, we define §(x;,ts) := 6(6(z;,t),s) for
t € ¥ and s € ¥*, with 0(x4,€) := a; for all z; € X. Since
d is only partially defined, §(x;,ts) is assumed undefined
if any of the transitions in the recursion turns out to be
undefined. The behavior of DFA Gy is captured by its
language L(Gq) := {s € ¥* | §(xo, s) is defined}.

A non-deterministic finite automaton (NFA) is denoted
by G, = (X, 3,0, Xo), where X = {x1,2,...,2|x} is the
set of states, ¥ = {01,092, ...,0x|} is the set of inputs or
events, § : X x ¥ — 2% (where 2% is the power set of X)
is the non-deterministic transition function, and Xy C X
is the set of possible initial states. The function § can be

L For any set X, we use |X| to denote its cardinality.
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extended from the domain X x ¥ to the domain X x X*
in the routine recursive manner: for any state z; € X, we
let 0(xj,ts) = Uy, es(n,.0) 0 (%4, 8), for t € ¥ and s € X7,
with §(x;,€) := {x;} for all z; € X. The behavior of NFA
Gy, is captured by its language L(G,) := {s € £* | Tz €
Xo{0(zo.s) # 0}}.

Given a DFA Gy = (X,%,0,2¢) that models a system
of interest, we will typically face constraints in terms of
what is observed externally when activity takes place in
the system. For simplicity, this paper adopts a model
that closely resembles the traditional natural projection
mapping that is used in much of the existing literature on
fault diagnosis and opacity (Cassandras and Lafortune,
2009; Jacob et al., 2015). More specifically, we will assume
that there is a set of output (observation) symbols ¥ =
{y1.92, ..., y;v|} and a mapping A that associates inputs (or
events) in ¥ to corresponding outputs (or observations)
A ¥ — Y U {e}, where e denotes the empty observation.
For example, A(o1) = A(o2) = y1 would imply that
input events oy and o9 emit the same output y; when
they occur; thus, they will be indistinguishable by the
external observer, unless other knowledge is taken into
account. Similarly, A(o3) = € would indicate that og
is unobservable (and might occur without emitting any
output); thus, the occurrence of o3 will go undetected
by the external observer, unless knowledge of the system
model and subsequent observations are taken into account.

Given a sequence of events t = 0y, 04,...04, (where 0;, € ¥
for j = 1,2,...,n) that occurs in the system, the corre-
sponding sequence of outputs that is observed is captured
by the concatenation of the corresponding outputs

w= A0 )A(04,)--A(0s,) = () .

Note that the above sequence could have length smaller
than n if some of the inputs are unobservable. Also note
that the difference of the above output mapping A from the
standard natural projection P is that P typically assigns
a unique output to each observable symbol.

Definition 1. (Possible states following a sequence of ob-
servations (R : 2% x Y* — 2%)) Suppose that DFA
Gq = (X,X,0,x0) is known to be in a set of possible states
T, T C X; the set of all possible states after subsequently
observing w € Y* is

R(T,w) = {z e X |32 € T,3t € &7,
st. {A#) =wAz=4560",1)}}.

Note that, using the above definition, the unobservable
reach UR(T) (i.e., the set of states that can be reached
from states in the set T via sequences of zero, one, or
more events that are unobservable —see (Cassandras and
Lafortune, 2009)) can be expressed as UR(T) = R(T, ¢).

Cousider a DFA Gy = (X,X,0,20), with initial state
uncertainty X, under an output mapping A : ¥ — Y U
{€} (where Y is the set of outputs). Upon observing the
output string that is generated, namely w = A(t), the
external observer aims to determine the possible states
of the system, which might be uncertain due to the
partial observation of events and/or due to the lack of
knowledge of the initial state (e.g., the observer may not
know precisely the initial state xg, but only know a set of
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Abstract: Privacy and security guarantee against curious observers or malicious actors
has recently emerged as a critical aspect for maintaining, protecting, and securing complex
automated systems that are implemented over shared (thus, non-secure) cyber-infrastructures,
such as the Internet. In this paper, we discuss how current-state opacity formulations can be used
to capture privacy properties of interest in automated systems that are modeled as controlled
finite automata that need to be steered from one state (initial location) to another state (target
location), while maintaining certain privacy guarantees. More specifically, given a deterministic
finite automaton that is externally observed via some output mapping, along with a subset of
states S that are considered critical/secret, we aim to drive it from a given initial state (starting
location) to a given target state (final location) while ensuring that, in the process, the state
(location) of the finite automaton at any given time is not exposed (i.e., the external observer
cannot be certain that the state of the system belongs to the set of critical /secret states S). We
develop two algorithms that can be used to solve this constrained trajectory planning problem
and obtain an appropriate sequence of inputs (if one exists) or conclude that no such sequence

exists (otherwise ){ The first algorithm has complexity O(N2") and the second algorithm has

complex1ty O(N

), where N (K) is the number of states (secret states).

Keywords: Current-state opacity, weak current-state opacity, privacy, trajectory planning.

1. INTRODUCTION

The reliance of many emerging automation systems
on shared (thus, non-dedicated and non-secure) cyber-
infrastructures, such as public telecommunication systems
and the Internet, has naturally led to increasing security
and privacy concerns. As a result, various notions of se-
curity and privacy have received considerable attention
from researchers. This paper continues this line of research
in the context of automation systems that are captured
by known controlled finite automata and are externally
observed via known output mappings. Our goal is to devise
a control strategy to drive these systems from a known
initial state to some target final state while ensuring that
the true state of the system maintains certain privacy
properties. More specifically, we consider a trajectory (or
path) planning problem under the requirement that the
trajectory (path) that is followed —to get from the initial
state (or starting location) to the final state (or target
location)— maintains, at all times, current-state opacity
requirements with respect to a subset of system states
(called critical or secret states).

The observation capabilities of a curious observer (in-
truder) relate to existing notions that focus on charac-
terizing the information flow from the system to the

* This material is based upon work supported in part by a grant
by the University of Cyprus (UCY). Any opinions, findings, and
conclusions or recommendations expressed in this publication are
those of the author and do not necessarily reflect the views of UCY.
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observer (Focardi and Gorrieri, 1994). Opacity falls in
this category of information flow properties, and aims at
determining whether a given system’s secret behavior (i.e.,
a subset of the behavior of the system that is considered
critical and is usually represented by a predicate) is kept
opaque to outsiders (Bryans et al., 2005; Saboori and
Hadjicostis, 2007). Earlier work (see, for example, (Saboori
and Hadjicostis, 2007, 2008; Lin, 2011; Saboori and Had-
jicostis, 2011a, 2013)) considered opacity with respect to
predicates that are state-based. More specifically, given
a non-deterministic finite automaton (NFA) with partial
observation on its transitions (captured via a natural pro-
jection map), the secret behavior of the system is defined
with respect to behavior under which the system’s state
evolves (at some point in time) to a subset of a given
set of secret/critical states S. In other words, S (which
is assumed to be a known subset of the system’s states) is
used to denote states that are secret/critical, in the sense
that the observer should never be in position to determine
that the system state lies exclusively within .S. As common
in these settings, we make the worst-case assumption that
the intruder has full knowledge of the system model and is
able to track activity in the system via some observation
mapping.

In this paper, we consider systems that can be modeled
as deterministic finite automata with inputs that can be
chosen by a control mechanism that is fully aware of
the state of the system. Thus, the task of driving the
given deterministic finite automaton from the initial state



for at least one unobservable event e,,,. This means
that at least for one ey, it should be either

Z ZU@'\TM, (t)

Wleyo, +1<0, (A.l)
teT ok i=1
or
- > Zam )+ [wle,,, +1<0. (A2
teTuer i=1

Given the two binary decision variables dx; and dka,
and given one unobservable event e,,, , the fulfilling of
either (A.1) or (A.2) is equivalent to the satisfaction of
the linear constraint

Ok1 +02 =1, (A.3)
and of the two logical statements

P
S Y oin () wle,, +1<0] < [0 =1],

teT ok =1
(A.4a)
- > Zamm +[wle,, +1<0| < [0 = 1],

teT ok i=1
(A.4b)
where “ « 7 indicates the if and only if connective.

According to the technique proposed in Bemporad and
Morari (1999), each of the two logical statements (A.4)
can be turned into a couple of linear inequalities. In
particular, being B a sufficiently large integer, the pred-
icate (A.4a) is equivalent to

p
Z Z Cir,, (t)

teT ok i=1

Z ZUHTm

teT ok i=1
while (A.4b) is equivalent to

wle,,, +1<B- (1 —0k1),

|w|euok = -B- 51@1’

Z Za—%\T +|w€u +1<B- (1_5k2)7
teT ek i=1
-y Z% )+ [wle,, >—B- k.
teTuor i=1

Since (A.3), (A.5) and (A.6) should hold at least for one
unobservable event e,,, , the equality (A.3) is turned into
the constraints (4f) and (4g).

REFERENCES

Bemporad, A. and Morari, M. (1999). Control of
systems integrating logic, dynamics, and constraints.
Automatica, 35(3), 407-427.

Cabasino, M., Giua, A., Lafortune, S., and Seatzu, C.
(2012). A new approach for diagnosability analysis of
Petri nets using verifier nets. IEEE Transactions on
Automatic Control, 57(12), 3104-3117.

Cassandras, C. and Lafortune, S. (1999).
to Discrete Event Systems. Springer.

Dubreil, J., Darondeau, P.; and Marchand, H. (2010).
Supervisory control for opacity. IEEE Transactions
on Automatic Control, 55(5), 1089-1100.

Introduction

347

GLPK (2018). (GNU Lincar Programming Kit).
https://www.gnu.org/software/glpk/.

Jacob, R., Lesage, J., and Faure, J. (2016). Overview
of discrete event systems opacity: Models, validation,
and quantification. Annual Reviews in Control, 41,
135-146.

Lin, F. (2011). Opacity of discrete event systems and its
applications. Automatica, 47(3), 496-503.

Lotberg, J. (2004). YALMIDP : A Toolbox for Modeling
and Optimization in MATLAB. In Proc. CACSD
Conference. Taipei, Taiwan.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proc. of IEEFE, 77(4), 541-580.

Reiter, M. and Rubin, A. (1998). Crowds: Anonymity for
web transactions. ACM Transactions on Information
and System Security, 1(1), 66-92.

Reveliotis, S. (2005). A linear characterization of the
petri net reachability space corresponding to bounded-
length fireable transition sequences and its implica-
tions for the structural analysis of process-resource
nets with acyclic, quasi-live and strongly reversible
process subnets. In Proc. 44th IEEE Conference
on Decision and Control and 2005 FEuropean Con-
trol Conference (CDC-ECC’05), 2113-2118. Seville,
Spain.

Tong, Y., Li, Z., Seatzu, C., and Giua, A. (2017). Veri-
fication of state-based opacity using Petri nets. IEEE
Transactions on Automatic Control, 62(6), 2823-2837.

Tong, Y., Ma, Z., Li, Z., Seatzu, C., and Giua, A.
(2016). Verification of language-based opacity in Petri
nets using verifier. In American Control Conference
(ACC), 2016, 757-763. Boston, Massachusetts.

Wu, Y. and Lafortune, S. (2013). Comparative analysis
of related notions of opacity in centralized and coordi-
nated architectures. Discrete Fvent Dynamic Systems,
23(3), 307-339.

Yin, X. and Lafortune, S. (2017). A new approach for the
verification of infinite-step and k-step opacity using
two-way observers. Automatica, 80, 162-171.



which has only one secret word. Hence, Theorem 3
requires to check the feasibility problem (4) only
for w = abb. As mentioned at the end of the previ-
ous section, the feasibility problem can be checked by
solving a ILP problem. All the results presented in this
section have been obtained by using the GNU Linear
Programming Kit (GLPK (2018)) and the YALMIP
parser (Lotberg, 2004) in the Matlab® environment.

Exploiting these tools it turns out that for the given
labeled net system, the constraints (4) admit a solution,
implying that the system is LBO when Mgy = Mj,.
Indeed it can be easily verified that the word w’' = abab is
enabled  under  the  initial = marking my
and Pr(w’) = DPr(abb) = bb.

Let us now assume that, for the net shown in Fig. 1,
the set of events is equal to E” = {a,b,c},
with B/ = {b,c} and E//, = {a}. Let the set of
initial markings be equal to

Mg = {mgl ’mg2}
={@0010000mT,

(200000100?}.

Furthermore, let us now assume that the new labeling
function \” differs from the one specified in Fig. 1 only
because M (t4) = c.

The feasibility problem of Lemma 3 admits again a
solution, since there is at least another word w’ which
is enabled under my, whose projection is bb.

Let us now consider the labeled net system reported in
Fig. 5, with E = {a,b,c} and Ey, = {a,b}. If the secret
language is £, = {abc}, then it is not possible to find
a solution to the feasibility problem of Lemma 3 even if
the net is LBO. Indeed the other word that has the same
observable projection as the secret contains exactly the
same unobservable events of the secret but in a different
order, that is w’ = bac. In this case, if we want to
assess LBO we need to solve the feasibility problem of
Lemma 2 which, indeed, admits a solution.

6. CONCLUSIVE REMARKS AND FUTURE
DIRECTIONS

In this paper we have exploited the mathematical repre-
sentation of labeled Petri nets to provide two conditions
to check language-based opacity. In particular, first a
necessary and sufficient condition is given, which ex-
ploits the possibility of fully describe the set of markings
reachable by means of the firing of a sequence limited
in length, by using a set of linear inequalities; hence
without the need of explicitly computing that reachable
set. In order to reduce the computational burden of
the optimization problem associated to this necessary
and sufficient condition, we have exploited the firing
count vectors to reduce the number of integer variables
involved in the optimization. This reduction of the com-
putational effort comes at the price of conservatism;
indeed the second condition given in this paper is just
a sufficient one since we cannot take into account the
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Fig. 5. Labeled net system for which it is not possi-
ble to assess LBO with respect to the secret lan-
guage L; = {abc} applying the sufficient condition
stated in Theorem 3.

order of the unobservable events in each unobservable
subword of the secret.

However, it is worth to note that both the conditions
provided in this work do not require the computation
of any kind of reachability graph, and can be applied
also to unbounded labeled net systems. It follows that,
since it does not require any offline computation, the
proposed approach is particularly suitable when the
plant is reconfigured online, for example in the case when
the natural projection function changes during time.

Finally, there are several directions along which the
proposed result can be extended; among the possibles
we would like to mention:

e the possibility of considering the more general case
of a non-secret language Lys C L(G, My);

e the possibility of considering the concept of K-step
opacity (Yin and Lafortune, 2017);

e the possibility of formulate new conditions for di-
agnosability in labeled net systems; indeed diag-
nosability can be seen as a special case of opacity
(see Lin (2011));

e the possibility of applying the proposed results
to the synthesis problem, i.e. the enforcement of
opacity in non-opaque systems.

Appendix A. APPENDIX A

In this appendix we briefly describe how to derive con-
straints (4b)—(4g) presented in Lemma 3 by exploiting
the technique proposed in (Bemporad and Morari, 1999,
Section 2).

In Lemma 3 there is the need of adding a set of linear
constraints that, if fulfilled, assures
that >, cpeuo Yooy O, (t) is different from |wle,,,



sufficiently large integer. If the set of constraints (2a)—
(2d) and (4a)—(4g) admits a solution
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Fig. 4. Constraints of the feasibility problem in

Lemma 3.
e 0y,...,0,cN"”
® [1,... UM € {031}

e vi; €{0,1} withi=1,...p
and j = 1,...,card <T€f»)
e b1;,00, €{0,1} withi=1,... card(E,,)

then there exists at least one w’ € L(G, M) such

that Pr(w’) = Pr(w).
Proof. As in the proof of Lemma 2, the constraints (2a)

and (2b) permit to select only one initial marking
in Mg, while (2¢) and (2d) enable the firing of only
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one transition t/ € T for each observable event in the
secret w.

Similarly to what has been done in the proof of Lemma 2,
exploiting the acyclicity of the unobservable subnet
and Theorem 1, it follows that if the integer vec-
tors o1,...,0, satisty the inequalities (4a), then their
sum & = Y 7 | o, represents the firing count vector of
an explanation of w,.

However,  the  constraints (4b)—(4g) imply
that >, cpeuo, 7, (1) is different from |wl,, —for at
least one unobservable event ey, (more details on
how to derive the constraints (4b)—(4g) are given in
the Appendix). It follows that starting from one of
the initial markings belonging to My, there exists at
least one enabled sequence ¢’ such that A(o') # w
and Pr(A(¢’)) = Pr(w). This proofs the lemma.

The feasibility problem (4) in Lemma 3 requires

e (n - p) integer optimization variables
. (card(./\/lo) + Y7, card (TF*Z») +2- card(Euo)) bi-
nary optimization variables

and involves a number of constraints equal to
p-(2-m+1)+5-card(Eyp) +2.

It should be noticed that, in this case, neither the
number of optimization variables, nor the constraints,
depends on the number x of unobservable events in the
secret. Therefore, if p < x then the sufficient condition
is less demanding.

Similarly to what has been done in the case of the
necessary and sufficient condition given by Theorem 2,
the following sufficient condition to check LBO can be
straightforwardly derived from Lemma 3.

Theorem 3. et G = (N, Mgp,A) be a labeled net
system and £y C £(G, M) a finite secret language. If
for all w € L, the set of constraints (2a)—(2d) and (4)
admits a solution, then G is LBO. [ |

5. EXAMPLES

In this section we show the effectiveness of the results
previously presented by means of two examples.

As we have already pointed out, the sufficient condition
of Theorem 3 is generally less demanding from the
computational point of view; hence, in the examples
considered hereafter, we will always try to assess LBO
first trying to solve the feasibility problem of Lemma 3
for each secret. If Theorem 3 will not hold, then we will
try to solve the feasibility problem of Lemma 2.

Let us first consider the labeled net shown in Fig. 1
with E, = {b} and F,, = {a}, and the set of initial
markings
Mﬁz{mé}z{(?OOlOOOOO)T}.
Moreover, let us consider the secret language
Ly = {abb} ,
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Fig. 3. Constraints of the feasibility problem in
Lemma 2.
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for i = 1,...,p. Note that the solution (3) hold also
if 6, is equal to the empty word for some values of i.
This contradicts the initial assumption, and hence proves
necessity.

The feasibility problem (2) can be solved by solving
a ILP problem with a dummy objective function and
with (2) as constraints. A possible choice for the objec-
tive function could be

P Ji
min » Y ot
i=1 j=1
where || - ||1 denotes the 1-norm of a vector, that is the
sum of the absolute values of the vector elements.

Moreover, given a secret word w whose lengths of
the observable and unobservable part are |w,| = p
and |wye| = |w| — p = ¥, respectively, the solution of
the feasibility problem (2) requires

e n - (x + &) integer optimization variables
. (card(Mg) + 37, card (Tei) + p) binary opti-
mization variables

and involves a number of constraints equal to
p-m+2)+x - m+E&-m+2,

where £ is used to denote the number of empty unob-

servable subwords, that is £ is the number of w;,, such

that |w!,,| = 0. Note that the equality constraints (2a)

and (2c) are redundant and have been added in (2) for

the sake of readability.

Exploiting Lemma 2 it is now possible to state the
following necessary and sufficient condition to check
LBO in bounded labeled Petri net systems.

Theorem 2. Let G = (N, Mp,A) be a labeled net
system and L£; C L£(G, M) a finite secret language.
G is LBO if and only if for all w € L the set of
constraints (2) admits a solution. |

Proof. The proof readily follows from Lemma 2 when
Assumption 2 is taken into account.

The feasibility problem given in Lemma 2 requires to
define, as optimization variables, one firing count vector
for each of the unobservable events in the secret. In
this way it is possible to explicitly take into account
the order of the events when the solution of problem in
Lemma 2 has the same length of w and each subword of
unobservable events of the solution has the same length
of w!,. This is particularly relevant when the number
of observable events in a secret is much less than the
number of unobservable ones. In this case, the following
lemma permits to reduce the number of optimization
variable involved in the assessment of LBO at a price
of more conservatism. Indeed, this lemma requires a
number of firing count vectors equal to the observable
events in the secret, and can be used to state a sufficient
condition to check LBO in labeled net systems.

Lemma 3. Let G = (N, My,\) be a labeled net

system, w € Lg a secret word such that |w,| = p,
with w, = Pr(w) = w, = €5, ---€,, and B be a
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Fig. 2. Unobservable subnet induced on the net shown
in Fig. 1 by the set of unobservable transi-
tions Tuo = {tl ,t4 ,t(; ,tg}.

Taking into account Lemma 1, in what follows we will
consider only secret words that end with an observable
event.

4. LBO ASSESSMENT IN LABELED PETRI NET
SYSTEMS

Let us first introduce the assumptions exploited in this
section to state the proposed conditions to check LBO
for labeled Petri net systems.

Assumption 1. Given a labeled net
system G = (N, Mg, ), the correspondent unobserv-
able subnet N, is assumed to be acyclic. &

Assumption 2. The secret language L has finite cardi-
nality. &

Assumption 1 prevents the occurrence of arbitrarily long
sequences of unobservable events, which would prevent
an intruder to detect the occurrence of a secret for an
arbitrarily long period. The same assumption is made
also in Tong et al. (2016, 2017) to derive the result for
bounded labeled net systems.

Assumption 2 implies that the intruder is interested to
a finite number of secret sequences.
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Before introducing the main result of this paper, let us
consider the following lemma that holds for any secret
word w € Lg, whose observable projection w, = Pr(w)
is such that |w,| = p. In particular, in what follows,
we will assume that the secret word has the following
structure

w = w! elw? 2. wh ef

uo "0 " uo O uo -0
where w, = Pr(w) = el---ef, and the unobservable
subwords w!,,, with i = 1,... p, may also be empty.

Lemma 2. Let G = (N, Moy,\) be a labeled net
system, w € Lg be a secret word such that |w,| = p

and w, = Pr(w) = el---ef. Let B be a sufficiently
large  integer, then  there exists at least
one w' € L(G,My) such that Pr(w’) = Pr(w) if and

only if the set of constraints reported in Fig. 3 admits
a solution

e ol ¢ N* with j = 1, Jioi=1,...,p, and
anere ' '
Ji= |w:1,o|v if |w:1,o| 7& 0
- J; = 1, otherwise
® U1, s M S {0,1}
e vi; €{0,1}, withi=1,...p
and j = 1,...,card(T€’a)

e e{0,1} withi=1,...,p
Proof. First of all it should be noticed that, since u; are
binary decision variables, the constraints (2a) and (2b)
permit to select only one initial marking among the
ones that belong to M. Similarly, for each observable
event el in the secret word w, the constraints (2c)

and (2d) enable the firing of only one transition t/ € T,

Let us first prove sufficiency. Exploiting Assump-
tion 1, from vTheorem 1 it follows that if the inte-
ger vectors o satisfy the inequalities (2e), then their

w!
sum Y7, ZI uol ol represents the firing count vector

of a sequence in the set Pr—!(w,), called explanation
of w,, since its firing is required to “explain” the firing
of w, by means of a proper sequence of unobservable
transitions.

Moreover, constraints (2f), (2g) and (2h) imply that
either an unobservable explanation is made by the same
unobservable events of the secret but with a different
order, or that these unobservable events are different
from the one of the secret. It follows that, starting from
one of the initial markings belonging to My, there exists
at least one enabled sequence ¢’ such that A(o’) # w
and Pr(A(¢”)) = Pr(w).

In order to prove necessity let us assume, ad absurdum,
that the set of constraints (2) does not admit a solution,
while there exists a sequence G such that

6‘ = &i uoti O”ﬁotg )
where A(6) = w € L(G,Myp), with @ # w

and Pr(w) = Pr(w). If this is the case, exploiting again
Assumption 1, it is possible to build a solution of (2) by
letting (see also Reveliotis (2005))



The partition between observable and unobservable
events in a labeled P/T net induces a similar partition
on the set of transitions 1. Therefore T = T, U Ty,
where

To:{t€T|/\(t)€Ev}a
Tuwo={t €T | At) € Euwo},
and obviously T, N T,, = (. Given a firing count
vector ¢ € N"™ in this paper we are interested to
distinguish among the firings of the observable and of the
unobservable transitions. For this reason the following
notation is adopted:

o, € N, with o7, (t) = { g(t) el

if t ¢ T,
o, €N, withop, (t) = {g(t) g i ; %Z

Hence, given a firing count vector o, it is

o =0, -+ a7, -

Given a net N, we now introduce the definition of unob-
servable subnet, which is the subnet induced on N by the
unobservable transition subset Ty, (see also Cabasino
et al. (2012); Tong et al. (2016)).

Definition 2. (Unobservable subnet). Given the
net N = (P,T,Pre,Post), the correspondent un-
observable subnet Ny, is the net induced on N by the set
of transition Ty,,, i.c.

Nuo = (P s ,Tuo 5 Preuo :POStuo) )

where Pre,, and Post,, are the restriction of Pre
and Post to P x T,,; the incidence matrix of N, is
given by
C,, = Post,, — Pre,, .
A

In Fig. 1 a labeled net is shown (for each transition the
correspondent event is also specified), where the set of
events is F = {a,b}, with E, = {b} and E,, = {a}.
Given the two sets F, and FE,,, the correspondent
induced partition on T is

Ty ={t2,t3.t5.t7,ta . t10.t11} ,
Tuo = {t1,ta,t6 o} -
Moreover, the subnet induced by T3, is the one reported
in Fig. 2.

3. LANGUAGE-BASED OPACITY IN LABELED
PETRI NET SYSTEMS

In this section we recall the definition of LBO (see
also Reiter and Rubin (1998); Dubreil et al. (2010);
Wu and Lafortune (2013); Tong et al. (2016)). We
make specific reference to the definition given in Wu
and Lafortune (2013), which was originally given in the
context of finite state automata; in particular we recast
that definition to the Petri net framework introduced
in Section 2. Compared to the definition of LBO given
in Tong et al. (2016), in the one proposed here the secret
refers to a sequence of events rather than a sequence of
transitions, coherently to what is usually proposed in the
context of automata (see also Lin (2011)).
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Fig. 1. Example of a labeled Petri net whose transitions
are associated to both observable and unobservable
events. For each transition the correspondent event
is also specified.

Definition 3. (Language-based opacity). Given a labeled
net system G = (N, Mp,A), the correspondent
natural projection function Pr(-) and a secret lan-
guage L - LG, M), G is language-based
opaque (LBO) if for every word w € Ly, there exists an-

other word w’ € LG, Mp) \ Ls such
that Pr(w) = Pr(w’). Equivalently
LsCPrt [Pr(L£(G, M)\ Ls5)] .
<&

Given the above definition the following lemma immedi-
ately follows, which gives a sufficient condition for LBO.

Lemma 1. Given alabeled net system G = (N, Mg, \),
the correspondent natural projection function Pr(-) and
a secret language L, C L, if there exist at least
one W € L, such that @ = 'ey,, with @' € E*
and ey, € Fyo, then G is LBO.

Proof. The proof readily follows from the Definition 3,
since for the secret word o it is Pr(w) = Pr(uw’).



2. NOTATION

In what follows different products will be considered. We
will denote with “-” the standard matrix multiplication,
while “x” will denote the product between a scalar and

a matrix, and “o” the Hadamard product.

In this paper we deal with labeled Petri net systems. Let
first briefly introduce the concept of Place/Transition
(P/T) net. A P/T net is a 4-tuple N = (P,T,Pre,
Post), where P is a set of m places (represented by
circles) and T' is a set of m transitions (represented by
empty boxes). Pre : P xT + N and Post : P xT + N)
are the pre- and post- incidence matrices, respectively.
Pre(p,t) = w (Post(p,t) = w) means that there
is an arc with weight w from p to ¢ (from t to p);
C = Post — Pre is the incidence matrix.

A marking is a function m : P +— N that assigns to each
place of a net a nonnegative integer number of tokens,
drawn as black dots. The marking of a net is usually
represented by a vector m € N™.

A net system S = (N, myg) is a net N with an initial
marking my. A transition ¢ is enabled at m if and only
if m > Pre(-, 1), and this is denoted as m[t). An enabled
transition ¢t may fire, bringing the system to the marking

m' =m+ C(-1),
and this is denoted as m[t)m’'.
A firing sequence enabled from m is a sequence of
transitions ¢ = t1ty ... t such that m[t1>m1 [t2>m2
... [tk)my, and this is denoted as m[o)my. The nota-
tions m[a) denotes an enabled sequence under a mark-
ing m. Furthermore, ¢; € ¢ denotes that the transition ¢;
belongs to the sequence o, and the length of ¢ is denoted
with |o].
A marking m/ is said to be reachable from my if and
only if there exists a sequence o such that mglo)m’.
The set R(N,myg) contains all the reachable markings
of the net system S = (N, my).

The function o : T — N, where o(f) represents the
number of occurrences of ¢ in o, is called firing count
vector of the firing sequence o. As it has been done for
the marking of a net, the firing count vector is usually
represented by a vector o € N™. The notation o = 7(0)
is used to denote that o is the firing count vector
corresponding to o.

If mo[o)m, then it is well known that the so-called state
equation of the net system holds

m=mgyo+C - o.

(1)
Furthermore, for acyclic nets!, the following result
holds.

Theorem 1. ((Murata, 1989)). Consider a net
system (N, mo) and let N be an acyclic net. It re-
sults m € R(N,myg) if and only if there exists a non-
negative integer solution o satisfying (1). |

L A net is acyclic if it does not include a direct circuit.
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In Wu and Lafortune (2013) it is assumed that an
external intruder aiming at discovering the occurrence
of a secret sequence, although it knows the structure
of the system — i.e., it knows the net topology — it
does not have a precise information about the initial
state. For this reason, we will consider net systems where
there is an uncertainty on the initial marking, that is
we assume that mg belongs to any of the markings
in the set My C N". Hence, in the following we
will consider net systems in the form & = (N, My),
where Mgy = {my, ,... ,mq,, }, with M = card (My).

With the following notion of labeled P/T net, it is pos-
sible to associate events to the transitions; in particular,
the same event can be associated to more than one
transitions.

Definition 1. (Labeled P/T net system). A labeled P/T
net system is the three-tuple G = (N, My, \), where N
is a standard P/T net, M, is the initial marking set,
and

N T B,
is the labeling function which assigns to each transi-
tion t € T an event from the set FE. O

In the following we will denote with
T¢={teT | At)=e,withee E},

the set of transitions associated with the same event e.
We denote with card(7°) the cardinality of set T, and
with w the word of events associated to a sequence o, i.e.
w = A(0), assuming the usual extension of the labeling
function to sequences of transitions and events?, that
is by considering A : T* — FE*. Given a word w
we will denote with |w]| its length, and with |w|. the
number of occurrences of the event e in w. Moreover,
the notation wli] will denote the i-th event in the
word w. For example, if E = {a,b,c} and w = bbeac,
then |w| = 5, |w)y = |w.] = 2 and |w|, = 1,
while w[2] = b and w[4] = a.

The language of the labeled Petri net system G can be
defined as

L(G,My)={we E* | w=X\o)
with mg [¢) and mg € My} .

When dealing with opacity, the set F is partitioned into
the two disjoint sets of observable (whose correspon-
dent transitions are represented by empty boxes) and
unobservable events (whose correspondent transitions
are represented by filled boxes), named respectively E,
and F,,.

Given a word w € E*, its observation is the output of
the natural projection function Pr: E* — E¥, which is
recursively defined as

Pr(we) = Pr(w) Pr(e),

with w € E* and e € E; moreover, Pr(e) = e if e € E,,
while Pr(e) =€ if e € Ey,.

2 The superscript S* denotes the Kleene closure of the given
set S (Cassandras and Lafortune, 1999, p. 55).
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Abstract: Opacity is a property of discrete event systems (DES) that is related to the
possibility of hiding a secret to external observers (the intruders). The secret can be either
a system state, or a sequence of events executed by the system itself. When the latter type
of secrets is considered, the opacity property is referred to as language-based opacity (LBO).
This paper deals with LBO when the DES is modeled by a labeled Petri net. One necessary
and sufficient condition to check LBO by solving Integer Linear Programming problems
is given; such a condition exploits the algebraic representation of Petri nets. A sufficient
condition is then derived, which is less demanding from the computational point of view.
The effectiveness of the proposed approach is shown by means of examples.

Keywords: Opacity, Petri nets, DES, ILP problems

1. INTRODUCTION

In the context of Petri nets, the authors of Tong et al.
(2016, 2017) proposed approaches based on finite-time
automata to check both language-based and current-
state opacity for bounded labeled Petri net systems. In
both cases, the check is performed on a graph derived
form the Petri net system. In particular, language-based
opacity (LBO) is checked by using a wverifier automa-
ton, while in order to assess current-state opacity an
extended version of the reachability graph is proposed.

The main contribution of this work are two conditions
that permit to verify if a labeled net system is LBO
with respect to a given finite secret language, without
requiring that the system is bounded. First a necessary
and sufficient condition will be given, which is based
on the solution of Integer Linear Programming (ILP)
optimization problems. A sufficient condition is then
derived by relaxing the original optimization problem.
To the best of the authors’ knowledge this is the first
work where the algebraic representation of a Petri net
is exploited to check LBO (for a review on opacity see
also Jacob et al. (2016)). The algebraic representation
enables the use of a standard tool, i.e. the mathematical
programming, to check LBO avoiding the preliminary
computation of graph structures, that may have a not
negligible size, since the graph can be equal to the
reachability graph.
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The main technique exploited in the paper is derived
from the exact characterization of the reachability space
of a given Petri net through a finite set of linear inequal-
ities when the net markings are reached by sequences
whose length is not greater than a given value K. More-
over, the cardinality of this set is of polynomial size with
respect to the size of the considered net, where the latter
is defined by the number of its places and transitions,
and K is bounded uniformly by a polynomial function
of the net size (Reveliotis, 2005).

However, the key problem addressed in this paper re-
quires to check if there exists a word having the same
projection over the set of observable transitions with
respect to a given one of finite length, that belongs to
the secret language. Hence, it is necessary to characterize
only the portion of the reachability space that enables
the occurrence of word with finite length; it follows that
the number of required linear inequalities results to be
polynomial in size with respect to the length of the secret
word.

The paper is structured as follows: in Section 2 the
considered Petri nets framework is introduced. The def-
inition of language-based opacity is given in Section 3.
The main contributions are given in Section 4, that is
the two conditions to check language-based opacity by
solving ILP problems. In Section 5 some examples are
presented in order to show the effectiveness of the pro-
posed approach, while conclusive remarks and possible
future directions are finally discussed in Section 6.
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Fig. 12. The speed trajectories and the corresponding inter-
vehicle distance under different communication delays.

framework are relatively independent, only the corresponding
modules need modification.

5. CONCLUDING REMARKS AND FUTURE WORK

This paper proposed a discrete-event and hybrid simulation
framework based on SimEvents for ITS analysis. SimEvents
has become a valuable tool for discrete-event and hybrid simu-
lations that fits the goal that the traffic model should be both
time-driven and event-driven. The benefits of the simulation
framework demonstrated in this paper include (1) abstraction of
continuous-time components based on discrete event systems,
(2) a modular architecture that allows different system configu-
rations, (3) a framework that can be easily adapted to different
traffic scenarios, (4) direct comparison among different simu-
lations by introducing an event, (5) expandable functionality
by incorporating functions from other MATLAB toolboxes,
(6) scalability by simply adding more queues, servers, and stor-
ages. In addition, MATLAB provides users with full access to
model details and flexibility to manipulate the model elements,
and real-time state displays and performance reports as well.

Ongoing research includes the incorporation of the Dedicated
Short Range Communication (DSRC) protocols as it is the
key technology for V2V safety communications. Furthermore,
more elaborate and diversified non-CAV models are required so
as to study the interactions between CAVs and non-CAVs.
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Fig. 9. Optimal control of CAVs crossing two adjacent urban
intersections.

from Events blocks, for instance, a storm event. Note that
the optimal control in Zhang et al. (2016) actually remains
unchanged until an event occurs. As the storm may reduce the
friction of the road surface, vehicles are forced to decelerate
under this scenario and re-calculate the speed profiles. The
speed trajectories of the first 3 CAVs are shown in Fig. 10,
where the dashed lines and solid lines represent the projected
speed trajectories before and after the event (storm) occurs,
respectively. Observe that the re-calculation of the speed pro-
files is only triggered by the storm event. Otherwise, vehicles
would proceed according to the original optimal control profiles
(dashed lines).

Speed [m/s]

= = ~#1 before event
- - ~#2 before event
9 #3 before event
—#1 after event
—#2 after event

#3 after event ! ! | ! i !
0 5 10 15 20 25 30 35 40 45
Time [s]
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Fig. 10. The speed trajectories of the first 3 CAVs before and
after a storm event occurs.

4.2 A Scenario with Only Non-CAVs

To demonstrate the efficiency of new control algorithms, com-
parisons are usually required. Therefore, it is of great impor-
tance that a traffic simulation framework can be adapted to
different traffic scenarios without much effort, so that users
can make comparisons among different approaches. Here, a
baseline scenario is built and tested on the traffic simulation
platform where the non-CAVs are controlled by the fixed-cycle
traffic lights. In this paper, simple control policies are assumed
for the non-CAVs, that is, a non-CAV (1) keeps cruising unless
an event occurs that would affect its behavior; (2) decelerates
when it approaches a red light; (3) accelerates to the desired
speed when the red light turns green.

Demonstration examples A snapshot of the demonstration
example for the non-CAVs crossing a signalized intersection
under traffic light control is shown in Fig. 11, where both the
green and red phases last for 30 seconds. In Fig. 11, queues
can be observed that gradually formed in front of the red
lights. It was shown in Zhang et al. (2017b) that compared
with the baseline scenario, the optimal control of CAVs can
achicve 42% improvement in reducing fuel consumption and
37% improvement in reducing travel delay.
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Fig. 11. A snapshot of the scenario under traffic light control.
4.3 A Mixed-Traffic Scenario

As challenges remain before massive deployment of fully au-
tonomous vehicles, the mixed-traffic scenario where both CAVs
and non-CAVs travel on the roads must be considered. To
model this scenario on the proposed traffic simulation platform,
different control algorithms are implemented for CAVs and
non-CAVs, respectively. For non-CAVs, simple control policies
are assumed, that is, a non-CAV keeps cruising if no event
occurs that would affect its driving behavior. For CAVs, a two-
mode optimal control framework, introduced in Zhang and
Cassandras (2018) is applied to minimize fuel consumption
white adaptively maintaining a safe inter-vehicle distance if it
is constrained by a preceding non-CAV.

An important feature of this framework is the potential to model
and simulate communication protocols in order to study the
effects of delay in V2V and V2I communications on safety. To
cooperate with the control algorithms employed by the CAVs,
low packet delay/loss/error is necessary for maintaining safety.

Demonstration examples  The following example explores
the influence of communication delay on inter-vehicle safety,
where a non-CAV #1 is assumed to cruise at its initial speed
and CAV #2 enters the CZ immediately after #1 on the same
lane. If the inter-vehicle distance between vehicles #2 and
#1, denoted as s5,(t), falls below the minimum safe following
distance 8 = 10m, CAV #2 simply forgoes the optimal control
and adaptively follows the non-CAV #]1, that is, maintaining
the minimum safe following distance and the same speed as
#1. Varying the service time of the server, which is used for
simulating the communication delay between the CAVs and the
coordinator, allows easy experimentation with the influence of
large communication delay on the implementation of control
algorithms and inter-vehicle safety.

The speed trajectories under different communication delays
and the corresponding inter-vehicle distance between vehicles
#2 and #1 are shown in Fig. 12. When the communication
delay is low, that is, delay = 0.01s, CAV #2 is able to make
adjustments in time so that the inter-vehicle distance s;(7)
(red curve) does not fall too much below & = 10m; after a
short period, CAV #2 starts to follow the non-CAV #1 while
maintaining a distance of § with the non-CAV #1. When the
communication delay is high, that is, delay = 3s, the inter-
vehicle distance s5(f) falls to 5.5m, which is undesired in terms
of maintaining safety; while the communication delay increases
to 6s, the inter-vehicle distance falls below 0, which indicates
an accident. Using the simulation setting, the operation of the
communication protocols can be easily examined and if a crash
occurs, the protocols may need to be re-designed.

As shown in the previous demonstrations, the framework can be
easily adapted to different scenarios. Since the modules in the



Control
Zone

Fig. 5. Connected Automated Vehicles (CAVs) crossing an
urban intersection.

a Control Zone (CZ) and a coordinator that can communicate
with the CAVs traveling within the CZ. A M/M/1 queueing
system (Cassandras and Lafortune (2009)) following a first-in-
first-out order is assumed for CAVs that have entered the CZ.

The decentralized optimal control framework, introduced in
Zhang et al. (2016), is used for optimally controlling CAVs
crossing a signal-free intersection with the objective of mini-
mizing energy consumption inside the CZ, subject to a through-
put maximization requirement formulated in Malikopoulos
et al. (2017). The rear-end safety can be ensured through an
appropriately designed Feasibility Enforcement Zone (FEZ)
that precedes the CZ, as discussed in Zhang et al. (2017b).

Demonstration examples A group of CAVs crossing a single
urban intersection is considered, where the length of the CZ
is L = 400m and the length of the MZ is § = 30m. For each
direction, only one lane is considered. The minimum safe inter-
vehicle distance is set to § = 10m. The vehicle arrivals are
assumed to be given by a Poisson process and the initial speeds
are uniformly distributed over [8, 12]m/s.

In the current framework, simple information exchange is as-
sumed between vehicles and the coordinator. Every time a CAV
enters the CZ, it sends information to the coordinator indicating
its arrival. After a certain period of communication delay, which
is modeled using servers, the coordinator sends relevant infor-
mation back and based on that, the CAV can make decisions
regarding the remaining trip.

For evaluation purposes, the position of the CAV must be
continuously monitored and tracked. This represents the con-
tinuous time-driven component of the simulation framework.
Combined with the discrete event-driven component, such as
vehicle arrivals, the two together form the hybrid nature of the
simulation framework.

A snapshot of the demonstration example is shown in Fig. 6,
where the color represents the direction that the vehicle comes
from. Note that the proposed simulation framework is capable
of generating state displays, which can casily be achicved by
incorporating functions from other MATLAB toolboxes. For
instance, the optimal control output and the corresponding
speed trajectories are shown in Fig. 7.

This scenario can be easily modified, for instance, by including
left the right turns (Fig. 8). The solution to account for
left and right turns under hard safety constraints is provided
in Zhang et al. (2017c). Note that the proposed simulation
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Fig. 6. Optimal control of CAVs crossing an urban intersection.
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Fig. 7. Control and speed trajectories of the first 10 CAVs under
decentralized optimal control framework.

[ramework is also equipped with performance reports. Fig. 8
shows how average fuel consumption and average travel time
can be observed in real time.
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Fig. 8. Optimal control of CAVs including left and right turns.

The traffic simulation model is inherently scalable. For in-
stance, the single intersection scenario can be easily extended to
a multi-intersection scenario by adding more queues, servers,
the MATLAB Discrete Event Systems or a combination of
them. A snapshot of the demonstration example for CAVs
crossing two adjacent urban intersections is shown in Fig. 9.
Note that the two intersections can be coupled in different ways,
which mainly depends on the distance between the two inter-
sections D. In Fig. 9, the distance between the two intersections
is set to D = L = 400m, which indicates that once the CAV exits
the upstream MZ, it immediately enters the downstream CZ.

To explore the event-driven feature of the transportation sys-
tems, a scenario is created by randomly generating an event



Events
Communication delay

Om Coordinator
eI 1

Control Zone

-;}

N

Communication delay

Fig. 1. Architecture of the hybrid traffic simulation framework.

Events = e
i =4.. ‘
i - L
Coordinator ﬁ@“’ﬂ.
Cwlom | o = Yon 12V sy
= B
- =
Control Zone
= e
vailiFo

Optimal Control

| e T
B Traffic Lights ‘ p—

Vehicle Motion Dynamics ~ Vehicle Control Dynamics

Fig. 2. Simulink® model of an intersection with four road
segments (input/outputs).

The output of Events into the coordinator indicates that the
coordinator is aware of all the event-based information by
means of sensing and communication. Once a certain event
occurs the coordinator will broadcast or send the information
to the vehicles that might be affected, so that the vehicles can
make appropriate decisions.

The continuous part in this framework includes vehicle motion
dynamics, control dynamics, and fuel consumption dynamics
that should be tracked continuously. For the discrete-event part,
events are considered as they can affect vehicle behavior.

3. IMPLEMENTATION

The proposed hybrid traffic simulation framework is built based
on MATLAB and Simulink that include various programming
paradigms (Li et al. (2016)). The incorporation of SimEvents
offers tools to work with discrete event components. The var-
ious programming options offer users a platform for rapid
prototyping that is widely used in the automotive industry.
The paradigms used in the proposed model include Entity
Flow, Graphical Programming, and Textual Programming. The
model structure of a single intersection is shown in Fig. 2.

3.1 Entity Flow

Entities are the discrete items of interest carrying a rich set
of attributes, which can pass through a network of queues and
servers during the discrete-event simulations. In the transporta-
tion modeling context, an entity can represent a vehicle, whose
attributes may include ID, acceleration, speed, position, lane,
destination, and so on (see the example shown in the yellow
rectangle of Fig. 3).

3.2 Graphical Programming

The graphical programming paradigm enables users to work
with discrete event components, whereby users can specify
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various functions associated with events such as entity entry
and exit. These functions are event-driven actions, that is, they
can only be triggered by a different class of events. For instance,
in Fig. 3, a series of functions are defined in the red rectangle
that can only be executed when the CAV is generated. These
functions specify how the attributes, for instance, speed, of
vehicles are initialized when they are generated.

Entity generation ~ Entity type = Eventaclions  Statistics
Event actions Generate action:
Generate* call ntity is generated.
Bxit Tt attribute use: entity.ExitTime
1% speclly the arrival time
2 entity.ArrivalTime = setArrivalTime();
3 % initialize the initial speed randomly
4 entity.Speed = 8 + 4 * rand();
[ Entity structure || 5 entity.lane = 1;
v entity 6 entity.Position = 0;
ExitTime 7 % initialize the destination randomly
& 3 dest = [2, 3, 4];
Optimal... ot ’
e 9 1dx = ceil(3 * rand());
toseleone WO entity Destination = dest{idx);
D
| Speed

Fig. 3. Customized event actions of CAV generator block.

3.3 Textual Programming

The MATLAB Discrete Event System provides maximal flexi-
bility as it offers users the capability to author an event-driven
entity-flow system arbitrarily using object-oriented program-
ming in MATLAB, whose functionality is expandable by in-
corporating functions from other MATLAB toolboxes.

% CAV arrives at the control zone
function [entity, events] = CAVEntryImpl{cbj, storage, entity, ~)

CAV generates an info ket and sends it to the coordinator

function [entity, events] = INFOGenerateImpl (obj, ~, entity, tag)
%« ceives info from the coordinator and (re-)computes the
function [entity, events] = INFOEntryImpl (cbj, storage, entity, ~)}

® T ar itera

function [entity, events] = CAVTimerImpl{obj, ~, entity, tag)

function [entity, events, next] = CAVIterateImpl (cbj, storage, ...
entity, tag, ~)

Fig. 4. The MATLAB® Discrete Event System for Control
Zone (partial codes).

For instance, the control zone shown in Fig. 2 was designed
using a MATLAB Discrete Event System in the proposed traffic
model. The program specifies the properties of the control zone
as well as the definition of different storages that contain user-
defined entities, that is, CAVs and information packets (INFOs).
In addition, different event actions are defined through methods
as shown in Fig. 4.

4. DEMONSTRATIONS

The effectiveness of the proposed hybrid framework has been
demonstrated through simulation under different traffic scenar-
ios: 1) a scenario with only CAVs, 2) a scenario with only non-
CAVs, 3) a mixed-traffic scenario where CAVs and non-CAVs
co-exist. For each scenario, the control methodology is intro-
duced first and then the demonstration examples are presented.

4.1 A Scenario with Only CAVs

In the first scenario, only CAVs are being considered. As
shown in Fig. 5, the region at the center of each intersection,
called Merging Zone (MZ) is the area of potential lateral CAV
collision, which is taken to be a square. Each intersection has



SIM (Benekohal and Treiterer (1988)) and SUMO (Krajzewicz
et al. (2002)), all of which offer a wide range of methods to
design and evaluate traffic systems. As CAVs make use of
more sophisticated and increasingly efficient control algorithms
that heavily rely on sensing the transportation environment, we
need platforms which are able to consider a large number of
different traffic scenarios and encompass all different aspects
of ITS operation. An example of such a platform is PreScan,
which accommodates CAVs and Advanced Driver Assistance
Systems (ADAS) based on sensor simulation and flexible sce-
nario definition. The tool ITS Modeller proposed in Versteegt
et al. (2009) complements PreScan in terms of evaluation at a
traffic network level.

One common feature of the aforementioned traffic simulation
platforms is the integration of MATLAB and Simulink via
an interface that allows a user to design ICT methods and
control algorithms. Examples can be found in Zhang et al.
(2016), where a decentralized optimal control algorithm is
implemented using MATLAB and applied to cach vehicle,
with the resulting vehicle behavior visualized and evaluated
through VISSIM. This illustrates the powerful capabilities of
MATLAB and Simulink as a test bed for ICT approaches and
control algorithms. In some cases, a discrete-event simulation
model cannot only capture event-driven behavior, but also ab-
stract continuous-time components through event-driven com-
ponents. As SimEvents provides users with various paradigms
for building a discrete-event simulation model, we take advan-
tage of the Discrete Event System (DES) simulation framework
introduced in SimEvents®,

Earlier work in Zhang et al. (2017a) introduced a new traffic
simulation framework based on SimEvents in conjunction with
MATLAB and Simulink. This framework offers access to both
physical components and cyber components which typically
involve different ICT approaches and control strategies. Com-
bined with the discrete-event/continuous-time hybrid simula-
tion engine of the original SimEvents (Clune et al. (2006)),
the simulation model includes both discrete-event components
implemented by SimEvents, and continuous-time components
implemented by Simulink. Thus, the overall traffic simulation
framework is a hybrid dynamic model.

An important feature of the proposed traffic simulation frame-
work is the capability for users to easily create different scenar-
ios under which users can test various ICT methods and control
algorithms. This paper describes and elaborates the capability
of this hybrid simulation framework and includes demonstra-
tions of how it can operate under various scenarios.

The paper is structured as follows. Section 2 reviews the hybrid
traffic simulation framework introduced in Zhang et al. (2017a).
Section 3 discusses in detail the implementation of the hybrid
traffic simulation platform using SimEvents in conjunction with
MATLAB and Simulink. Section 4 illustrates the effectiveness
of the traffic simulation platform by demonstrating several
different scenarios. Section 5 concludes with remarks and an
outline of further research activities.

2. A DISCRETE-EVENT AND HYBRID TRAFFIC
SIMULATION FRAMEWORK

To create a traffic simulation framework for vehicle behav-
ior evaluation, a system consisting of physical elements (in-
frastructure and vehicles), cyber components (traffic control,
communication, sensing technologies), and events is necessary.
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Table 1. Infrastructure

Infrastructure ~ Property Function

Road segment
Merging zone

length, number of lanes
length/width, left/right turns

sensing (sensors, cameras)
sensing (sensors, cameras)

Controller control strategy, range control, communication
Coordinator range communication
Table 2. Vehicles
Vehicle Property & Dynamics
Properties 1D, acceleration, speed, position, lane, mpg, etc.

Motion dynamics
Control dynamics
Fuel dynamics

basic model, Kinematic model, Dynamic model, etc.
optimal control, MPC, etc.
gasoline engine, electric, hybrid, plug-in hybrid, etc.

Table 3. Events

Vehicle-to-Infrastructure Warning Vehicle-to-Vehicle Warning

Red Light Violation Emergency Electronic Brake Lights
Curve Speed Forward Collision

Stop Sign Gap Assist Intersection Movement Assist

Spot Weather Impact Left Turn Assist

Reduced Speed/Work Zone Blind Spot/ Lane Change
Pedestrian in Signalized Crosswalk Do Not Pass

Vehicle Turning Right in Front of Bus

The system is designed to comprise various elements of the
SimEvents paradigms such as entities, queues, servers, termi-
nators, and customized MATLAB Discrete Event Systems.

The model introduced in Zhang et al. (2017a) is briefly re-
viewed. There are three basic elements in the hybrid traffic
simulation framework: infrastructure, vehicles, and events.

Infrastructure consists of roadside facilities that enable com-
munication and carry out traffic management.

Vehicles can differ in motion dynamics, driver behavior mod-
els, fuel dynamics, and so on. For CAVs, they should also
possess the ability to communicate with each other.

Events can be categorized into two classes in the hybrid sys-
tems: exogenous and endogenous events. Exogenous events
include those originating from the outside world and force
certain elements to change the behavior, for instance, an un-
expected storm. Endogenous events occur when a time-driven
state variable enters a particular set, for instance, the inter-
vehicle distance falling below the minimum safe following
distance, which may indicate a possible impending rear-end
crash. Depending on whether they occur among vehicles or
between vehicles and infrastructure (Bettisworth et al. (2015)),
the events can also be categorized as listed in Table 3.

Figure 1 depicts the architecture of the traffic simulation frame-
work and shows how different elements are connected. Certain
elements should be capable of communicating with others. In
this paper, it is assumed that only V2I communication is ac-
tive, as V2V communication can be achieved through V2I2V
communication. An important feature of the proposed frame-
work is the inclusion of communication delay, as low packet
delays are necessary for implementing the control algorithms
employed by CAVs. In Fig. 1, the servers are used to model the
communication delays.
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Abstract: Intelligent transportation systems combine physical elements with cyber components based
on information and communication technologies and the use of control methodologies for Connected
Automated Vehicles (CAVs). Intelligent transportation systems, therefore, contain event-driven dynam-
ics along with time-driven dynamics. The hybrid nature of such systems motivates the development of
new simulation platforms in order to test and evaluate their effectiveness. A discrete-event and hybrid
simulation framework based on SimEvents is introduced within which these systems can be studied
at the microscopic level. This framework enables users to apply different control strategies as well as
communication protocols for CAVs and to carry out performance analysis of proposed algorithms by
authoring customized discrete-event and hybrid systems that include various design paradigms such as
entity flow, graphical programming, and object-oriented programming in MATLAB®. These paradigms
provide users with the flexibility to select or combine modeling elements for achieving complex goals
as the demonstrated scenarios in the paper illustrate. The framework spans multiple toolboxes including

MATLAB, Simulink®, and SimEvents®.
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1. INTRODUCTION

An Intelligent Transportation System (ITS) combines time-
driven dynamics governing its physical components with event-
driven dynamics characterizing its cyber elements. The physi-
cal elements may include the infrastructure and vehicles, while
the cyber components involve a variety of communication tech-
nologies, information processing, and control systems method-
ologies that aim at traffic flow optimization by exploiting
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication and make use of information fusion from mul-
tiple traffic sensing modalities.

The advent of CAVs provides the automotive industry with an
unprecedented opportunity by enabling users to better monitor
a transportation system’s conditions, hence improving traffic
flow in terms of reducing congestion as well as energy con-
sumption and greenhouse gas emissions, while also improving
safety. From a CAV’s perspective, the physical domain is de-
fined by vehicle mechanics, motion dynamics, etc., while the
cyber domain involves the capability to sense the surroundings,
communicate through V2V or V2I, and implement advanced
control algorithms.

* Supported in part by NSF under grants ECCS-1509084, CNS-1645681, and
11P-1430145, by AFOSR under grant FA9550-15-1-0471, by DOE under grant
DOE-46100, by MathWorks and by Bosch.
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Recent advances in CAVs focus on issues such as optimizing
powertrain configurations, for instance, in plug-in hybrid clec-
tric vehicles (PHEV), as well as improving traffic conditions in
terms of reducing travel delay and energy consumption. Exam-
ples include Lee and Park (2012) where the overlap between ve-
hicle positions is minimized, and Gilbert (1976),Hooker (1988),
Hellstrom et al. (2010), Li et al. (2012) where the focus is on
improving energy economy. To evaluate the effectiveness of
emerging proposed methodologies, a good way is to conduct
field tests involving actual vehicles as discussed in Shladover
et al. (1991) and Kato et al. (2002). Such tests take actual
environmental factors into consideration, thus lending them
credibility. However, field tests are often infeasible. In view of
these factors, a suitable ITS simulation environment is needed.

The focus of this paper is on building microscopic transporta-
tion models allowing the evaluation of different information
and communication technologies (ICT) and control algorithms.
Microscopic models usually track individual transportation cle-
ments on a continuous-time basis; for instance, they must track
the position of all vehicles. However, transportation systems
must respond to events, some of which are random, such as ve-
hicle arrivals or bad weather, while others are controllable, such
as routing decisions or traffic light switches. Consequently,
traffic models must be both event-driven and time-driven.

There are many traffic simulation platforms that can oper-
ate at the microscopic level, such as VISSIM (Fellendorf
(1994)), PARAMICS (Cameron and Duncan (1996)), CAR-



Table 6. Main Functions in PN_OPAC

Name | Function |
BRG_Cur

constructs the corresponding BRG for current-
state opacity wrt a given secret
shows the BRG in a readable text form

showBRG_Cur

CurOpac checks if the LPN system is current-state opaque
wrt a given secret
InitOpac checks if the LPN system is initial-state opaque

wrt a given secret

>> [Pre, Post, M0] = getMatrix; E = {['a’]}; L = {[1, 3]};
W=[-100-1; K=-2;S ={W; K}
>> [CSO, Obs, y] = CurOpac(Pre, Post, MO, L, E, S)
CSO =

1
Obs =

4 v
y =

[0]  [1x2 double]

[4x3 double] [0] []

[1X2 double]  [1Xx3 double]

Fig. 17. Check if the LPN system is current-state opaque.

for diagnosis is constructed using funcition BRG_D, based
on which we construct the basis reachability diagnoser
through function BRD. Then, the modified BRG is built
using MBRG, and finally function diagnosability can be
applied. The above steps and the obtained results are
presented in Fig. 15, which shows that neither of f; and f
is diagnosable. Given an observation w = a, to diagnose if
fault fi or fs has occurred we use function diagnosis, and
the result is shown in Fig. 16. When nothing is observed
(i.e., suffix equals eps) the diagnosis state is [0 0], which
means that neither f; nor fy; has occurred; when a is
observed, the diagnosis state is [2 2], which means that
f1 and fo may have occurred and they are contained in
one (but not in all) justification of w. o

4.4 State-Based Opacity Verification

Given an LPN system and a secret, opacity verification
consists in checking if the system is opaque wrt the secret.
PetriBaR can be used to verify current-state opacity
(CSO) and initial state opacity (ISO). It is assumed
that the secret is described by a set of GMECs, and
the unobservable induced subnet is acyclic. For initial-
state opacity verification, it is also assumed that none
of the secret markings is weakly exposable, i.e., their
unobservable reach is not strictly contained in the secret.

Function for opacity verification are in directory P-
N_OPAC, and are based on the results in (Tong et al.,
2017). Some significant functions are listed in Table 6.

Example 7. Consider again the PN system in Fig. 8. Let
My =[1100]", T, = {t2,t4,t5}, the labels assigned to t;
and t3 be a, and the secret S = {M|M(p1) + M (ps) > 2}.
We use function CurOpac to check if the LPN is current-
state opaque wrt S, and the result is presented in Fig. 17.
The value of CSO is 1, which means that the LPN is
current-state opaque; if the value is 0, the LPN system is
not current-state opaque. &

5. CONCLUSIONS

The presented toolbox PetriBaR provides multiple func-
tions for PN analysis, including the solutions to four prob-
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lems: reachability, state estimation, fault diagnosis, and
opacity verification. In all cases BRG-based techniques are
implemented. Compared with other PN tools, PetriBaR
has high flexibility, portability and compatibility. As a
future work, we plan to integrate all functions with the
graphical editor to form a fully functional software. Mean-
while, more functions will be continuously added to enrich
the toolbox, such as functions for opacity enforcement.
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Table 4. Main Functions in PN_ESTM

Table 5. Main Functions in PN_DIAG

Name | Function | | Name | Function
BRG_L builds the corresponding BRG of the LPN system BRG.D constructs the BRG for fault diagnosis wrt
showBRG_L shows the BRG in a readable text form the class of faults
obsRG computes the observer of the RG showBRG_D shows the BRG in a readable text form
obsBRG computes the observer of the BRG MBRG constructs the modified BRG (MBRG) that
estRG computes the initial state estimator of the RG is used to check whether the LPN system is
estBRG computes the initial state estimator of the BRG diagnosable or not.
CurEst_RG | computes the set of markings consistent with the showMBRG shows the BRG in a readable text form
observation BRD constructs the basis reachability diagnoser, a
CurEst_BRG | computes the set of basis markings consistent diagnoser construted on the BRG.
with the observation showBRD shows the BRG in a readable text form
IniEst RG | computes the set of markings generating the ob- diagnosability | testsif a bounded LPN system is diagnosable
servation wrt each fault class
IniEst_BRG | computes the set of basis markings generating the diagnosis online diagnoses an LPN system for a given
observation observation w
>> [Pre, Post, M0] = getMatrix; F = {[3]; [5]}; L = {[1]}; E =
>> draw; [Pre, Post, M0] = getMatrix; E = {['a’];['b']}; L = a1k
{LB1: BG = BRG.D(Pre, Pos, M0, F, L, E);
w = 'aab’; BD = BRD(BG, Pre,Post, MO, F, L, E);
>> [Cbw] = CurEst_BRG(Pre,Post,MO,L,E,w) T = MBRG(Pre, Pos, M0, F, L, E);
Cbw = >> diagnosability(T, BD)
[4x1 double] All fault classes are not diagnosable since for each of them there

Fig. 13. Computation of the set of basis markings consis-
tent with aab.

>> B = BRG_L(Pre, Post, MO, L, E);
>> [ObsB, yb] = ObsBRG(B)
ObsB =

[3] '12" [4x3 double] [0] []
yb =

[0 1 2

Fig. 14. Observer of the BRG in Example 5.

where Cy(w) = {[0 0 0 1]7}. Analogously, for initial s-
tate estimation, we can use function IniEst_BRG to com-

pute the set of basis markings generating aab, namely
{ltooo;jo100]", 000 1]"}.

Let us focus on the data structure of the observer ob-
tained by function obsBRG (which could be helpful to
readers interested in building their own functions). After
constructing the BRG B through function BRG_L, we input
[ObsB,yb]l=0bsBRG(B) to compute the observer of the
BRG (see Fig. 14). ObsB is a 1 x5 cell, and columns 1 to 5
represent the number of states® of the observer, the set of
events? , the transition function '°, the set of initial states,
and the set of marked states, respectively. Each element
of y, corresponds to the set of basis markings of a state
of the observer. We point out that the estimator of the
BRG, and the observer/estimator of the RG obtained by
functions in Table 4 have a similar structure of ObsBRG.
Therefore, they are not discussed here. o

8 It also denotes the set of states of the observer. Suppose the
number of states is n. Then the set of states is {0,1,...,n — 1}.

9 Alphabetical symbols input to the LPN are orderly projected to
numerical symbols in the observer. For instance, E = {['a’]; ['V’]} of
the LPN becomes E =’ 12'.

10Suppose one row of the matrix is [z; j 2x]. It means that from
state x; the occurrence of event k leads to state xy.
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is an indeterminate loop.
Fault class 1:

path = aa

cycle = a
Fault class 2:

path = aa

cycle = a

Fig. 15. Diagnosability test in Example 6

>> w = 'a’; diagnosis(Pre, Post, MO, w, L ,F, E)
The following results summarizes the step of the on-line diagnosis

carried out by the observed word: - 'a’.
SUFFIX DIAGNOSIS STATE

eps

00
a 2 2

Fig. 16. Online diagnosis of observation w = a.

4.8 Fault Diagnosis

Given an LPN system and a set of fault transitions,
which have been partitioned into several fault classes F' =
{f1, f2,- .-, fr}, two main problems are investigated in the
literature: i) fault diagnosis, which consists in establishing,
given an observation, if a fault in a given class has
occurred, and ii) diagnosability analysis, which consists
in establishing if the occurrence of a fault in a given class
could be detected after the occurrence of a finite number
of other events. Cabasino et al. have proposed efficient
algorithms to solve the above problems using LPNs (see
(Cabasino, 2009) for technical details). Such algorithms
are based on the notion of BRG, and are implemented by
the MATLAB functions in directory PN_DIAG. Table 5
lists some of the functions.

Example 6. Consider again the LPN in Fig. 8. Let t3
and t5 be fault transitions that belong to two different
fault classes f; and fs, respectively, to and t4 be regular
unobservable transitions, and the label associated to t; be
a. To check if f; and fo are diagnosable, first the BRG



>> showBRG(B)
Basis Reachability Graph node's number n = 3
# Marking M0=[1 1 0 0]’
Observable transitions enabled to fire:
(t1) — > M1: e=[0 Q]
(t4) — > M2: e=[1 Q]
(t5) — > M2: e=[1 1]
3k 3k 3k 3k 3k 3k 3k ok ok 5k sk ok ok
# Marking M1=[0 2 0 0]’
Observable transitions enabled to fire:
(t4) — > MO: e=[1 0]
(t5) — > MO: e=[1 1]
ok ok bk ook ok ok
# Marking M2=[2 0 0 0]’
Observable transitions enabled to fire:
(t1) — > MO: e=[0 Q]

>k 3k 3k 3k 3k 5k 3 >k 5k %k 3k %k k

Fig. 10. Output of function showBRG.

>> Te=CompTe(Pre,Post)
Te =
1

Fig. 11. Set of explicit transitions computed by function
CompTe.

Ezample 4. Consider the LPN system in Fig. 8. Let T, =
{t1,t4,t5} be a feasible set of explicit transitions. First,
we input the net system (Pre, Post,M0) and the set
T. = [1 4 5], and then compute its BRG through function
B=BRG(Pre,Post,M0,Te) (see Fig. 9). Let us now briefly
explain the data structure® of B. Entries in columns
1 to 6 are: the index associated with the current basis
markings, the basis marking, explicit transitions whose
minimal explanation vectors are not empty, the minimal
explanation vector and the index of the basis marking
reached, the tag recording if the basis marking has been
analyzed, the explicit transition and the corresponding
minimal explanations fired. Therefore, B contains all the
information about the BRG, and in the future the reader
can develop their own functions based on function BRG as
Sections 4.2 to 4.4 show. The structure of the BRG can be
presented in the form of text, as Fig. 10 shows, by using
function showBRG(B).

Given an arbitrary marking M = [0 1 0 1]7, the result of
running r=IfReachTe(M,Pre,Post,M0,Te) is r = 1, i.e.,
marking M is reachable from the given initial marking. On
the contrary, if M = [1 10 1]7, the output is r = 0, which
means that the marking is not reachable.

Suppose the feasible set T, of explicit transitions is not
given. In this case, there are two ways to check if a
marking is reachable. One method consists in first using
Te=CompTe (Pre,Post) to obtain a minimal feasible set T,
(the result is T, = {t1}), then using function IfReachTe to
check whether the given marking is reachable or not. Note
that the reachability of a marking does not depend on the

6 We point out that the data structure of the BRG constructed later
for LPNs, or fault diagnosis, or opacity verification is similar to the
one presented here. For brevity, a detailed discussion on differences
is omitted here and the reader is addressed to the comments inside
the MATLAB functions.
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>> M = [0101]; [r, Te] = IfReach(M, Pre, Post, M0)
r =

1
Te =

1

Fig. 12. Output of function IfReach.

value of T,. The other method consists in using function
IfReach directly, as shown in Fig. 12. o

4.2 State Estimation

In an LPN system (Pre, Post, My, L, E) the labeling func-
tion L associates an output symbol with each transition.
It could either be a symbol in a given alphabet E, or the
empty word e. Therefore, the transitions are partitioned
into the set T, of observable transitions, whose labels are
symbols in E, and the set T3, of unobservable transitions,
whose labels are the empty word.

The considered state estimation problem consists in de-
termining the set of current markings consistent with the
observation w € E*. Furthermore, the initial state esti-
mation problem consists in determining the set of possible
initial markings from which the observation w € E* can be
generated. Typically, the methods of solving the problems
of current state estimation and initial state estimation are
based on the construction of the observer and the initial
state estimator, respectively, of the RG, whose complexity
is known to be exponential wrt the number of reach-
able markings. However, if the unobservable transitions
induced subnet is acyclic, the BRG-based technique can be
applied (Cabasino et al., 2011). In such a case the complex-
ity is still exponential but wrt the number of basis mark-
ings. To build the BRG for LPNs, observable transitions
are taken as explicit transitions, while the unobservable
transitions are the implicit transitions. Moreover, the label
of an observable transition is also tagged on the BRG.

Let C(w) be the set of markings consistent with an ob-
servation w and Cp(w) the set of basis markings consistent
with w. By Theorem 3.7 in (Tong et al., 2017), it holds that
C(w) = Unp,ec, () IMIM = My + Cy -y, y € N}, where
C,, is the incidence matrix of the unobservable transitions
induced subnet. Namely, using the BRG-based technique,
the set C(w) of consistent markings is represented by a
set of linear constraints associated with basis markings.
Therefore, computing the set Cp(w) of basis markings con-
sistent with the observation, the set C(w) is also obtained.

Functions for state estimation are in directory PN_ESTM
and are summarized in Table 4. Due to limited space, in
Example 5 we mainly illustrate the methods based on the
BRG.

Example 5. Consider again the PN system in Fig. 8.
Let My = [1 00 0%, T, = {ta,t4,t5}, the labels as-
signed to t; and t3 be a and b, respectively, and the
observation w = aab. For current state estimation, we
can use function CurEst_BRG to compute Cp(w) directly.
The procedure and the result is presented” in Fig. 13,

7 Since the output Cbw is defined as a cell, the value of Cbw is not
directly shown in the command window.



Fig. 7. Closed loop system in Example 2.

i.e., (w1, k1) is controllable while (ws,k2) is not control-
lable. Use function [W2, K2] = controllablegmec(C,
MO, w2, k2, u) to compute a set of controllable GMEC-
s (Wa, K3) such that (Wa, K3) is minimally restrictive
and satisfies M(Ws, K2) C M(wa, k2), and the result is
Wy = [0 22 1] and Ky = 2. Finally, we use func-
tion monitorplaces to compute the incidence matrix C'S
of monitor places and their initial marking Mgy. The
obtained results and the whole procedure are illustrat-
ed in Fig. 6. The corresponding closed loop system is
illustrated in Fig. 7. Note that given a set of control-
lable/uncontrollable GMECs, function monitordesign re-
turns the closed loop system such that its reachable mark-
ings are all legal but may not be maximally permissive?.
o

4. FUNCTIONS USING BRG-BASED TECHNIQUES

In (Ma et al., 2017), a compact representation of the
reachability graph (RG) is proposed. Partitioning the set
of transitions into implicit and explicit transitions, it is
shown that if the implicit transitions induced subnet is
acyclic, only a subset of reachable markings, called basis
markings, need to be enumerated, while other reachable
markings are characterized by linear systems, one for each
basis marking.

To help the reader in understanding the idea behind the
programs, we briefly recall the notion of basis marking.
Let (P, T, Pre, Post, My) be the PN system, T, C T the
set of explicit transitions, and T; = T \ T, the set of
implicit transitions. First, the initial marking M, is a
basis marking. Then, given an explicit transition t. if
there is a minimal (in terms of its firing vector) firable
sequence of implicit transitions o; € T} enabling t., then
the marking M reached by firing o;t. from Mj is also a
basis marking. Iteratively, the set M, of basis markings
is obtained. Obviously, the set of basis markings is a
subset of the reachability set since basis markings are
only markings reachable by firing the minimal implicit
transition sequences and an explicit transition. Finally, we
have the following important result.

Theorem 3. (Ma et al., 2017) Let (P, T, Pre, Post, My) be
a PN system, T, a set of explicit transitions, and M, a set
of basis markings wrt T,.. Assume the 7; induced subnet °
is acyclic. A marking M € N™ is reachable in the PN
system if and only if there exists a basis marking M, € M,
such that M = Mp+ Cy-y has an integer solution y € N™/,

4 If there is no solution, the function will output “This method can
not be used”.

5 The Tj-induced subnet of (P, T, Pre, Post) is the net obtained by
removing from (P, T, Pre, Post) all transitions not in Tj.

330

Table 3. Main Functions in PN_.REACH

Name | Function

BRG computes the corresponding BRG of the net sys-
tem wrt a given feasible T,

showBRG shows the BRG in the form of text
IfReachTe | checks if a marking is reachable, given a feasible
Te
CompTe computes a minimal feasible set Te
IfReach checks if a marking is reachable and outputs a

minimal feasible set Te

Fig. 8. The PN system in Example 4.

>> draw; [Pre, Post, M0] = getMatrix; Te = [1 4 5];

>> [B] = BRG(Pre,Post,MO0, Te)
[1] [4x1 double] [1x3 double] {1x3 cell} [1] {1x3 cell}
[2] [4x1 double] [1x3 double] {1x3 cell} [1] {1x3 cell}
[3] [4x1 double] [1x3 double] {1x3 cell} [1] {1x3 cell}

Fig. 9. Construction of the BRG of the PN system in Fig. 8.

where m is the number of places, C7 is the incidence matrix
of the implicit transitions induced subnet, and n; is the
number of implicit transitions.

In other words, after the set of basis markings are com-
puted, the reachability problem reduces to the solution
of the integer linear programming problem, and the u-
nion of convex sets associated with the different basis
markings coincides with the set of reachable markings. A
basis reachability graph (BRG) is a graph that describes
the basis markings and their transition relations, and
thus it compactly represents the RG. Based on the BRG
representation, algorithms very efficient in practice have
been proposed in (Cabasino et al., 2010; Ma et al., 2017;
Tong et al., 2017; Cabasino et al., 2011) to solve the
reachability problem, the fault diagnosis problem and the
opacity verification problem. The efficiency of the BRG-
based approaches with respect to other RG-based methods
has been extensively shown in the aforementioned work.

Typically T, is not a set of special transitions. As long as
the set of transitions can be partitioned into T, and T;
such that the T;-induced subnet is acyclic (such a set T,
is called feasible), Theorem 3 applies. Thus, in some cases
a feasible set T, needs to be computed first so that BRG-
based techniques can be applied to analyzing the system.

4.1 Reachability Analysis

Functions for reachability analysis are included in direc-
tory PN_.REACH and listed in Table 3. All functions are
coded using the results in (Ma et al., 2017), where the
reader can also find the technical details.



Table 1. Main Functions in PN_BASIC

[ Name | Function | Name | Function

graphPN | builds the RG/CG of a PN system tree builds the RT/CT of a PN system
show shows the RG/CG in a readable text form plottree draws the graph of a RT/CT
play simulates the evolution of a PN system

bounded | checks if a PN system and its places are bounded live checks if a PN system and its transitions are live
dead checks deadlock markings in a PN system reachable checks if a marking is reachable from Mg

firable | checks if a sequence of transitions is enabled at My reversible | checks if a PN system is reversible

pinvar computes P-invariants (or P-semiflows) tinvar computes T-invariants (or T-semiflows)

siphons | computes siphons traps computes traps

>> draw; [Pre, Post, M0O] = getMatrix;
>> b = bounded(Pre,Post,M0)

M =

Inf 0 0
****The net is unbounded!****
b=

0

Fig. 3. The PN system in Fig. 2 is bounded.

>> G = graphPN(Pre,Post,M0)

G =
Gi1 G2 | Gi3 Gig Gis Gie
1 0 0 0 -2 1 2|0 0|0 O
0 1 0 1 -2 2 3|3 410 O
Inf 0 0 2 -2 1 5|0 0|0 O
0 0 2 2 -1 0O 0|0 0|0 O
Inf Inf 0 3 -2 1 5|2 53 6
Inf Inf Inf 5 -2 1 6|2 6|3 6
G213 3 1 0 0 0O 0|0 0|0 O

Fig. 4. RG (in matrix form) of the PN system in Fig. 2.

transitions, and G21(3) = 1 means the matrix represents
the CG. S

The size of G depends on the number of markings in
the RG/CG and the number of transitions. The functions
using the RG/CG to analyze the behavioral properties are
listed in Table 1. In the case of unbounded nets the CG
gives necessary and sufficient conditions for boundness.
However, for the absence of dead states, reversibility,
liveness, reachability it only provides necessary conditions.

3. MONITOR DESIGN

A set of generalized mutual exclusion constraints (GMEC-
s) (W, K), with W = [wy...w,] and K = [k1;...;ks],
defines a set legal markings
MW, K) = (V_y{M € ZPuT - M < k)
={M ez™WT.M< K},

where w; € Z™ and k; € Z (with i = 1,2,...,r). As
shown in (Giua, 1992; Moody and Antsaklis, 2000), a
set of r GMECs can be enforced adding r places, called
monitors, with appropriate initial marking, to the given
net system. In the presence of uncontrollable transitions,
if the given GMECs (W, K) are uncontrollable®, a set
of controllable GMECs (W', K') may be computed such
that the reachable marking set of the obtained system is
contained in the set of legal markings M (W, K).

3 A set of GMECs is uncontrollable if there is a pre arc from a
monitor place to uncontrollable transitions.

P4 1y Ps 13

1 pr v p2
Fig. 5. The PN system in Exmaple 2, where {3 is uncon-

trollable.

>> draw; [Pre, Post, M0] = getMatrix; C = Post-Pre;
wl=[1002]";w2=[0021];

ki1 =2;k2=2;u=[3];

W = [wl, w2]; K = [k1; k2];

[W2c, K2¢] = controllablegmec(C, MO0, w2, k2, u);
W2 = [wl,W2c']; K2 = [k1;K2c];

>> [CS, MSO0] = monitorplaces(C, M0, W2, K2, u)
CS =

1 -2 0 1
MS0 =

2

Fig. 6. Computation of monitor places enforcing a given
set of GMECs.

Functions in directory PN_MONIT solve the monitor

design problem. The most significant ones are listed in

Table 2. The following example shows how to use them to

compute monitor places enforcing a given set of GMECs.

Table 2. Main Functions in PN_MONIT

| Name | Function |
checkgmecs tests if a set of GEMCs is controllable wrt
a PN system
controllablegmec | finds all minimally restrictive controllable
GMECs satisfying the given uncontrol-
lable GMEC
monitordesign designs a closed loop net system given a
GMEC
monitorplaces finds the row of the incidence matrix of
the monitor place used to satisfy the set
of controllable GMECs

Ezample 2. Consider the PN system in Fig. 5, where t3
is uncontrollable. Let (W = [wl,w2], K = [k;ks]) be
the set of GMECs, where wy = [1 0 0 2]', ky = 2,
wy = [0 0 2 1)T, ky = 2. Inputting the incidence matrix
C=[1-10001 -10,001 —1; —100 1],
the initial marking My = [2 0 0 0], the set of GMECs
(W, K), and the uncontrollable transitions u = [3] to func-
tion [Wc,Kc,Wu,Kul=checkgmecs(C,M0,W,K,u), we ob-
tain that W, = wy, K. = k1, W, = we and K, = ko,
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e.g., boundedness analysis, siphons computation, etc.; (2)
monitor design for GMECs; (3) reachability analysis; (4)
state estimation; (5) fault diagnosis, including diagnosabil-
ity analysis; (6) state-based opacity verification. Functions
in categories 3-6 exploit the approach based on BRG,
therefore they are able to handle some relatively large-
sized nets. PetriBaR can be freely downloaded from a web
site (PetriBaR, 2017).

Summarizing, the main features of the tool.

e Besides structural and behavioral properties analysis,
PetriBaR can also solve control problems and problems
of reachability analysis, state estimation, fault diagnosis,
and opacity verification taking advantage of the BRG
approach.

e The MATLAB environment has been widely used to
implement software tools for the control of continuous-
time systems. In addition there exists also a few other
Petri net tools based on MATLAB (e.g., Pastravanu et al.
(2004)). A tool, called HYPENS (Sessego et al., 2008),
has also been implemented in MATLAB by some of the
authors of this paper to simulate and analyze First-
Order Hybrid Petri nets (Balduzzi et al., 2000). The tool
illustrated in this paper allows one to fill the gap of
the MATLAB implementation of purely logic PNs and
may lead to the MATLAB solutions to problems of state
estimation, fault diagnosis, etc. in hybrid Petri nets.

e In most universities, MATLAB is taught in basic courses
for engineering students. Thus, it is easy for students
to get started. Moreover, PetriBaR is open source and
built in a modular way. Once the user becomes familiar
with the implemented function, he/she can easily modify
and extend them depending on his/her own requirement.
Finally, MATLAB runs on many platforms (Windows,
Unix, MacOS).

2. BASIC PETRI NET ANALYSIS FUNCTIONS

A Petri net system (PN system) is a pair (N, M),
where N = (P,T, Pre, Post) is the net structure, P =
{p1,p2,...,pm} is the set of places, T = {t1,t2,...,t,} is
a set of transitions, Pre : PxT — Nand Post : PxT — N
are the pre- and posi-incidence functions that specify the
arcs directed from places to transitions and from tran-
sitions to places, respectively, My € N™ is the initial
marking. The pre- and post-incidence functions are usually
described by m x n dimensional pre- and post-incidence
matrices, and clearly they uniquely determine the struc-
ture of the PN. Thus, to input a PN system to a function of
the toolbox, users need to give the pre- and post-incidence
matrices and a column vector that represents the initial
marking. PetriBaR contains a function, draw, to assist the
user in inputting the PN system and obtaining the cor-
responding matrices. Running function draw, a graphical
interface appears (see Fig. 1), and the user can input the
PN system by clicking “Place” /“Transition” /“Arc” and
drawing them in the blank area. By double clicking a place
(or an arc), the user can edit the number of tokens in the
place (or the weight of the arc). Finally, choosing “Save
Data”, the value of the pre- and post-incidence matrices,
and the initial marking are written in file getMatrix.
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PetriBaR - X
Place Transition Arc Run Dema Clear Save Data
— Petri Net
Selected: The start of current arc:
1
t1
p2 t p3

Fig. 1. GUI for inputting the PN system.

1
DI P2 13 D3

5

Fig. 2. The PN system in Exmaple 1.

A series of functions for basic PN structural and behav-
ioral analysis, including the construction of the reacha-
bility /coverability graph/tree (RG/CG or RT/CT), are
contained in the directory PN_BASIC of the toolbox. The
most significant ones are listed in Table 1.

For sake of brevity, and since our focus here is on the
notion of basis reachability graph, in the following example
we restrict our attention on the function graphPN that
allows us to construct the RG of a given bounded PN
system.

Ezample 1. Input the PN system in Fig. 2 through func-
tion draw. Function getMatrix returns matrices Pre,
Post, and M0. We check if the PN system is bounded using
function bounded. The output of the function is b = 0: the
net is unbounded (see Fig. 3). Then we input command
G=graphPN(Pre,Post,MO0) to construct its CG in the form
of a matrix, as Fig. 4 shows. Let us now briefly explain the
data structure of G.

Matrix G is partitioned into several submatrices:

e Gi1 = G(1 : 6,1 : 3): each row of Gy; represents
a marking (transposed) in the CG, and the index of
each marking is their corresponding row number?, i.e.,
Gu1(i, )T = M;;

e G2 = G(1:6,4): the i-th element G15(%) of G152 denotes
a father node of M;;

e G153 = G(1:6,5): Gi3(i) = —2 (resp., -1) means M; is
not a dead marking (resp., is a dead marking);

e G4, G15 and G1g (every two columns after 5-th column
and rows 1 to 6 compose a submatrix): each row of G4,
G115 and G1g describes a transition. For instance, the firing
of transition G14(4,1) at M; leads to marking Mj;, where
J = Guli,2);

e Goy = G(7,1 : 3): the first element of Go; denotes the
number of places, the second one G21(2) is the number of

2 The initial marking is at the first row, i.e., corresponds to Mj.
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Abstract: This paper presents a MATLAB toolbox, called PetriBaR, for the analysis and
control of Petri nets. PetriBaR is a package of functions devoted to basic Petri net analysis
(including the computation of T-invariants, siphons, reachability graph, etc.), monitor design,
reachability analysis, state estimation, fault diagnosis, and opacity verification. In particular,
the functions for reachability analysis, state estimation, fault diagnosis, and opacity verification
exploit the construction of the Basis Reachability Graph to avoid the exhaustive enumeration of
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Finally, they are illustrated via a series of numerical examples. PetriBaR is available online for

public access.

Keywords: Petri nets, MATLAB toolbox.

1. INTRODUCTION

Petri nets (PNs) are a powerful discrete event model.
The analysis of PNs basically concerns the study of some
behavioral properties including reachability, boundedness,
liveness, reversibility, repetitiveness, etc. and some struc-
tural properties related to the presence of P-invariants,
T-invariants, siphons, traps, etc. (Murata, 1989).

Concerning the control of PNs under static specifications,
one of the most popular approaches is based on the notion
of generalized mutual exclusion constraints (GMECs). In
such a case the set of legal markings is defined as a set of
linear inequalities and this benefits from the main feature
of PNs. In particular, Giua (Giua, 1992) demonstrated
that, in the case of controllable and observable transitions,
such constraints could be enforced simply adding some
places called monitors, also guaranteeing maximal permis-
siveness. In (Moody and Antsaklis, 2000) such a theory has
also been extended to the case where some transitions are
uncontrollable and/or unobservable.

When dealing with problems of state estimation, fault
diagnosis, opacity verification, etc. the system is typically
modeled using labeled Petri nets (LPN) to describe the
fact that certain transitions may produce no observation
when they fire (silent transitions) or may produce the same
observation of other transitions (indistinguishable transi-
tions). To avoid exhaustively enumerating all reachable
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markings and firing vectors, the notions of basis marking
and minimal explanation vector have been introduced in
(Cabasino et al., 2010) to solve the problem of fault di-
agnosis. In (Cabasino et al., 2010) the authors also show
that in the case of bounded nets, such notions allow one
to describe the system’s behaviour without enumerating
all the reachable markings (as in the reachability graph)
and introduce the Basis Reachability Graph (BRG). The
BRG has also been efliciently used to solve a series of
other problems, in particular, reachability analysis, state
estimation and opacity verification (Ma et al., 2017; Tong
et al., 2016, 2017).

The goal of this paper is that of illustrating a MATLAB
tool implementing all the above mentioned approaches. We
notice that there are many other tools for PN analysis and
simulation, such as Integrated Net Analyzer (INA) (INA,
2003), TAPAAL (TAPAAL, 2017), PN Tool (Pastravanu
et al., 2004), etc. While all these tools can be used to study
basic properties and simulating the behavior of purely
logical PNs, PNs with time, and also high level PNs, few of
them can handle the problems of states estimation, fault
diagnosis, and opacity verification. Furthermore, all the
above tools offer a user-friendly graphical interface, which
provides users an easy access but makes it hard to modify
the codes and to extend them for other purposes. On the
contrary, the PN toolbox PetriBaR we present consists
of several MATLAB functions and is meant as support for
research activities and classroom problem solving. Its func-
tions can be classified into six categories:(1) basic analysis,
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generation of test sequences are all executed by the tool
automatically. In addition, even some simple fragments of
the nominal behavior of the system under test contribute
to the reduction of test cases; of course, the more plant
features are modeled, the higher reduction is obtained.

When the test generation is performed on the SCA from
the original specification models solely with CCT ap-
proach, a test sequence of 9,647,120 steps is obtained.
In the case study, ten plant models are used. As a final
result, a test sequence with 448,752 steps is obtained,
which leads to a reduction rate of 95% in comparison to
the one obtained without plant features.

It can be stated that integrating knowledge about signal
relations into the generation process drastically reduces
the length of generated test sequences.

5. CONCLUSION

In this work, we presented the current version of our test
case generator implementation. The objective of confor-
mance testing is to determine the capability of a software
product to adhere to standards, conventions and regu-
lations. In this context, testing of nominal behavior by
considering plant features can be a good supplement for
complete testing or a replacement when complete testing
is not feasible.

In future works, we would like to omit the monolithic com-
position, as this limits the complexity of the case studies
that can be involved drastically. Although we achieved
to improve our implementation, the computation is still
primary memory intensive. Even though the resulting size
is reduced due to the plant features, those extra models
have to be considered during calculation, which leads to
the question whether and how modular approaches can be
applied and to what extent they reduce the computational
effort.

Currently, only binary signals are taken into account for
the control logic. This crucially restricts the applicability
of the presented tool. Consequently, further investigation
on extending the capability of handling integer signals
is needed. Input equivalence class partitioning might be
fruitfully applied. Furthermore, temporal and timing rela-
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tions between signals can be formulated similar to mutual
exclusion and premise.
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Input Description
wplnBu True when a workpiece is in the input buffer
True when the portal is at the drop location of
loc-IL . .
indexed line
True when the portal is at the input buffer
loc-In .
location
loc-CL True Whe%’l the portal is at the drop location of
compact line
pos-U True when the portal is in its up end position
pos-D True when the portal is in its down end position
2-1L True when the current work piece should be
p brought to indexed line
True when the current work piece should be
p-2-CL .
brought to compact line
woMC True when the workpiece reaches the expected
P position in front of the machine
MC-done True when the machine finishes its machining
wpCOut Tru'e. when the worlfplece reaches the output
position of compact line
True when the command of outputting the work-
wp-Oulput . . .
piece is received
wpCLBu True .when a workpiece is in the buffer of com-
pact line
pos-E-PC True when tl‘rle. pusher of compact line is in its
extended position
pos-R-PC True when tltle: pusher of compact line is in its
retracted position
Output Description
P-G activate the gripper
P-U move the portal upwards
P-D move the portal downwards
P-R move the portal to the right (towards IL)
P-L move the portal to the left (towards CL)
BC-P run the belt of compact line in positive direction
MC run the machine of compact line
PC-F move the pusher of compact line forwards
PC-B move the pusher of compact line backwards
Table 2. Table of inputs & outputs for the

portal, belt and machine on the compact line

Initially, the maximum length of the shortest path between
any couple of states is 5. Although this seems a reasonable
value for controllability, the DTT approach can help to
reach a better performance. After adding 5, 12 or 36
C-guards, the maximum length of the shortest path is
reduced respectively to 4, 3 or 2 steps.

Now, with the modified specification models, full SIC-
testability, full observability, and better controllability is
achieved.

4.8 Applying test case reduction with plant features

According to the relations between inputs discussed in
Sec. 3.3, for the case study, a set of exemplary plant models
are presented in Fig. 7.

The first model in Fig. 7 presents a mutual exclusion
relation between two input signals: in a nominal behavior,
pos-U and pos-D should not be true at the same time,
since a portal cannot be simultaneously in its up and down
position. Similarly, a model for the horizontal movement
can be found.

The second model presents a relation among input and
output signals. The input pos-U remains True unless the
output P-D is activated (and P-U is not active). At the
same time it is stated that - reading the model from right
to left - pos-U will not instantaneously but eventually be
True when P-U is activated. Note that it is explicitly
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loc-Tn A pos-U
A wpnBu X(P1V-Stop) X(P1V-Stop)

Portal Horizontal AX(P1G- AX(P1G-Grip)
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Fig. 6. Specification models for the horizontal portal
movement, the vertical portal movement and the belt
of the compact line

not stated that pos-U will be true directly after the
portal movement has been activated, i.e. from location P1-
NotUp2, pos-U will first remain False (as in location PI-
NotUp1), and will eventually become True (as in location
P1-Up). Analogously, a feature for the down movement
can be found.

The third model presents a premise relation between two
input signals. The input MC-done can only become True
when the input wpMC' is True, which means the machine
does only operate when the workpiece is at the expected
position in front of the machine.

It is worth mentioning that modeling of plant features is
based on domain knowledge from engineers. Then, the rest
process from composition of specification models to the



high || False | False | True | True

low | False | True | False | True
Table 1. Truth table for input combinations for
the tank example. The non-nominal combina-
tions (due to plant features) are marked in red.

nontrivial in automation systems. As presented in Fig. 4,
sensors, actuators and all other physical elements (except
the controller) are considered as plant. A controller is
designed to control the plant, and implemented according
to a set of specifications.

Fig. 4. Closed loop of plant and controller

By nature, the behavior of the plant is strongly influenced
by the controller. However, as presented in Fig. 4, in a
closed-loop system, the plant also restricts the reachable
state space of the controller in normal operation. This
leads to the idea of considering the closed-loop behavior
also during test execution.

This hypothesis can be used to reduce the number of
test cases by removing the cases that cannot occur in
nominal behavior of a system, resulting in a reduced set
of meaningful test cases. The undesired or unexpected
behavior will not be tested during early test phases (or not
at all if complete testing is not feasible). Given a tank with
two level sensors: when the sensor indicating Level High
Reached gives the value True, the sensor indicating Level
Low Reached should normally not give the value False. A
second example is a conveyor belt: if it does not run, the
sensors for detecting the position of a workpiece should not
change their value, since no workpiece has been moved and
the sensors should not be triggered in a nominal situation.
Such relations can be displayed in a truth table, indicating
the possibility to reduce the number of input combinations
as displayed in Tab. 1, where the combination of high and
not low. Apparently, one out of four combinations can be
neglected, leading to a reduction of 25% of test cases.

The aim of specifying relations between inputs as well as
outputs and inputs is to reduce the set of states for which
complete testing is performed. Effectively, this reduces the
number of states and the input vectors. This results in
fewer combinations of inputs that need to be imposed on
the controller in open-loop testing. During composition,
fewer states and evolutions need to be considered, which
reduces the computational complexity.

4. CASE STUDY

In this paper, a logistics system is used as an illustrative
example. The three subsystems are taken and adapted
from the didactic platform presented in Jordan et al.
(2017). The modules of interest in our case study are
displayed in Fig. 5.
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Q portal location detector

l> workpiece detector

== pusher end position detectori

Input flow

‘ Compact line

MC

Fig. 5. Part of a logistics system containing a portal and
two subsequent lines (top view)

4.1 System description

The portal transports workpieces from the input buffer to
either the compact line or an indexed line. In this paper,
the specification and plant behavior of the portal and
compact line are analyzed and presented. The compact line
contains a vertical buffer with a pusher, a conveyor belt
and one machine station. Several location sensors are used
to sense the position of the workpiece (yellow triangles),
the pusher (orange longish triangles) and the portal (red
circles).

Five FSM models have been used for the specification
models of the system under consideration. In Fig. 6, three
specification models for the portal and compact line are
given as examples.® It is displayed, that the portal can
move horizontally between three positions In, IL and
CL. Only in those positions it can move up and down.
Finally, only in the down end position it can activate the
electromagnetic gripper to lift a workpiece or deactivate it
(ungrip) in order to release a workpiece, respectively. On
the compact line, a workpiece is brought to a machine via
the belt; after the machining the workpiece is delivered to
the output.

In total, 15 inputs and 9 outputs are considered, as listed
in Tab. 2.

4.2 Applying DTT approach

For the sake of comparison, a monolithic composition of
the system is performed resulting in an SCA with 221
states and 8524 evolutions.

After checking with DTT approach, all the 221 states
contain non-SIC-testable parts; after adding T-guards to 8
transitions into the individual models, the system becomes
fully SIC-testable.

In the SCA, 183 states suffer from observability issue. 5 O-
actions are added to a set of locations in individual models,
so that all states are directly distinguishable from each
other.

5 Initial specification models are drawn in black; T-guards are drawn
in blue; O-actions are drawn in purple; the C-guard transitions are
drawn in green, which permits to achieve 4 steps of controllability.
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Fig. 2. Framework of complete testing, design to test, and
testing with plant features methods

set. As a last step, a test sequence is generated by solving
the Transition Tour problem of the set of minterms from
all states and all input values.

3.2 Design to test approach

Several issues have been identified in the practice of
complete testing regarding controllability, observability
and SIC-testability. The design-to-test (DTT) approach
aims to solve those issues by paying a limited effort on
the modification of design, while keeping the nominal
behavior during normal execution unchanged (Ma and
Provost (2016)). SATE incorporates the algorithms of the
‘DTT-MAT” toolbox.

A good design, which fulfills all functional requirements,
is not always a good design with respect to testing. Two
abstract Moore machine models (before and after the
modification by DTT approach) are presented as examples
in Fig. 3.

before

after

Fig. 3. Core idea of DTT approach: adding T-guards, O-
actions and C-guards to modify the initial specifica-
tion models

In the conformance testing of programmable controllers,
controllability is a measure of whether and how fast the
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implementation can be brought from an (arbitrary) active
state to another desired state. In Fig. 3, on the initial
model, the shortest path from s to s; is relatively long
(with regard to the number of states in the example
system), which represents a relatively bad controllability.
The DTT approach solves this issue by adding a minimum
number of extra controllable transitions, named as C-
guard transitions, between some of the states (drawn with
green color in the example), which can be used as shortcut
transitions when set to True.

Observability concerns whether and how fast a state can be
distinguished from other states. Apparently, in Fig. 3, the
states in the two big gray circles cannot be distinguished
directly by observation of system outputs in that moment,
since they have the same outputs. The DTT approach
solves this issue by adding extra observable actions, named
as O-actions, to such states which suffer from the presented
lack of observability.

SIC-testability issues occur in testing of controllers with
cyclic execution mode, when several input signals are ex-
pected to change their values at the same time. Physically,
multiple input changes (MIC) do not necessarily occur
at the same time. Consequently, the changes might be
read by the controller in different cycles. Then, the actual
behavior may differ from the behavior under consideration
that should be tested. Obviously, this would not be an
issue in the case that the test sequence only contained
single input changes between two successive steps, which is
however hardly achievable in practical systems (Guignard
and Faure (2014)). The DTT approach solves this issue
by adding T-guards to the initial guards of transitions
suffering from SIC-testability issues. All T-guards will be
set to False, when multiple inputs should change at once,
stopping the system at its current state such that there is
enough time to stabilize the MIC. This enables to proceed
as usual and make sure that the desired transition can be
taken.

In summary, applying the design-to-test approach, the
specification models are automatically analyzed by the
tool; then, based on the need, a minimum number of C-
guards, O-actions, and T-guards are automatically calcu-
lated and added to the models, so that the specification
models fulfill the requirements of full SICtestability, full
observability and better controllability.

3.8 Testing with plant features

With the DTT approach, complete testing can be done
more effectively. However, for large scale systems, complete
testing cannot always be achieved, because the number of
test cases grows very rapidly to the complexity of a system,
i.e. exponentially to the number of inputs and linearly to
the number of states.

Therefore, a test generation method using plant features
has been proposed for more efficient testing (Ma and
Provost (2017)). The algorithms in SATE are based on the
method in Ma and Provost (2017) but with improvements,
i.e., applying plant features earlier in the generation of
SCA rather than after the generation of explicit Mealy
machine, which further reduces the state space of test
generation. The concepts of plant and specification are



2. BACKGROUND
2.1 Communicating Moore machine with Boolean signals

In this paper, system specifications are modeled as com-
municating Moore finite state machines, adapted from Lee
et al. (1996b).

Due to simplicity and a wide range of applications,
Boolean signals are used as inputs and outputs in the
illustration of the proposed method. However, the method
can also be applicable to general digital signals with a few
adaptations. An important thing to keep in mind is that,
in contrast to event based models, where only one event
can occur at a time, signal based models allow multiple
changes of input values at once.

A communicating Moore machine extended with Boolean
signals is defined by an 8-tuple (L, lini, [, C,0,Gs,6,\) *,
where:

L is a finite set of locations.

linit is the initial location, l;,; € L.

I is a finite set of Boolean input signals.

C is a finite set of internal Boolean communicating

variables that are related to locations, a communi-

cating variable is denoted as X(I).

O is a finite set of Boolean output signals.

e G5 := expr(I,C) is a finite set of transition guards,
which are Boolean expressions built up by input
signals and communicating variables.

e §: L x Gy — L is the transition function that maps
the current location and transition guard to the next
location; a transition is fired when its source location
is active and its guard is evaluated as ‘1’ (i.e. True).

e \: L — 2°9YC is the output function that maps the

locations to their corresponding output signals and

communicating variables.

Moore machines are also represented in graphical form in
this paper. A simple example is given in Fig. 1.

X(ls)

e
—_ 02 03

Fig. 1. A simple Moore machine example with Boolean
signals

A location [ is drawn as a rounded rectangle. A location
can either have an externally observable action?, e.g. 0y
in l; or no observable action, e.g. (} in I;.

A transition § is represented by a directed edge with its
guard, e.g. —a A b for the transition from /; to l2. The use
of an internal communicating variable in transition guards
is not complicated. For example, when the location lg is
activated, X (lg) is then assigned the value ‘1. If I5 is active
at that time, the transition from [y to [3 can be fired.

1 The subscript ‘S’ will be used to stand for Specification, the
subscript ‘P’ for Plant: e.g. Lg and L p mean the set of locations for
specification and plant models

2 For readability reasons, only active outputs are presented, i.e. in
l2, o2 implicitly means o2 A =03 A =04 A —05.
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2.2 Synchronous composition of individual models

Thanks to the use of internal communicating variables, in-
teractions among individual parts of a system can be mod-
eled conveniently. In order to validate the global behavior,
individual models are first composed synchronously.

SATE’s composition is based on the algorithms used by
the tool ‘Teloco’ (Provost et al. (2011)), and the formalism
introduced in Sec. 2.1 is extended with the following
modifications:

e S is the set of states in a composed model. A state
represents a combination of locations from the indi-
vidual models.

e G, := expr(I) is a finite set of evolution guards?,
which are Boolean expressions built up by input
signals.

e ¢: Sx G, — S isthe evolution function with stability
search that maps the current state and evolution
guard to the next state. A transition between states
is named an evolution.

It is worth reminded that during the composition, a
situation is stable if no transition in any of the Moore
machines can be fired without changing the values of
input signals; otherwise, it is transient. The stability search
semantics implies that the firing of transitions continues
until a stable situation is reached. The composed model
contains only stable states, where only a change in the
input values can trigger an evolution to another state.
Therefore, the composed model is called Stable Composed
Automaton (SCA) in this paper.

3. TEST CASE GENERATION METHODS

In this paper, the testing objective is to check whether
an implemented programmable controller, seen as a black-
box with inputs and outputs, behaves correctly with
respect to its specifications. The execution of a testing
process consists of three steps: feeding the input sequence
to the controller, executing the program, comparing the
observed output sequence to the expected one generated
from specifications.

This paper focuses on the generation of test cases. As
presented in Fig. 2, the process of complete conformance
testing method is depicted in the center, while our design
to test approach and methodology for testing with plant
features are presented on the left and the right side,
respectively.

3.1 Complete conformance testing

The basic complete conformance testing is structured and
performed as follows. First, individual Moore machine
models are modeled and composed into one global SCA.
Afterwards, an equivalent Mealy machine is derived from
the SCA, which explicitly represents all Boolean conditions
of evolutions by a set of minterms* over the Boolean input

3 A specific evolution guard is noted as Je(Ig,s), With regard to its
source state and involved inputs

4 A minterm is a basic element of an explicitly presented guard, e.g.
if ge(r,1y =aA—band Ig = {a, b, c}, the corresponding minterms are
a/A—-bAcand aA-bA —c.
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1. INTRODUCTION

It is commonplace that industrial automation systems
grow larger, and thus the programmable logic controller
code grows in terms of complexity. This results in the
demand for tools that enable testing such controllers ef-
ficiently. Many model-based techniques exist in literature
to generate test cases for black-box testing; one of those
is complete conformance testing (CCT). In order to show
complete conformance of an implementation to its speci-
fication by means of testing, all possible combinations of
inputs need to be evaluated for all states. Conformance
testing of a programmable controller consists of three
phases: test generation, test execution, and result verdict.

Here, we focus on the test generation phase in order to
reduce the overall length of a test sequence, which is an
artifact of this phase. It is a challenging endeavor to create
a complete set of test cases for large scale systems as the
number of test cases grows exponentially with the number
of states and inputs. In addition to the before-mentioned
state space explosion, in many cases CCT suffers from
single-input-change-testability (SIC-testability) issues dis-
cussed in Provost et al. (2014).

During test sequences execution, the actual test case eval-
uation is performed after reaching a certain source state.
Thus, additional computations have to be made to actually
reach this desired state to perform the considered test
step. Moreover, if the system evolution is not observable or
the system state after the test step is not distinguishable
from others, it has to be identified with state identifica-
tion techniques, which demand further effort (Lee et al.
(1996a)). These two actions, the homing and identification
sequences, constitute a testing overhead, which can be
remarkably big for larger systems. Consequently, reduc-
ing this testing overhead is an aim for our design-to-test
(DTT) approach (Ma and Provost (2016)). To achieve this,
the system design is modified automatically, introducing
some design overhead with the goal of reducing the testing
overhead discussed beforchand.
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The second methodology addresses the reduction of the
number of generated test cases in terms of reducing the
controller input space in each system state, taking into
account which outputs the physical plant can actually
produce. The underlying hypothesis is that in the closed-
loop, some inputs for the controller will never occur
under nominal system behavior and thus can explicitly
be neglected during testing.

Even limited knowledge about the system, i.e. a single
plant feature, already leads to a reduction of test cases in
comparison to the CCT approach. There are some common
relations between inputs that can easily be identified
such as mutual exclusion and premise. Similarly, relations
between outputs and inputs can be found. Those features
are presented and discussed in more detail in Ma and
Provost (2017), where also templates are provided.

Other approaches to generate test cases automatically
from models can be found in the literature. For example
Enoiu et al. (2013) and Mani and Prasanna (2016) use a
model checker to generate test suites based on Function
Block Diagrams. In Bohlender et al. (2016) high coverage
is realized more efficiently by symbolic execution. In con-
trast to the before-mentioned approaches, we consider full
coverage taking into account the behavior of the system
under consideration. Kormann and Vogel-Heuser (2011)
create a reduced set of meaningful test cases to be executed
in a simulated environment for hardware based component
faults, whereas we focus on nominal system behavior.

In this paper, we present our tool, Stable Automaton-
based TEsting (SATE), that implements the two ap-
proaches that aim for more effective and shorter test
sequences. In the next section, necessary background on
communicating Moore machines and their synchronous
composition are recalled. In Sec. 3 the framework and
actual implementation are discussed accompanied by a
case study illustrating the effectiveness of the presented
tool in Sec. 4. This work is concluded with some remarks
on potential future work in the last section.



local controllers could also be used to call legacy code or
automatic control functions.

Listing 2. Local controller implementation

IF LC_M1 THEN
ton_-M1 (IN:=TRUE, PT := T#1000MS);
output .Ml := TRUE;
END_IF
ton_M1(IN:=timer_1s23 .IN);
IF ton_M1.Q = TRUE THEN
ton-M1(IN := FALSE);
output .Ml := FALSE;
VS_Mldone := TRUE;

END_IF

Listing 2 depicts an example where the output M1 should
be active for one second. After this time, an uncontrollable
virtual sensor event is emitted to notify the supervisor
about the finished task.

Listing 3. Virtual sensor implementation

IF FE_ls THEN
ton_vs (IN:=TRUE, PT :

T#1000MS ) ;
END_IF
ton_vs (IN:=ton_vs .IN);
IF ton_vs.Q = TRUE THEN
ton_vs (IN := FALSE);
virtualsensor.VS_ls := TRUE;
END_IF

Virtual sensors allow the user to emit uncontrollable
events at predefined conditions. The conditions can be
arbitrarily defined, a common implementation is depicted
in Listing 3. In this case, the virtual sensor is emitted one
second after the occurrence of FE_1s.

6. CONCLUSION

This paper has outlined a framework to control a physical
plant using PLC code automatically generated from a
symbolic, modular supervisor. It is used, coupled with
a didactic plant, as a teaching platform to introduce
students to model-based approaches and SCT. During
this course the implementation proved to be reliable,
and the integration of modeling and execution on the
same platform enables fast and frequent modifications.
In contrast to the previously-used implementation, larger
supervisors and more complex systems can be considered.

There are still two major issues for the implementation of
supervisory controllers on PLC:

e PLCs are signal-based, whereas the SCT is event-
based. Events must be generated from signals and
afterwards converted back to signals. This introduces
a delay between plant and controller.

e The SCT assumes controllable events to be sponta-
neously generated. In practice, the controller has to
implement a choice algorithm and guarantee fairness
and /or determinism.

In the future, this framework will be extended and po-
tentially adapted for an industrial-sized problem. An in-
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teresting extension would be to adopt a signal-interpreted
approach, as introduced by Fouquet and Provost (2017).

The Python executable for the automatic code generation
can be found on the chair website: www.ses.mw.tum.de .
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event is disabled in the active state set, i.e. evaluating a
set of Boolean guards generated from the states restricting
this event. For the controllable events, the synchronization
determines whether this event will be taken or not. If
an uncontrollable event is detected in a state where the
synchronization disables it, the controller exits to the error
mode where it will stay until the plant is restarted.

5. CASE STUDY

The framework presented in this paper is used to teach
SCT to student groups. A didactic platform is separated
into subsystems and each group is in charge of implement-
ing the controller for their subsystem. This course is based
on a previously held course described by Jordan et al.
(2017). Since then the physical plant remained unchanged,
but the control architecture has been renewed.

Fig. 4. Didactic Platform
5.1 Didactic Platform

The didactic platform (Figure 4) consists of two separable
parts. The first part is a combination of assembly lines
serviced by two 2-axis portal cranes. The portal cranes
transport workpieces between different stations, while the
assembly lines move the workpieces with conveyor belts
and use a variety of tools on them.

The second part revolves around two 3-axis portal cranes
with overlapping domains, transporting workpieces be-
tween two assembly lines, a welding robot, and a storage.

Modularization of the platform  The two parts are further
divided into subsystems to simplify the modeling and to
allow students to work independently. Each subsystem
with 10 to 40 Boolean inputs and outputs is controlled by
a remote input/output module, connected via EtherCAT
to a Laptop running a Beckhoff TwinCAT Soft PLC.

Subsystem interaction ~ The subsystems have interfaces
where workpieces are transported from one subsystem
to another. These interfaces require the cooperation of
multiple student groups and thus cause the most difficul-
ties. This high-level control is implemented by two global
controllers, interacting with the subsystems through elec-
trically connected inputs and outputs. The communication
protocols usually require a subsystem to request clearance
from the global controller.

5.2 Modeling Procedure

Each controller is synthesized based on a set of plant and
specification models. They are implemented in Supremica
(Malik et al. (2017)) and the symbolic, modular supervisor
is generated with the built-in functions.
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Fig. 5. Example plant models

Plant models  Plant models describe the behavior of
the physical plant by restricting the language to what
is physically possible. These models can be of varying
detail. A common restriction for sensors and actuators
is, for example, that rising and falling edges must occur
alternatingly. Figure 5 displays a set of plant models for a
light sensor (1s) and a conveyor belt (B1).
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Fig. 6. Possible conveyor belt specifications
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Specification models  The specification models restrict
the capabilities of the plant to fit the requirements of
the user. For example, a requirement might be that after
an uncontrollable event occurs, an action is performed.
Figure 6 displays two different specifications for a common
cyclical execution: After a rising edge is detected, a belt is
started. When the falling edge occurs, the belt is stopped.
The plant models in Figure 5 can be used for this example.

When the students are modeling their first specifications,
they usually model them similarly to the specification in
Figure 6a and thus run into controllability issues because
of disabled uncontrollable events. The specification in
Figure 6b avoids these issues and recovers controllability.
On the other hand, it might not be desirable to allow the
removal of a piece before the belt is started. In this case,
the plant model has to be modified to further restrict the
occurrence of RE_1s1 and FE_1s1.

Correctly modeling the plant behavior on the first try is
hard. There has to be a balance between permissiveness,
detail and solution independence. A very unrestrictive and
solution-independent plant model will allow unrealistic
event combinations and impede specification design. Plant
models with too much detail will favor a specific solution
and may conflict with the real behavior.

Local controllers and virtual semnsors  Local controllers
are used to control outputs that should not be interrupted
by the supervisor. When a combination of controllable
actions should be executed in a predefined order and with
strict timing constraints, the synthesized controller can not
be trusted to take the right decisions. In this case, local
controllers allow the implementation of arbitrary functions
that are enabled as a controllable event. In addition,



