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A New Microscopic Traffic Model Using a
Spring-Mass-Damper-Clutch System

Zhaojian Li", Firas Khasawneh, Xiang Yin

Abstract—Microscopic traffic models describe how cars
interact with their neighbors in an uninterrupted traffic flow
and are frequently used for reference in advanced vehicle control
design. In this paper, we propose a novel mechanical system-
inspired microscopic traffic model using a mass-spring-damper-
clutch system. This model naturally captures the ego vehicle’s
resistance to large relative speed and deviation from a (driver-
and speed-dependent) desired relative distance when following
the lead vehicle. Compared with the existing car-following (CF)
models, this model offers physically interpretable insights into the
underlying CF dynamics and is able to characterize the impact
of the ego vehicle on the lead vehicle, which is neglected in the
existing CF models. Thanks to the nonlinear wave propagation
analysis techniques for mechanical systems, the proposed model,
therefore, has great scalability so that multiple mass-spring-
damper-clutch systems can be chained to study the macroscopic
traffic flow. We investigate the stability of the proposed model
on the system parameters and the time delay using the spectral
element method. We also develop a parallel recursive least
square with inverse QR decomposition (PRLS-IQR) algorithm to
identify the model parameters online. These real-time estimated
parameters can be used to predict the driving trajectory that
can be incorporated into advanced vehicle longitudinal control
systems for improved safety and fuel efficiency. The PRLS-IQR is
computationally efficient and numerically stable, and therefore,
it is suitable for online implementation. The traffic model and
the parameter identification algorithm are validated on both the
simulations and naturalistic driving data from multiple drivers.
Promising performance is demonstrated.

Index Terms— Car-following (CF) model, parameter identifi-
cation, stability of time-delay system.

I. INTRODUCTION

RAFFIC congestion has been one of the most prevalent

and stubborn challenges in urban areas for decades, caus-
ing a spectrum of issues including wasted time and economic
loss [1], elevated driver stress and frustration [2], and increased
air pollution [3]. It is estimated that in 2017, traffic congestion
costs U.S. more than $300 billion and drivers in big cities spent
more than 100 hours in congestion [1]. To alleviate traffic
congestion, various traffic control technologies have been
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proposed, including variable speed limits [4], [S], dynamic
traffic light control [6], [7], and ramp metering [8], [9]. It is
worth noting that these technologies all require accurate real-
time traffic estimation and prediction. It is therefore of critical
importance to have good understanding of the traffic flow to
enable those traffic control systems.

As such, numerous traffic models have been proposed to
investigate traffic characteristics and flow evolution. The traffic
models are generally grouped into two categories, macroscopic
and microscopic. Macroscopic models are concerned with
the macroscopic traffic flow characteristics such as traffic
density, average speed, and traffic volume [10]. These traffic
models are inspired by continuum fluid flow theories and under
different assumptions, they are further classified as kinematic
models [11]-[13], dynamic models [14], [15], and lattice
hydrodynamic models [16], [17]. On the other hand, micro-
scopic traffic models are concerned with individual vehicles
and study the local vehicle interactions in terms of speed,
relative distance, and acceleration. Microscopic models can
be further categorized as cellular automata (CA) models and
car-following (CF) models where CA models are based on
stochastic discrete event system with the ability to characterize
the lane change behaviors [18], [19] while CF models study
the ego vehicle’s interaction with its preceding vehicle in a
single lane [20], [21]. CF models have great implications to
the design of driving assistant systems such as adaptive cruise
control [22] and is the focus of this paper.

The development of CF models can date back to the
1950s [20]. Among the many CF models, the arguably
most well-known model is the Gazis-Herman-Rothery (GHR)
model, which was developed by the General Motors research
lab in the late 1950s [21]. The model is based on the hypoth-
esis that the acceleration of the ego vehicle is proportional
to the relative speed and inversely proportional to the relative
distance, assessed at time 7 earlier with 7 being the delay
due to reaction time. Parameters including the orders of the
speed term and relative distance term, as well as a gain,
were calibrated using data from wire-linked vehicles. Since
then, many variants of GHR models have been developed,
proposing different combinations of “optimal” parameters on
various sets of experimental data [23]-[25]. Another class
of widely-used CF models are the optimal velocity models
(also referred to as Helly model), which considers a speed
and/or acceleration dependent desired spacing and explic-
itly incorporates an error term [26]. Several variants have
also been proposed and calibrated on different experimental
datasets [27], [28]. Besides the above models, some other types
of models are also proposed, including collision avoidance
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models [18], [19], psychophysical models [29], [30], and
fuzzy logic-based models [31]. A comprehensive review of the
CF models can be referred to [22]. Despite the many afore-
mentioned CF models, the available relationships are still not
rigorously understood and proven [22].

In this paper, we propose a new microscopic CF model,
inspired by the mechanical mass-spring-damper-clutch system.
There are natural similarities between the CF dynamics and the
mass-spring-damper-clutch system: 1) the ego vehicle tends
to accelerate when the relative distance to the lead vehicle is
too large and tends to decelerate when the relative distance
is too small, which resembles a mechanical spring between
two masses; 2) the ego vehicle tends to follow a similar
speed as the lead vehicle, resisting large speed difference. This
phenomenon resembles a mechanical damper between two
masses; 3) drivers tend to have delayed actions due to reaction
time, which resembles a mechanical clutch whose engage-
ment induces delays. Therefore, we propose a mass-spring-
damper-clutch system to model the CF dynamics. In [32],
a mass-spring system is proposed, which is oversimplified
and neglects the delayed reaction and resistance to relative
speed. A similar mass-spring-damper system was proposed
in [33], however, the delay due to the driver’s reaction time is
also neglected. With the proposed mass-spring-damper-clutch
model, we further conduct stability analysis on the time delays
and the related parameters using spectral element method [34].

Real-time driving prediction has shown to be critical to
improve fuel efficiency and road safety in advanced driving
assistant systems [35]. In this study, we develop a parallel
recursive least squares with inverse QR decomposition to
identify the model parameters in real-time. The algorithm is
very computationally efficient and numerically stable that is
suitable for the use of real-time prediction [36]. We validate
the parameter identification framework in both simulations and
naturalistic driving data of three drivers. Promising perfor-
mance is demonstrated.

The contributions of this paper include the following.
First of all, we develop a novel mechanical system inspired
mass-spring-damper-clutch system to model the CF dynamics.
The new model incorporates the impacts of the ego vehi-
cle on the lead vehicle and can be extended to estimate
and predict macroscopic traffic flow with wave propaga-
tion techniques on chained mass-spring-damper systems.
Secondly, we perform stability analysis on the proposed
model using the spectral element method to determine the
system parameter set that retains stability under different
time delays. Last but not least, we develop a parallel recur-
sive least square with inverse QR decomposition to estimate
the model parameters in real time with great computa-
tional efficiency and numerical stability. Promising results are
demonstrated both in simulations and on naturalistic driving
data.

The remainder of this paper is organized as follows.
In Section II, we present our mechanical system inspired CF
model, followed by the stability analysis of the model in
Section III. In Section IV, we present an online parameter
identification algorithm using parallel recursive least squares
with inverse QR decomposition. The validation of the parame-
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(a) Schematic diagram for car-following dynamics.
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(b) A mechanical mass-spring-damper-clutch system.

Fig. 1. A car following model using a mass-spring-damper-clutch system.
ter identification framework is presented in Section V, both
in simulation and on experimental data. Finally, conclusion
remarks are drawn in Section VII.

II. MECHANICAL SYSTEM INSPIRED CF MODEL

The car-following dynamics is illustrated in Figure la,
where vehicle n follows vehicle n» — 1 in a single lane.
By convention, we name vehicle n — 1 the lead vehicle
and vehicle n the follow/ego vehicle. The speeds of the ego
vehicle and the lead vehicle are v, and v,_1, respectively. The
relative distance (or range) between the two vehicles is denoted
as Ax,. A car following model is characterized in terms of
the ego vehicle’s acceleration as a function of relative distance,
vehicle speed, and relative vehicle speed [21]:

an(t) = f(Ax(t — 1), Av,(t — 1), 0, (t — T1)), (D)

where a,, is the acceleration of the ego vehicle (vehicle n), 7,
is the delay due to driver reaction time and vehicle response
time of the ego vehicle, and Av, = v,—1 — v, is the relative
speed between the lead vehicle and the ego vehicle. Various
mathematical models have been proposed to characterize the
relationship [21], [23], [26], [28]. However, these models are
mainly based on data regression and lack insights on the
system dynamics [22].

In this paper, we propose a new mechanical system inspired
CF model as shown in Figure 1b, where vehicle n and vehicle
n—1 are, respectively, represented as rigid bodies with masses
M, and M,_;. The two masses are connected with a spring
with stiffness k;, a damper with damping coefficient c¢,, and a
clutch that induces time delay 7. Note from the observation
that drivers have different desired relative distances at different
vehicle speeds [26], [27], the spring in the model has the
following speed-dependent relaxation length X¢(v,), which is
illustrated in Figure 2.

if v, <op1
if Op,1 = Uy Z0p2 (2)

XO,mim
Xo(n) = {50 - U,

Xo,max, oOtherwise,
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Fig. 2. Speed-dependent spring relaxation length.

where v,,1 and v, > represent the lower and upper threshold
points, respectively; and the slope is denoted as s,,.

The mass-spring-damper-clutch system naturally character-
izes human driving when following a vehicle. First, drivers
tend to resist large relative speed (positive or negative), which
is captured by the damper that exerts forces responding to
relative speed between the two vehicles. The spring stiffness
k, in the model represents the driver’s resistance to the
deviation from a desired following distance where larger k,
indicates the driver’s stronger preference on maintaining a
(speed-dependent) desired following distance. Second, drivers
tend to follow a desired speed-dependent distance from the
lead vehicle, which is captured by the spring with a speed-
dependent relaxation length that exerts forces responding to
deviations from the relaxation equilibrium. Larger &, indicates
the driver’s stronger preference on maintaining the desired
following distance. Third, the delay 7, due to driver reaction
time and vehicle response time is captured by the clutch which
induces a time delay for engage and disengage.

Remark 1 (Advantages of the Proposed Model): Compared
to existing CF models [21], [23], [24], [26]-[28], the pro-
posed model offers several advantages. First, unlike exist-
ing models that are mainly derived from data regression,
this mechanical system inspired model provides interpretable
physical insights on the CF dynamics. Second, the proposed
model can characterize the impact of the ego vehicle on
the lead vehicle, i.e., the lead vehicle tends to accelerate
(if not changing lane) if the ego vehicle stays too close. This
phenomenon is neglected in existing models and therefore
it will cause issues when chaining CF models to represent
macroscopic traffic. Third, thanks to the wave propagation
techniques in mechanical mass-spring systems, the proposed
model has good scalability when the mass-spring-damper-
clutch systems are chained together to model macroscopic
traffic flow, e.g., study the impact of shock waves in the context
of mass-spring-damper systems.

Based on the mass-spring-damper-clutch model and the
Newton’s law, the equations of motion of the system can be
written as:

Ax,(t) = v,—1(t) — v, (1),
Mnbn(t) =ky [Axn(t —7)— Xo(vn(t — 7))]
+cp Aoy (t — 7). (3)

In a normal highway car-following case, ie., v, <
vn < g2, the second equation in (3) becomes

0 (1) =k /My (Axp(t — 7) — s0,(t — 7))
+en/MpyAvy(t — 7). (4)

Defining x; = Ax,, x2 = Av,, and u = v,_1, (3) can be

written as

x1(t) = u(t) — x2(2),
X2(t) = kn/My [x1(t — 1) — sx2(t — 7)]
+cn/My(u(t — 1) — x2(t — 7)). Q)

In the following section, we investigate the stability of the
model on the system parameters and time delay.

III. STABILITY ANALYSIS
In this section, we perform stability analysis of the proposed
CF model in Section II. From (5) and introducing the new vari-
ables o = k,/M,, and p = c¢,/M,, and setting the lead vehi-
cle’s speed to be constant according to u(t) = u(t — ) = u,
equation (5) can then be written as

X1 _ 0o -1 xl(t) 0 0 xl(t — T)
X2 |0 0 |]|x2() Tla —(sa+p) || x20 —1)
+ [ﬁ“u} , or Xx=Ax(1) +Bx(t — 7) +£(r), (6)

where A, B, and f are corresponding matrices. Equation (6)
is a Delay Differential Equation (DDE) with a constant point
delay r. The state-space for these equations is typically
taken as the space of continuous functions. Consequently,
due to the infinite dimensional nature of this state-space the
stability analysis of Eq. (6) is more difficult than its delay-free
counterpart. Nonetheless, there are several methods available
for the stability analysis of this problem including the semi-
discretization method [37], Chebyshev polynomials [38], and
the spectral element method (SEM) [34]. In this paper we will
use the SEM approach due to its flexibility and efficiency [39].

The main idea of the SEM is to discretize the state space
of Eq. (6) and then construct a dynamic map over one period
where the length of this period for autonomous systems is
typically taken to be the length of the time delay z. The
eigenvalues of the resulting matrix that describes this dynamic
map must be within the unit disc of the complex plan in order
for the corresponding DDE to be stable. While convergence
in the SEM can be obtained either by using multiple temporal
elements (h-refinement) or by increasing the order of the
interpolating polynomial (p-refinement), in this study we use
one temporal element and only increase the order of the
polynomials to achieve convergence.

Since the vector f in Eq. (6) only affects the steady state
solution but does not affect the stability analysis, we drop it
from the subsequent discussion. Let T = {ti}?if be a set of
n + 1 distinct temporal mesh points on [0, 7], and let ¢, and
¢m—1 be 2 x (n+ 1) vectors containing the values of the states
x(7) and the delayed states x(r — 7), respectively, evaluated
on T. We choose a barycentric Lagrange interpolation [38] to
represent the states according to

x(t) =®c¢y, and Xt — 1) = Py, @)
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where ® = ®(t) = (¢(r) ® I), and ¢(r) is the vector
of barycentric Lagrange interpolating polynomials ¢(t) =
[Li(t), La(t), ..., Lyt1(®)], T is the 2 x 2 identity matrix,
while ® is the Kronecker product. We now substitute the state
approximations into the DDE to obtain

(& — Ad)c,, = Bdc,_| +e€, (8)

where € is the vector of approximation errors. Let ¥ =
[wi(@), wa(2), ..., ynt1(t)] be a vector of linearly indepen-
dent test functions. This set of functions is then used in
a Galerkin approach where the errors are required to be
perpendicular to the space spanned by the set ¥. The result is
the 2(n + 1) x 2(n + 1) system of equations

T T

/\p(é—mb)dz en = /\IIB<I>dt en-1, (9
0 0

where W = (¥ ® I). Note that the integrals in Eq. (9) are
often difficult to evaluate analytically which necessitates using
numerical integration as described in [34]. Equation (9) can
then be used to construct a dynamic map I' according to

T -1 T
ey = /\It(i)—A<1>)dt /‘IIB<I>dt Cnt
0 0
= Tepo. (10)

In order to ascertain the stability of Eq. (6), we examine the
eigenvalues of T': if all the eigenvalues are within a modulus
of less than one in the complex plane then the system is
asymptotically stable.

In this paper we used the SEM with a 100 x 100 grid
in the (a,f) plane where a € [0.01,2], B € [0.01, 8],
while 6 equally spaced values of 7 were considered in the
range 7 € [0.2,2]. The temporal mesh used consisted of
21 Legendre-Gauss-Lobatto points which correspond to an
interpolating polynomial of order 20, while the trial functions
were the shifted Legendre polynomials. Increasing the order
of the interpolating polynomial beyond 20 did not change the
results, thus indicating the convergence of the solution.

Figure 3 shows the stability diagram in the (a, f) plane
for 6 different values of 7. The shaded region under each
curve is stable, while the area above the curves are unstable.
It can be seen that the triangular stability regions shrink as the
value of the delay parameter increases from 0.2 to 2. In order
to show the resulting stable and unstable system responses
two points were simulated in Figs. 3b and ¢ using Matlab’s
dde23 function and a value of u = 20 in Eq. (6). The chosen
stable point is (¢ = 1, = 2,7 = 0.2), while the selected
unstable point is (¢ = 1.6, = 2,7 = 0.2). The history
function used in the simulation was the perturbed steady state
solution X = Xyt (1 4+ 0.10) where Xy is the constant steady
state solution given by

Xstst = A :E _1+as+ﬁ
SS X2 stst a @ .

Figure 3b shows that the perturbed system goes back to
the steady state solution as the system evolves. In contrast,

(1)
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Fig. 3. (a) The stability diagram in the (a, f) plane for increasing values
of 7 as well as the simulated time series for 7 = 0.2, (b) (a = 1, f = 2),
and (¢) (@ = 1.6, f =2).

the perturbed, unstable system of Fig. 3c deviates from the
steady state solution and grows exponentially.

IV. ONLINE PARAMETER IDENTIFICATION

Vehicle speed prediction is essential in automated longi-
tudinal control for improved fuel efficiency and safety [35].
Existing studies on cooperative cruise control generally
assume that the dynamics of the preceding vehicles are
available [40], [41]. While this assumption is valid for fully
autonomous vehicle platoon, it does not hold if human drivers
are involved. Therefore, it is important to accurately pre-
dict human driver maneuvers to provide a “comprehensive
preview”. In this paper, we develop a framework to identify
the parameters and predict vehicle speed changes online.

We first discretize (4) using the explicit Euler method with
sampling time Af, which gives

vp(k) —v,(k—1)
At

= kn /M, (Ax,(k — d) — s,0,(k — d))

+cn/MpAvp(k — d), (12)

where d = round(z,/At) is the corresponding delayed steps.
For a specific delay d, define a,(d) = k,/M,, p,(d) =
—(knsn)/M,, and y,(d) = ¢, /My, then (12) can be written as
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the following linear equation:

an(d)
Bn(d)
yu(d)
o (k) —ovp(k — 1)

= A . (13)

Given a time series data of K steps, K > d, and define
the parameter vector p,(d) = [a,(d); pn(d); yn(d)], then the
parameters can be identified by solving the following least-
square problem:

[Axp(k —d) va(k —d) Avp(k —d)]

min | A, (d)pa(d) — Ba(d)|, (14)
pu(d)
where
Ax,(0) 0, (0) Av,(0)
Ax, (1) v, (1) Av, (1)
An(d) = : : :
Axn(N —d) v,,(N.— d) Avn(N —d)
and

0u(d) — vu(d — 1)
By = | A D@
on(N) — vy (N — 1)

are the data matrices of vehicle n. Note that for different
delay ds, the data matrices are different, which leads to
different identified parameters. In this paper, we consider
the possible range of the delay 7, € [Tmin, Tmax]- With the
sampling time Af¢, the range of the discrete time delay is
d € {dmin, dmin+1, - - - , dmax}, Where diin = round (tyin/ At)
and dpax = round (tmax/At).

It is straightforward to show that the optimal solution
to (14) is

pi(d) = (Ar(d)An(d)) " AL(d) B, (d). (15)

Note that the sizes of matrices A, and B, increase as
the data length grows, causing computational issues if imple-
mented online. Therefore, recursive computation is needed.
In this paper, we exploit a recursive least squares with
inverse QR decomposition algorithm (RLS-IQR) for online
identification, which has great numerical stability and com-
putational efficiency [36]. Specifically, at each time step k,
k > d, the algorithm takes in the input vector x(k) =
[Axp(k-d) v,(k — d) Av,(k — d)] and output y(k) =
w®=vak=D ©anq then update the parameters p,(d). The
details of the update is shown in Algorithm 1. Since there
are multiple possible delays, we run the RLS-IQR in parallel
for each d € {dmin, dmin+1, - - - , dmax}. To determine the best
delay d and the corresponding parameter p(d) for prediction,
we accumulate the prediction error as:

J(d, k+1)=(1—ag)J(d, k)
+aoly(k 4+ 1) — x(k + 1) p; ()],

with J(d,0) = 0 for all d € {dmin, dmin + 1, -+ , dmax} and
ao € (0, 1] is the learning rate. To determine the best delay

(16)

Algorithm 1 Parallel Recursive Least Squares With
Inverse QR Decomposition

Parameters: Accumulated error learning rate o, RLS
forgetting factor 4, inverse matrix
initialization parameter J.

Inputs  {Axp(k), v (k), Aoy (k)} ;.
Outputs  : {p,(d, k), Ju(d,k)}}_;,d = dmin, - - , dmax.
1 initialize p,(d,0) < 03,1, R™T(d) < dI3, J(d,0) < 0,
d = dmin, - -+, dmax;
2fork=1— N do
/* Parallel loop for possible delays */
3 | for d = dnin — dmax do
4 if kK > d then
5 set
AT (k) < [Axn(k=d) vn(k—d) Avg(k=d)], T (k) <
U,,(k)fAu;,(kfl !;
/* Accumulate prediction error */
6 compute ¢y (k|k — 1) = y(k) — xT (k) p,(d, k);
7 Jd, k) <~ (1 —a)J(d, k—1)+ aleg(klk — 1)[;
/* Parameter update */
8 initialize u; ,, < 0,bp < 1,1 <j <3, m < j;
9 fori =1— 3 do
10 aj =272 Y5 rj(d k= Dx():
11 bi = ,/biz_l + al.z;
12 si = ai/bi;
13 ¢i = bi—1/bi;
14 for j=1—1ido
15 rij (k) = 2~V 2eirij (k — 1) = siui—1,j;
16 Ui j = Cillj—1,j —i-/l*l/zs,-r,-j(k— 1);
17 end
18 end
19 z(k) = e(klk — 1)/b3;
20 fori=1— 3do
21 | pn(d, k) < pu(d, k — 1) + z(k)u; 3;
22 end
23 end
24 | end
25 end

parameter d, we use the delay parameter corresponding to the
minimum accumulated error:

d* (k) =argnbinJ(d,k). 17)
Then the parameter for prediction is chosen as p*(k) =
pn(d™). The process is summarized in Algorithm 1.

V. SIMULATION VALIDATION

In this section, we perform simulation to validate the devel-
oped online parameter identification algorithm. Towards that
end, we use the mass-spring-damper-clutch system with the
parameters listed in Table I. The vehicle following is simulated
over a 50 seconds horizon with initial ego vehicle speed 5 m /s
and initial distance headway 20 m. The lead vehicle speed
profile is set as v; = 15 — Sexp(—0.05¢). Following the
dynamics (5), the ego vehicle speed and the relative distance
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TABLE I
PARAMETERS FOR VEHICLE FOLLOWING SIMULATION

Mplkg] T kn[N/m] | en[N -s/m] | snls] | ma[s] | At]s]
1000 100 500 5 0.4 0.1

14+
) = ego vehicle
g12 —— lead vehicle |
-
o)
210
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)
>

6 L
100 200 300 400 500
Time steps

Fig. 4. Simulated vehicle speeds.

is obtained. The speeds of the lead vehicle and ego vehicle
are shown in Figure 4.

We apply the Parallel RLS-IQR algorithm in Section IV
on the simulated data. We consider the reaction time range
as tmin = 0.2[s] and tpmax = 1[s]. With the sampling time
At = 0.1, the corresponding delays are dpyj, = 2 and
dmax = 10. As a result, we run a parallel of 9 RLS-IQR
for each of the possible delays. The main parameters in the
algorithm include the forgetting factor y, learning rate o, and
inverse matrix initialization J. The forgetting factor 0 < 4 <1
reduces the influence of old data; one typically chooses a
value between 0.9 and 1. It is equivalent to adding exponential
weights e ~*¥ for data from k steps back. Our prior experience
indicates that 0.95 is a reasonable choice and has thus been
used in this study. The learning rate parameter a controls how
aggressive the parameters are updated. High ag corresponds
to faster convergence but too high ag can also make the para-
meter update diverge. In our application, the value 0.05 gives
consistently fast convergence rate (10 steps as shown in Fig. 6).
The matrix inverse initialization parameter ¢ is a large positive
number. However, too large J can slow down the convergence
rate. Through tuning we find that 6 = 10 is a good choice.
The accumulated prediction error for all the delays are shown
in Figure 5. It can be seen that d = 4 gives the lowest
prediction error, which matches the specified time delay in
the simulation.

The online estimated parameters are shown in Figure 6.
It can be seen that in the ideal simulation case, i.e., no model
uncertainty and perfect measurement, it only takes 10 steps
(1 second) to identify the parameters. This justifies the use of
online prediction. However, in reality sensor noises exist in
the measurement channel. We next investigate the sensitivity
of algorithms to the measurement noises.

Towards this end, we inject measurement noises in the
measurement channels. We consider 4 levels of noises with
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Fig. 6. Online estimated parameters. It can be seen that it only takes 10 steps
(1 sec) to correctly identify the parameters in simulation.

respect to signal-to-noise ratio (SNR). The SNR of a discrete
signal y of length N with noise e is defined as

S0k —e®)”
legv:1 ez(k)

In the simulation, we inject Gaussian noises to ego vehicle
speed, relative distance, relative speed, and acceleration of the
ego vehicle. We performed the online system identification
on noise levels: no noise, SNR 30 dB, SNR 15 dB, and
SNR 5 dB. The parameter estimation performance is shown
in Figures 7-9. It can be seen that the algorithm is robust to
noises and have fast convergence rate even under large noise
levels.

Remark 2: The online algorithm described above is used
to identify the parameters of the ego car driver that can be
used to predict driver demand for engine efficiency. We note
that if Vehicle-to-Vehicle (V2V) communication is available,
the lead vehicle’s car following data (i.e., range, relative
speed, and acceleration) can be transmitted to the ego car
and the parameters of the lead car can be similarly identified.
This prediction can be utilized to improve the controls of the
ego car for better fuel efficiency, ride comfort, and safety.
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remains the same except that y is now set as 0.25. It can be
Fig. 9. Estimation of y under different noise levels. seen that the ego vehicle responds by first decelerating due to

Furthermore, we study the case where lane changes are
involved. Specifically, we consider that a vehicle cuts in
between the lead vehicle and the ego vehicle. As shown
in Figure 10, at second 10 a vehicle cuts in with a speed less
than the previous lead vehicle but greater than the ego vehicle.
The relative distance between the cut-in vehicle and the ego
vehicle is set as 30 meters. The parameters of the new lead car

reduced relative distance and then accelerate to catch up with
the lead vehicle speed. When a lane changing is detected (e.g.,
the relative distance suddenly changes more than a threshold
such as 5 meters), then the parameter identification algorithm
resets. It can be seen that the algorithm quickly converges to
the new parameters within two seconds. This demonstrates the
feasibility of its online implementation even under scenarios
with sudden changes.
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Fig. 13. Sample vehicle acceleration and online predictions for five drivers. The prediction is based on best approximated delays, i.e., the lowest accumulated
prediction error. The proposed CF model has better prediction performance than the Gipps model due to its online adaptation capability.

VI. MODEL VALIDATION ON NATURALISTIC
DRIVING DATA

In this section, we validate the proposed mass-spring-
damper-clutch CF model and the online parameter estimation
algorithm on a naturalistic driving dataset from the Integrated
Vehicle based Safety System (IVBSS) program [42]. The main
objective of the IVBSS program was to investigate the effec-
tiveness of driving assistant systems such as Lane Departure
Warning, Curve Speed Warning, and Forward Crash Warning.
A diverse group of 108 drivers participated in the program with
balanced age and gender. The participants drove the experi-
mental vehicles for their personal use for about six weeks.
The experimental vehicles are equipped with data collection
instruments to record driving data including vehicle speed and
acceleration, as well as the relative distance and relative speed
to the leading vehicle that are estimated using Mobileye [43].
Data including vehicle speed, acceleration, relative distance
and relative distance are recorded every 0.1 second (10 Hz).
The vehicle fleet and some instrumentations are illustrated
in Figure 12.

To validate the proposed model, we use the naturalistic
driving data from five randomly selected participants. For
each driver, we extract around five car-following episodes
where the cruise control is disengaged and there is no relative
distance jumps due to lead vehicle lane change or other
vehicle cut-ins. We apply the parallel RLS-IQR algorithm
for online acceleration prediction for delays varying from
2 steps to 10 steps. The relative distance, vehicle speed, and
relative speed are scaled by 1/40, 1/30, and 1/4, respectively
to make the three inputs at similar level. To better validate

the CF model, we also compare the model with the Gipps CF
model [44], which is widely used in traffic simulators. The
model predicts the vehicle speed as

oa(t + 7) = min{o“ (1 + 1), 0% (¢ 4 1)}, (19)
with 09°¢ = v, (t) +2.5a,7 (1 — v, () /09)(0.025 4 v, (t) /0¢ )2
and v (t + 1) = —tdy + (12d? + dp QLxn—1(t) — x4 (t) —
Sp—1]—1to, (t)—i—vrzlf1 (t)/dn_l))%. Here 7 again is the reaction
time; v,(t) and v,_; are, respectively, the speeds of follow
vehicle and lead vehicle; v;‘f and a, are the desired speed
and maximum acceleration, respectively; d,, and d,_; are
respectively the most aggressive braking that the follower
wishes to undertake and the estimate of the leader’s most
severe braking capability; x,(f) and x,_; are, respectively,
the longitudinal position of follow vehicle and lead vehicle;
and finally S,_; is the “leader’s effective length”. For com-
parison, the delay parameter t is chosen as the one that
gives the best performance when calibrating the proposed CF
model. The remaining set of parameters (i.e., a,, v;‘f, dy, dy_1,
and S,_1) are trained offline using half of the driving data.
A sample trajectory and the prediction of the proposed CF
model with best estimated delays as well as the Gipps model
from each driver is shown in Figure 13. It can be seen that
the online prediction offers promising prediction performance,
better than the Gipps model due to its capability of online
adaptation. The prediction error statistics for the five drivers
are listed in Table II. The online identified parameters for
driver 1 are shown in Figure 14. We note that the values of
y have high fluctuations, which is an indication of the need
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TABLE 11
PREDICTION PERFORMANCE SUMMARY

avg. RMSE T worst RMSE | avg. RMSE | worst RMSE
Driver ID | (proposed) (proposed) (Gipps) (Gipps)
1 0.28 0.33 0.53 0.7
2 0.32 0.42 0.41 0.65
3 0.26 0.35 0.28 0.42
4 0.46 0.52 0.82 1.07
5 0.42 0.48 0.45 0.72

2 I I I I

0 200 400 600 800 1000 1200 1400

Time steps

Fig. 14. Online estimated parameters.

of a nonlinear damper to better characterize the CF dynamics.
This will be investigated in our future work.

The algorithm is implemented on a standard laptop with
the Intel 17-55000U CPU @2.40GHz processor and 8 GB
RAM. The average CPU time for one-step update is 0.0535 ms
and the worst CPU time for one-step update is 0.0921 ms,
indicating the great computational efficiency of the proposed
method and the feasibility of the online implementation.
We also note that another major advantage of the inverse
QR-decomposition based RLS is the numerical stability, which
has been demonstrated in several other works [36]. In our
work, we also show that the algorithm remains stable in both
simulations and naturalistic driving data validations.

VII. CONCLUSION

In this paper, we developed a novel mechanical-system
inspired microscopic traffic model using a mass-spring-
damper-clutch system. This model naturally captures general
CF behaviors and offers physical interpretations of the CF
dynamics. It also considers the impact of the following vehicle
on the lead vehicle, which is neglected in existing microscopic
CF models and causes issues when chaining vehicles for
macroscopic traffic modeling. We develop a parallel recursive
least square with inverse QR decomposition algorithm for
online parameter identification. The parameter identification
has been validated in both simulations and on naturalistic
driving data with promising performance.

We found that the damper-related parameter has high fluc-
tuations in naturalistic driving data, which is an indication
that a nonlinear damper may be needed to improve the
CF modeling. Future work will include the consideration
of nonlinear spring/damper to further improve the model.
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