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Marking Predictability and Prediction in
Labeled Petri Nets

Ziyue Ma , Member, IEEE, Xiang Yin , Member, IEEE, and Zhiwu Li , Fellow, IEEE

Abstract—This article studies the marking prediction
problem in labeled Petri nets. Marking prediction aims to
recognize a priori that the plant will inevitably reach a given
set of alert markings in finite future steps. Specifically, we
require that a marking prediction procedure should have
the following properties: i) no missed alarm, i.e., an alarm
can always be issued before reaching an alert marking; and
ii) no false alarm, i.e., once an alarm is issued, the plant
will eventually reach an alert marking in the future. To this
end, the notion of marking predictability is proposed as a
necessary and sufficient condition for the solvability of the
marking prediction problem. A fundamental marking esti-
mation problem in a labeled Petri net is first solved using
minimal explanations and basis reachability graphs. Then,
we propose two notions of basis markings called boundary
basis markings and basis indicators, and prove that a plant
is predictable with respect to a set of alert markings if all
basis markings confusable with boundary basis markings
are basis indicators. By properly selecting a set of explicit
transitions, the set of basis indicators can be efficiently
computed by structural analysis of the corresponding basis
reachability graph. Our method has polynomial complexity
in the number of basis markings. Finally, we present an
effective algorithm for online marking prediction if the plant
is predictable.

Index Terms—Discrete event system, marking prediction,
Petri net, state estimation.

I. INTRODUCTION

P ETRI nets have been proposed as a fundamental model for
discrete event systems (DES) in a wide variety of applica-

tions. They have been an asset to reduce the computational load
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of many problems using structural analysis. Labeled Petri nets
(LPNs) [1] are extensively used in modeling systems in which
sensors are not fully deployed. In an LPN, some transitions
are unobservable, i.e., their firings cannot be detected by an
external agent, and some transitions are not distinguishable,
i.e., an agent may not determine which one has fired among all
those transitions sharing the same label. Due to the presence of
unobservable and indistinguishable transitions, in general, one
cannot determine the exact current marking in an LPN. Instead,
one can only infer that an LPN is a set of possible markings
called consistent markings with respect to a given observation.
In the context of LPNs, much work on marking estimation
has been done recently; (see, e.g., [1]–[5]). Marking estimation
plays a key role in important applications such as supervisory
control [6]–[8], fault diagnosis [9]–[11], detectability [12], [13],
and opacity [14] of a DES.

Marking estimation is to determine the set of possible current
markings that a plant may be at. However, in many practical
situations, the operator of a plant may expect to know not only
what the possible markings at which the plant may be, but also
those that to be reached in the future evolution. For example, in
an automated production line in which the content in a buffer
may exceed a threshold, an alarm is expected to be issued before
reaching the threshold such that some preventive measures are
properly taken in advance. Therefore, instead of only estimating
the current marking of a plant based on the observation history,
one may also be interested in predicting possible reachable
markings of the system, which is referred to as the marking
prediction problem. The goal of marking prediction is to predict
if the plant is going to reach a given set of markings of physical
importance, namely alert markings, before actually reaching
them. On the other hand, marking predictability is a property of
a plant such that an alarm can always be raised before reaching
the set of alert markings.1

The prediction problem in DESs has already drawn consid-
erable attention over the past years. Particularly, in [15] and
[16], the problem of event prediction/prognosis was studied for
systems modeled by finite-state automata, where the notion of
predictability was proposed. The goal in this framework is to
predict the occurrence of some significant event, e.g., a fault
event, before it actually occurs. Later, this work was extended to
decentralized systems [17]–[22], probabilistic automata [23]–
[26], and robust prognosability [27]. Several results on event

1The aim in prediction problems is to predict if something bad (e.g., failure)
will happen in the future, while in the closely related diagnosis problems, the
aim is to determine if something bad has occurred in the past.
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prognosability verification have been achieved using model
abstraction [28] and set-membership approach [29].

The event prediction problem has also been studied for sys-
tems modeled by Petri nets more recently [30]–[35]. In [30], the
set of all possible continuations of an observation with a limited
size is worked out and used to decide whether a fault transition
will or will not fire. In [31], event predictability is proved to be
EXPSPACE-complete for unbounded Petri nets by reducing it to
a Petri net model checking problem; the result has been further
extended to the case of decentralized systems [32]. In [33], an
algorithm is proposed to verify fault predictability in labeled
Petri nets using predictor graphs. Moreover, the event prognosis
problem has also been studied in stochastic Petri nets [34], [35].

The framework of event-based prediction can also be applied
to the state or language prediction problem by refining the
state-space of a plant automaton [17]. However, in Petri nets,
methods for event prediction are not applicable for marking
prediction due to the following reasons. First, the fact that the
firing of a transition at one marking yields an alert marking does
not necessarily mean that the firing of such a transition at any
marking always leads to alert markings. Therefore, one cannot
simply convert the marking prediction problem to an event pre-
diction problem based on the original net. Such a transformation
is only possible if the entire reachability graph of the system
is constructed. However, the reachability graph is, in general,
extremely large even when the plant net is bounded. For Petri
nets, it is desirable to investigate the marking prediction problem
in a more efficient way using structural analysis techniques.

In this article, we formulate and systematically investigate the
marking prediction problem in LPNs. Specifically, we assume
that the set of alert markings to be predicted is given by a
linear constraint represented by a generalized mutual exclusion
constraint (GMEC) [36], [37]. Given a plant LPN with a set
of alert markings, our goal is to design a correct predictor in
the sense that: i) “no missed alarm,” i.e., an alarm can always
be issued before the plant actually reaches an alert marking; ii)
“no false alarm,” i.e., the plant will eventually reach an alert
marking within a finite number of steps once an alarm is issued.
We propose a new notion called marking predictability as the
necessary and sufficient condition for the existence of a predictor
satisfying these two criteria.

To efficiently verify marking predictability and to solve the
online prediction problem without constructing the entire reach-
ability graph and using the automata-based approach, we de-
velop a method based on the basis reachability graphs (BRGs),
which have been proved to be an efficient tool for abstracting
the state-space of a Petri net [14], [38], [39]. Particularly, one
advantage of the BRG technique is that only part of the reach-
ability space, namely basis markings, is enumerated; all other
markings reachable from them by firing only implicit transitions
can be characterized by a linear algebraic system. We prove
that by choosing the set of explicit transitions as a superset of
observable transitions, the set of consistent markings can always
be represented by the union of a set of consistent basis markings.

We then introduce two important notions called boundary
basis markings and basis indicators that are useful in marking
prediction. A basis marking is called a basis indicator if from it

some alert markings are necessarily reached after finite number
of firings. The two notions extend the existing concepts of
boundary states and indicator states (see, e.g., [17]) from the
original state-space of a system to the abstracted basis marking
space. We provide a characterization of marking predictability
with respect to a set of alert markings in terms of the confus-
ability of boundary basis markings and basis indicators. On the
other hand, we show that, in general, it is difficult to compute
basis indicators in an arbitrary BRG that can be used for marking
estimation. This observation is quite different from other works:
in many problems in Petri nets such as fault diagnosis [11],
[39] and opacity [14], in which certain properties can be easily
verified by inspecting those basis markings in a BRG that can
be used for marking estimation. To overcome this problem,
an additional condition for the selection of explicit transitions
is proposed under which the set of basis indicators can be
efficiently computed by structural analysis of the corresponding
BRG. The complexity of the proposed approach for verifying
marking predictability is polynomial in the number of basis
markings. Since the number of basis markings is generally much
smaller than the number of reachable markings [11], [38], the
proposed method for marking predictability verification in LPNs
is of efficiency. Finally, if a plant is predictable, a recursive
algorithm is developed for online marking prediction based on
basis markings.

This article is organized in nine sections. Basic notions of
Petri nets and BRGs are recalled in Section II. In Section III,
the problem of marking predictability in LPNs is formulated.
In Section IV, a marking estimation method using BRGs is pro-
posed. In Section V, the notions of boundary basis markings and
basis indicators are introduced, and a sufficient and necessary
condition for marking predictability in LPNs is developed. In
Sections VI and VII, a condition for selecting explicit transitions
is proposed, and a method to compute the set of basis indicators
is developed, which is based on the structural analysis of a BRG.
In Section VIII, an algorithm for online marking prediction is
presented. Section IX draws the conclusion.

II. PRELIMINARIES

A. Petri Nets

A Petri net is a four-tuple N = (P, T, Pre, Post), where P
is a set of m places represented by circles; T is a set of n
transitions represented by bars; Pre : P × T → N and Post :
P × T → N are the pre- and post-incidence functions, respec-
tively, specifying the arcs in the net and can also be represented
as matrices in Nm×n (here N = {0, 1, 2, . . .}). The incidence
matrix of a net is defined by C = Post− Pre ∈ Zm×n (here
Z = {0,±1,±2, . . .}).

For a transition t ∈ T , we define its set of input places as
•t = {p ∈ P | Pre(p, t) > 0} and its set of output places as
t• = {p ∈ P | Post(p, t) > 0}. The notions for •p and p• are
analogously defined.

A marking is a function M : P → N that assigns each place
of a Petri net a non-negative integer number of tokens, repre-
sented by black dots; a marking can also be represented as an
m-component vector. We denote by M(p) the number of tokens
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in place p at marking M . A marked net G = 〈N,M0〉 is a net
N with an initial marking M0. Marking [x1, . . . , xm]T is also
denoted as x1p1 + · · ·+ xmpm for simplicity.

A transition t is said to be enabled at a marking M if
M ≥ Pre(·, t). If t is enabled at M , then it may fire and
reach a new marking M ′ = M0 + C(·, t). We write M [t〉 and
M [t〉M ′ to denote, respectively, that transition t is enabled at
M and its occurrence yields M ′. We denote by T ∗ the set
of all finite sequences of transitions over T . Then, M [σ〉M ′

analogously denotes that a sequence σ = t1t2 . . . tk ∈ T ∗ is
enabled (sequentially) at M and its occurrence finally yields
M ′. In this case, we say that M ′ is reachable from M . We
denote by R(N,M0) the set of all markings reachable from
the initial marking M0. The language of 〈N,M0〉 is defined as
L(N,M0) = {σ ∈ T ∗ | M0[σ〉}. For any sequence σ ∈ T ∗, yσ

denotes its Parikh vector, i.e., yσ(t) = k if transition t occurs k
times in σ.

Given a sequence σ ∈ T ∗, the prefix-closure of σ is defined
asPr(σ) = {σ′ ∈ T ∗ | (∃σ′′ ∈ T ∗)σ = σ′σ′′}. A sequence σ̄ ∈
T ∗ is said to be a strict prefix of σ if σ̄ ∈ Pr(σ) and σ̄ 
= σ.

Given a Petri net N = (P, T, Pre, Post), net N̂ =
(P̂ , T̂ , P̂ re, P̂ ost) is a subnet of N if P̂ ⊆ P , T̂ ⊆ T and
P̂ re (resp., P̂ ost) is the restriction of Pre (resp., Post) to
P̂ × T̂ . In particular, N̂ is called the T̂ -induced subnet if N̂ =
(P, T̂ , P̂ re, P̂ ost).

B. Labeled Petri Nets

A labeled Petri net system, or labeled Petri net (LPN) for
the sake of simplicity, is a 4-tuple G = (N,M0, E, �), where
〈N,M0〉 is a marked net, E is the alphabet (a set of labels),
and � : T → E ∪ {ε} is the labeling function that assigns each
transition t ∈ T either a symbol from E or the silent label ε.
This naturally leads to a partition of the transition set as T =
To∪̇Tuo, whereTo = {t ∈ T | �(t) ∈ E} is the set of observable
transitions and Tuo = T \ To = {t ∈ T | �(t) = ε} is the set of
unobservable transitions.

The labeling function can be extended to � : T ∗ → E∗ re-
cursively by i) �(ε) = ε and ii) �(σt) = �(σ)�(t) with σ ∈ T ∗

and t ∈ T . When a sequence σ ∈ T ∗ fires, the observation
of σ is w = �(σ) ∈ E∗. The inverse projection of an obser-
vation w ∈ E∗ with respect to G = (N,M0, E, �) is defined
as �−1(w) = {σ ∈ L(N,M0) | �(σ) = w}. The language of
an LPN G = (N,M0, E, �) is defined as L(G) = {�(σ) | σ ∈
L(N,M0)}.

Given an LPN G = (N,M0, E, �), for an observation w ∈
E∗, we write M1[w〉M2 if there exists a sequence σ ∈ T ∗ such
that �(σ) = w andM1[σ〉M2. Then, we define C(w) as the set of
consistent markings of an observation w ∈ L(G), i.e., C(w) =
{M ∈ R(N,M0) | M0[w〉M}.

Given an LPN G = (N,M0, E, �), net Ĝ = (N̂ , M̂0, E, �̂) is
said to be a subnet of G if N̂ is a subnet of N , and M̂0 and �̂ are
M0 and � restricted to N̂ , respectively.

C. Basis Reachability Graph

Definition 2.1: [38] Given a Petri net N =
(P, T, Pre, Post), a pair π = (TE , TI) is called a basis

partition of T if i) TI ⊆ T , TE = T \ TI and ii) the TI -induced
subnet is acyclic. The sets TE and TI are called the set of explicit
transitions and the set of implicit transitions, respectively. �

Definition 2.2: Given a Petri net N = (P, T, Pre, Post), a
basis partition π = (TE , TI), a marking M , and a transition t ∈
TE , we define

Σ(M, t) = {σ ∈ T ∗
I | M [σ〉M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M , and we define

Y (M, t) = {yσ ∈ N |TI | | σ ∈ Σ(M, t)}
as the set of explanation vectors. �

Definition 2.3: Given a Petri net N = (P, T, Pre, Post), a
basis partition π = (TE , TI), a marking M , and a transition t ∈
TE , we define

Σmin(M, t) = {σ ∈ Σ(M, t) | �σ′ ∈ Σ(M, t) : yσ′ � yσ}
as the set of minimal explanations of t at M , and we define

Ymin(M, t) = {yσ ∈ N |TI | | σ ∈ Σmin(M, t)}
as the corresponding set of minimal explanation vectors. �

Definition 2.4: Given a Petri netN = (P, T, Pre, Post)with
an initial marking M0 and a basis partition π = (TE , TI), its
basis marking set M is recursively defined as follows:

1) M0 ∈ M;
2) If M ∈ M, then ∀t ∈ TE , ∀y ∈ Ymin(M, t), we have

M + CI · y + C(·, t) ∈ M
where CI is the incidence matrix of the TI -induced subnet. A
markingM inM is called a basis marking (with respect to basis
partition π = (TE , TI)). �

The BRG of a marked net 〈N,M0〉, with respect to basis
partition π = (TE , TI), is a deterministic finite state automaton
(DFA) B = (M, T r,Δ,M0) [38], where

1) the state set M is the set of basis markings;
2) the event set Tr = TE × N |TI | is the set of pairs in the

form of (t,y) ∈ TE × N |TI |;
3) the transition relation Δ is

Δ = {(M1, (t,y),M2) | t ∈ TE ,y ∈ Ymin(M1, t)

M2 = M1 + CI · y + C(·, t)}
4) the initial state is the initial marking M0.

For the convenience of presentation, in the sequel of this
article, we use φ = (ti1 ,yi1)(ti2 ,yi2) · · · (tin ,yin) to denote
a sequence of labels of arcs in a BRG, i.e., a path Mb,1 →
Mb,2 → · · · → Mb,n, where the arcs on this path are sequen-
tially labeled by (ti1 ,yi1), (ti2 ,yi2), . . . , (tin ,yin). Let �(φ) =
�(ti1ti2 · · · tin) and φ↑TE

= ti1ti2 · · · tin (↑ is the natural pro-
jection operator). The prefix-closure of φ is denoted as Pr(φ).

Definition 2.5: [38] Given a net G = 〈N,M0〉 with π =
(TE , TI), the implicit reach of a markingM is a set of markings:
RI(M) = {M ′ | M [σ〉M ′, σ ∈ T ∗

I }. �
Proposition 2.1: [38] Given a Petri net N =

(P, T, Pre, Post), let B = (M, T r,Δ,M0) be the BRG
with respect to π = (TE , TI). The following two statements are
equivalent:
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Fig. 1. Labeled Petri net.

1) there exist a marking M and a firing sequence in the form
ofσ = σ1ti1 · · ·σntinσn+1, whereσj ∈ T ∗

I , tij ∈ TE for
all j ∈ {1, . . . , n+ 1}, such that M0[σ〉M ;

2) there is a following path in the BRG B:

M0

(ti1 ,y1)−−−−−→ Mb,1

(ti2 ,y2)−−−−−→ · · · (tin ,yn)−−−−−→ Mb,n

such that M ∈ RI(Mb,n).

III. MARKING PREDICTION PROBLEM FORMULATION

In this section, we formulate the marking prediction problem
and propose the notion of marking predictability as the necessary
and sufficient condition for the solvability of this problem.

Before proceeding formally, we first present an example to
illustrate the notion of marking prediction in LPNs.

Example 3.1: Consider the LPN in Fig. 1 in which �(t3) =
a, �(t4) = �(t5) = b while the labels of all other transitions are
the silent label ε. Suppose that the set of alert markings is S1 =
{M | M(p8) +M(p9) ≥ 2}, i.e., the operator of the plant needs
to be pre-alerted if the plant will inevitably reach a marking at
which places p8 and p9 hold at least two tokens. By inspection,
if we observe aab or aba, we can conclude that one of the two
tokens originally in p1 is now in p4 while the other is in either
p5, p8, or p9. Since transition t5 is disabled, the two tokens will
inevitably reach p9. Hence, by observing aab or aba, we can
correctly issue an alarm to warn that the plant will inevitably
reach a marking in S.

Let us consider another set of alert markings S ′ = {M |
M(p7) ≥ 2}. In this case, we cannot be pre-alerted before the
plant reaching S ′. Only by observing abbabb, we can confirm
that the two tokens originally in p1 will inevitably go to place
p7. However, the markings consistent with abbabb are p6 + p7 +
p10 + p11 and 2p7 + p10 + p11 + 2p12, which indicates that
when an alarm is issued after observing abbabb, the plant may
have already reached the marking 2p7 + p10 + p11 + 2p12 ∈
S ′. Hence, in this case, G is not predictable with respect to S ′.

�
In the sequel of this article, we assume that a plant LPN

G = (N,M0, E, �) with N = (P, T, Pre, Post) satisfies the
following two assumptions:

1) A1: G is deadlock-free;
2) A2: G is bounded.

Assumption A1 on deadlock-freeness is a common assump-
tion in the analysis of partially observed Petri nets [11], [39]. This
assumption will be used when computing the so-called basis
indicators (which will be introduced shortly) in Sections VI

and VIII. Assumption A2 guarantees that any BRG of a plant
is bounded [38] regardless of the basis partition. On the other
hand, here we do not require the acyclicity of the unobservable
subnet, which is often needed in the literature.

In this article, we also assume that the set of alert markings
to be predicted, denoted as S ⊆ N |P |, is represented by a gen-
eralized mutual exclusion constraint (GMEC).

Definition 3.1: [36] A generalized mutual exclusion con-
straint is a pair (w, k), where w ∈ Zm and k ∈ Z, that defines
a set of markings

L(w,k) = {M ∈ Nm | wT ·M ≤ k}.
The token count of GMEC (w, k) at a marking M is the value
of wT ·M . �

Remark 1: Set S defined by a GMEC is in the “≤” form. If S
is given in the “wT ·M ≥ k” form, e.g., as in Example 3.1, it can
be equivalently converted to −wT ·M ≤ −k and is associated
to GMEC (−w,−k). �

Remark 2: We assume that S is defined by a single GMEC
(w, k) to make this article concise. Our approach can be straight-
forwardly generalized to cases where S is defined by a conjunc-
tion of multiple GMECs. �

To simplify the notation, we define the alert language of a
marking M with respect to a given alert set S, which consists
of all such sequences σ’s, each of which has at least one prefix
that reaches S. Precisely speaking:

LM,S = {σ ∈ L(N,M) | ∃σ̄ ∈ Pr(σ) : M [σ̄〉M ′ ∈ S}.
Note that this definition does not mean that the marking reached
by the firingσ is inS.2 Following this notation, the alert language
of an initial marking M0 is denoted by LM0,S .

Given a plant LPNG and a set of alert markingsS, a predictor
is a mechanism that issues prediction alarms for reaching set S
based on the observation history. Formally, a predictor is defined
as a function

A : L(G) → {0, 1}
where “1” means that an alarm is issued and “0” means that no
alarm is issued. We say that a predictor A is correct if it satisfies
the following two criteria.

1) “No missed alarm”: an alarm is always issued before the
plant actually reaching S. Precisely speaking, for all σ ∈
LM0,S whose observation is w = �(σ), there exists w̄ ∈
Pr(w), w̄ 
= w such that A(w̄) = 1.

2) “No false alarm”: once an alarm is issued, the plant will
eventually reach S by firing a finite number of transitions.
Precisely speaking, if A(w) = 1 for w ∈ L(G), then
there exists Kw ∈ N such that for all σ ∈ �−1(w), for
all σ′ ∈ T ∗ such that |σ′| ≥ Kw and σσ′ ∈ L(N,M0),
σσ′ ∈ LM0,S holds.

In this article, we focus on solving the following two problems
related to marking prediction:

2We point out that set LM,S is right-closed, i.e., σ ∈ LM,S implies that
σσ′ ∈ LM,S for any valid continuation σ′ of σ. Such a property brings mathe-
matical convenience in the subsequential deductions in this article.
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1) under what conditions, there exists a correct predictor
satisfying the above two criteria;

2) if so, how to design such a predictor and implement it
online.

First, we propose the notion of marking predictability in LPNs
as the existence condition for a predictor as follows.

Definition 3.2 (Marking predictability): Given an LPN G =
(N,E, �,M0) with N = (P, T, Pre, Post) and a set of alert
markings S, plant G is said to be predictable with respect to S
if for all σ ∈ LM0,S , w = �(σ), there exist w̄ ∈ Pr(w), w̄ 
= w
andKw ∈ N \ {0} such that the following condition is satisfied:

∀σ′ ∈ �−1(w̄) \ LM0,S , ∀σ′′ ∈ T ∗, σ′σ′′ ∈ L(N,M0) :

|σ′′| ≥ Kw ⇒ σ′σ′′ ∈ LM0,S . (1)

�
In plain words, an LPNG is said to be predictable with respect

to S if for all sequences σ’s such that M0[σ〉M ∈ S,3 then there
always exists a strict prefix of the observation of σ, i.e., w̄ ∈
Pr(�(σ)) and w̄ 
= �(σ), such that 1) for all σ′ that looks like
w̄, and 2) for all σ′′ ∈ T ∗ that is a valid continuation of σ′, and
the length of σ′′ is greater than or equal to a certain bound Kw,
trajectory M0[σ

′σ′′〉 necessarily passes S.
We will show next that Definition 3.2 indeed provides the

necessary and sufficient condition for the existence of a correct
predictor. Before doing so, we first introduce some necessary
notations. Given a marking M , we use dmax(M) to denote the
maximal length of sequences firable at M and do not reach S,
i.e.,

dmax(M) = max
σ∈L(N,M)\LM,S

|σ|.

Clearly, dmax(M) = ∞ if and only if there exists an arbitrarily
long sequence σ firable at M , which does not belong to LM,S .
We denote by

H = {M ∈ R(N,M0) | dmax(M) 
= ∞}
the set of all reachable markings that will inevitably reach S.
Since the plant G is bounded, set H is finite. Now, we are ready
to present the main result of this section.

Theorem 3.1: There exists a correct predictor A if and only
if G is predictable with respect to S.

Proof: (If) If G is predictable with respect to S, then we can
construct the predictor A as the following:

(∀w ∈ L(G)) A(w) = 1 ⇔ C(w) ⊆ H.

By the definition of setH , clearlyA satisfies the “no false alarm”
criterion, since whenever an alarm is issued, S will be reached
by firing at most maxM∈H dmax(M) transitions. Now we prove
thatA also satisfies “no missed alarm” criterion by contradiction.
Suppose that there exists a sequence σ ∈ LM0,S with �(σ) = w
such that for all w̃ ∈ Pr(w), w̃ 
= w, C(w̃) � H . Since G is
predictable with respect toS, there exist w̄ ∈ Pr(w), w̄ 
= w and
Kw > 0 such that for all σ′ ∈ �−1(w̄) \ LM0,S , for all σ′σ′′ ∈

3Although LM0,S consists of all sequences σ’s whose firing at M0 pass but
may not eventually yield a marking in S, for the purpose of marking prediction,
we only need to consider σ’s such that M0[σ〉M ∈ S.

L(N,M0), |σ′′| ≥ Kw ⇒ σ′σ′′ ∈ LM0,S . This indicates that
for all markings M ∈ C(w̄), M will inevitably reach S by
firing at most Kw transitions, implying that C(w̄) ⊆ H and
A(w̄) = 1. This contradicts the assumption C(w̃) � H for all
w̃ ∈ Pr(w), w̃ 
= w.

(Only If) If G is not predictable with respect to S, there
exists a sequence σ ∈ LM0,S such that M0[σ〉M ∈ S and σ
does not satisfy the condition in Definition 3.2. To guarantee “no
missed alarm,” a predictor must issue an alarm (A(w̄) = 1) for
at least one observation w̄ that is a strict prefix of �(σ). However,
since σ does not satisfy the condition in Definition 3.2, for
any w̄ ∈ Pr(�(σ)), w̄ 
= �(σ), there necessarily exist a sequence
σ′ ∈ �−1(w̄) \ LM0,S and an infinite long sequence σ′′ such that
σ′σ′′ ∈ L(N,M0) and σ′σ′′ /∈ LM0,S . This indicates that the
alarmA(w̄) = 1may be a false alarm. Hence, a correct predictor
does not exist. �

Then, the marking predictability verification problem is for-
mulated as follows.

Problem 1: Given a plant LPN G = (N,E, �,M0) with N =
(P, T, Pre, Post) and a set of alert markings S = L(w,k), de-
termine if G is predictable with respect to S.

Remark 3: As we have mentioned in the introductory section,
since the plant LPNG is bounded, the condition in Definition 3.2
can be verified by using the reachability analysis. Specifically,
one can construct the entire reachability graph, and then reduce
the problem to an event prediction in the reachability graph,
which can be solved using automaton-based methods (e.g., [16]).
However, this approach is very exhaustive as the size of the
reachability graph of a net is generally extremely large even if the
net is bounded. On the other hand, BRGs have been proved to be
an efficient tool to abstract the state-space of Petri nets [11], [14],
[38]–[40]. Therefore, this article aims to develop a method to
efficiently solve Problem 1 by leveraging the structural property
of the Petri net without computing the entire reachability graph.

The purpose of marking prediction is to raise an alarm to
inform an operator that a plant will inevitably reach a given set
of markings in the future. To correctly issue an alarm for an
observation, the predictor necessarily has the full knowledge of
the current consistent markings. Hence, in the next section, we
study the marking estimation problem in LPNs and develop a
method to perform marking estimation using BRGs, which is a
fundamental step to establish our method for marking prediction
exposed in the rest of this article.

IV. MARKING ESTIMATION IN LPNS USING BASIS

REACHABILITY GRAPHS

In the literature, BRGs, as defined in Section II, have been used
in various contexts to abstract the state-space of a plant net [11],
[14], [38]–[40]. A useful property of BRG is as follows: if the
unobservable subnet is acyclic, the set of consistent markings
can be represented as the union of unobservable reach of the
consistent basis markings defined as follows.

Definition 4.1: Given an LPN G = (N,M0, E, �) with N =
(P, T, Pre, Post), let B = (M, T r,Δ,M0) be the BRG with
respect to π = (TE , TI). The set of consistent basis markings
of an observation w ∈ L(G), denoted as M(w), is the set of
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basis markings Mi’s such that there exists a path labeled by
(ti1 ,yi1), . . . , (tin ,yin) from M0 to Mi and �(ti1 · · · tin) = w.

�
Proposition 4.1: [40] Given an LPNG = (N,M0, E, �)with

N = (P, T, Pre, Post), let B = (M, T r,Δ,M0) be the BRG
with respect to π = (To, Tuo). For an observation w ∈ T ∗

o , it
holds

C(w) =
⋃

Mb∈M(w)

Ruo(Mb)

=
⋃

Mb∈M(w)

{M | M = Mb + Cuo · y}. (2)

Proposition 4.1 provides an efficient way for computing con-
sistent markings if the unobservable subnet is acyclic. Specif-
ically, we can compute consistent basis markings M(w) of
an observation w recursively based on M(w̄), where w̄ is a
prefix of w on a BRG, staring from the empty observation ε.
However, if the unobservable subnet is not acyclic, then partition
π = (To, Tuo) is not a valid basis partition, and Proposition 4.1
cannot be directly used. Moreover, since the basis partition of
an LPN is in general not unique [38], an LPN may have various
different BRGs depending on different basis partitions. In the
following, we show that for the purpose of marking estima-
tion, it is sufficient and necessary4 to select a basis partition
π = (TE , TI) such that TE ⊇ To, i.e., all observable transitions
are explicit.

Condition 1: The basis partitionπ = (TE , TI) satisfiesTE ⊇
To.

If Condition 1 is satisfied, the set of consistent markings C(w)
can be described by a set of linear algebraic equations based
on the consistent basis markings, as stated in the following
Proposition 4.2 that is generalized from the results in [40].

Proposition 4.2: Given an LPN G = (N,M0, E, �) with
N = (P, T, Pre, Post), let B = (M, T r,Δ,M0) be the BRG
with respect to π = (TE , TI) where TE ⊇ To. For an observa-
tion w ∈ L(G), it holds

C(w) =
⋃

Mb∈M(w)

RI(Mb)

=
⋃

Mb∈M(w)

{M | M = Mb + CI · y}. (3)

Proof: This theorem follows the same arguments in the proof
of Theorems 4.9 and 4.13 in [40], by treating the implicit
transitions here as the unobservable transitions. �

A BRG, according to its definition, is a deterministic automa-
ton in which (t,y)’s on arcs carry information of minimal ex-
planations which are used for purposes such as reachability [38]
and diagnosability analysis [41]. On the other hand, one may
have noticed that to compute M(w) using Definition 4.1 does
not require the knowledge of y in (t,y) but only the transition
t and its label �(t).

Now we are ready to present Algorithm 1 that performs
the marking estimation using BRGs. Algorithm 1 iteratively

4For marking prediction, condition TE ⊇ To is only necessary but not suffi-
cient, as will be shown in Section VI.

Fig. 2. Labeled Petri net used in Example 4.1.

TABLE I
LIST OF BASIS MARKINGS IN FIG. 2 WITH TE = {t1, t2, t9, t12}

Algorithm 1: BRG-Based Marking Estimation.

Input: An LPN G = (N,M0, E, �)
Offline Stage:

1: Find a basis partition π = (TE , TI) with TE ⊇ To;
2: Compute BRG B = (M, T r,Δ,M0);

Online Stage:
3: Let w = ε;
4: Compute M(w);
5: Let C(w) = ⋃

Mb∈M(w) RI(Mb);
6: Wait until some event e ∈ E occurs;
7: Updated the observation as w := we, go to Step 4.

computes the set of basis markings consistent with the current
observation. The offline stage of Algorithm 1 requires to com-
pute a BRG whose structural complexity is |M|. In general, there
is no indicator for the size ofM as far as we know—|R(N,M0)|
is the only known upper bound. However, numerical results
in [14], [38] show that, in general, |M| � |R(N,M0)| holds,
i.e., the size of a BRG is much smaller than the corresponding
reachability graph. On the other hand, the online stages of Algo-
rithm 1 is a one-step-look-ahead procedure whose complexity
is negligible. We use Example 4.1 to illustrate it.

Example 4.1: Consider the LPN in Fig. 2 that represents an
assembly line. In this LPN,To = {t1, t2, t9, t12}, where �(t1) =
�(t9) = a, �(t2) = b, �(t12) = c, and �(t) = ε for all t ∈ Tuo.
This net has 39 reachable markings. Since the Tuo-induced
subnet is acyclic, partition π = (TE , TI) with TE = To =
{t1, t2, t9, t12} andTI = Tuo = {t3, t4, t5, t6, t7, t8, t10, t11} is
a valid basis partition that satisfies Condition 1. The corre-
sponding BRG is depicted in Fig. 3, which contains nine basis
markings listed in Table I.

Suppose that w = aca is observed. By sequentially comput-
ing consistent basis markings of ε, a, ac, and aca, we have the
set M(w)

{M0} a−→ {M1,M2} c−→ {M0} a−→ {M1,M2}.
Hence, C(aca) = RI(M1) ∪RI(M2). �
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Fig. 3. BRG of the net in Fig. 2 with TE = {t1, t2, t9, t12}.

Fig. 4. Petri net used in Example 4.2.

Remark 4: A marking estimation algorithm using BRGs was
also proposed in our previous work [42] in unlabeled Petri
nets with unobservable transitions. In [42], some unobservable
transitions were chosen as pseudo-observable transitions, which
are in fact those in TE/Tuo. However, the method in [42] is
primitive and much less efficient, which requires to compute
multiple BRGs online. �

Proposition 4.2 shows that Condition 1 is a sufficient condition
to develop a marking estimation method in LPNs using BRGs.
Now we show that this condition is also necessary, i.e., a BRG
with TE � To may not be used to perform marking estimation
as the equation in Proposition 4.2 no longer holds due to the
overabstraction of the firings of observable transitions.

Fact 1: If TE � To, then C(w) ⊆ ⋃
M∈M(w) RI(M), where

the inclusion may be proper (i.e., “�” may hold).
Example 4.2: Consider the net on the left of Fig. 4 where

To = {t1, t2, t3} and each transition is labeled itself, i.e, �(ti) =
ti. For a basis partition TE = {t1, t3} and TI = {t2}, the cor-
responding BRG consists of three basis markings shown on
the right. For observation t1t2, clearly, C(t1t2) consists of a
unique marking M = [1, 0, 1]T , and hence t1 should be per-
mitted to fire. However, marking M is not a consistent basis
marking in the BRG. If we consider w↑TE

= t1, by the fact that
M(w↑TE

) = {[1, 1, 0]T }, we may erroneously conclude that the
plant is possibly at marking [1, 1, 0]T and [1, 0, 1]T . �

V. ALERTNESS AND CONFUSABILITY OF BASIS MARKINGS

In this section, we first introduce several notions of basis
markings regarding their alert properties. Then, we present a
characteristic of marking predictability in terms of the alertness
and the confusability of basis markings.

A. Alertness of Basis Markings

Definition 5.1: Given an LPN G = (N,M0, E, �), a BRG
B = (M, T r,Δ,M0) that satisfies Condition 1, and a set of
alert markings S = L(w,k).

1) The set of fully alert basis markings is defined as F =
{Mb ∈ M | RI(Mb) ⊆ S}.

2) The set of partially alert basis markings is defined asP =
{Mb ∈ M | RI(Mb) ∩ S 
= ∅ ∧RI(Mb) \ S 
= ∅}.

3) The set of weakly alert basis markings is defined as
W = {Mb ∈ M | RI(Mb) ∩ S = ∅ ∧ (∃(Mb, φ,M

′
b) ∈

Δ)M ′
b ∈ F ∪ P, �(φ) = ε}. �

In other words, a basis marking is fully alert (Mb ∈ F) if all
markings in its implicit reach belong to S, and a basis marking
is partially alert (Mb ∈ P) if not all but some markings in its
implicit reach belong to S. For a weakly alert basis marking
Mb ∈ W , its implicit reach does not contain any alert markings,
but in the BRG, there exists a path φwith �(φ) = ε fromMb that
reaches some fully or partially alert basis markings. The three
sets F ,P,W are subsets of M and are mutually disjoint by
Definition 5.1. Given a set of basis markingsM and a set of alert
markings S = L(w,k), the following proposition can be used to
compute the sets of fully and partially alert basis markings.

Proposition 5.1: Given an LPN G = (N,M0, E, �), a BRG
B = (M, T r,Δ,M0) that satisfies Condition 1, and a set of alert
markings S = L(w,k), a basis marking Mb is fully alert if and
only if the following integer constraint is NOT feasible:⎧⎪⎨

⎪⎩
Mb + CI · y ≥ 0

wT · (Mb + CI · y) ≥ k + 1

y ≥ 0.

(4)

A basis marking Mb is partially alert if and only if the following
integer constraint is feasible:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Mb + CI · y ≥ 0

wT · (Mb + CI · y) ≤ k

Mb + CI · y′ ≥ 0

wT · (Mb + CI · y′) ≥ k + 1

y,y′ ≥ 0.

(5)

Proof: The acyclicity of the implicit subnet ensures that the
state equation gives a sufficient and necessary condition for
reachability. On the one hand, a basis marking Mb ∈ F if and
only if (4) is not feasible, i.e., there is no marking M ∈ RI(Mb)
such that M /∈ S. On the other hand, a basis marking Mb ∈ P
if and only if (5) is feasible, i.e., there exists two markings
M,M ′ ∈ RI(Mb) such that M ∈ S and M ′ /∈ S. �

To determine the setsF andP , 2|M| ILPs of (4) and (5) need
to be solved. Numerical results [38] show that the total time to
solve such ILPs is quite small (< 10%) compared with the time
consumption of constructing a BRG.

Moreover, set W can be computed by first determining sets
F and P followed by a backward search via arcs labeled (t,y)
with �(t) = ε fromF ∪ P . The following proposition relates the
consistent alert markings with the sets of F ,P , and W .
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Proposition 5.2: Given an LPN G = (N,M0, E, �) and a
BRG B = (M, T r,Δ,M0) that satisfies Condition 1, for any
observation w ∈ L(G), the following condition holds:

C(w) ∩ S 
= ∅ ⇔ M(w) ∩ (F ∪ P ∪W) 
= ∅.
Proof: By Proposition 4.2, C(w) = ⋃

Mb∈M(w) RI(Mb)

holds. If C(w) ∩ S 
= ∅, among all Mb ∈ M(w), there exists at
least one basis marking Mb such that RI(Mb) ∩ S 
= ∅, which
indicates that Mb ∈ F ∪ P .

On the other hand, if C(w) ∩ S = ∅, all basis markings
Mb ∈ M(w) necessarily satisfy RI(Mb) ∩ S = ∅, which in-
dicates that M(w) ∩ (F ∪ P) = ∅. Suppose, by contradic-
tion, that there exists Mb ∈ M(w) ∩W . By Definition 5.1,
there exists M ′

b ∈ F ∪W and (t,y) with �(t) = ε such that
(Mb, (t,y),M

′
b) ∈ Δ, which implies M(w) ∩ (F ∪ P) 
= ∅.

Hence, M(w) ∩W = ∅ holds. �
Hereafter, we assume that M(ε) ∩ (F ∪ P ∪W) = ∅; oth-

erwise, a plant may reach S without firing any observable
transitions and the system is trivially not predictable. Since, by
Proposition 5.2,M(w) ∩ (F ∪ P ∪W) 
= ∅ implies that a plant
may have reached the setS, to guarantee the criterion “no missed
alarm,” an alarm should be issued when (or earlier than when)
observing w such that i) M(w) ∩ (F ∪ P ∪W) = ∅; and ii)
there exists an event e such that M(we) ∩ (F ∪ P ∪W) 
= ∅.
This motivates the following notion of boundary basis markings.

Definition 5.2: Given an LPN G = (N,M0, E, �), a BRG
B = (M, T r,Δ,M0) that satisfies Condition 1, and a set of alert
markings S, a basis marking Mb ∈ M is said to be a boundary
basis marking if

1) there exists φ ∈ Tr∗ such that (M0, φ,Mb) ∈ Δ and for
all φ̄ ∈ Pr(φ) such that (M0, φ̄,M

′
b) ∈ Δ, M ′

b /∈ F ∪
P ∪W holds;

2) there exists (t,y) with t ∈ To such that
(Mb, (t,y),M

′
b) ∈ Δ and M ′

b ∈ F ∪ P ∪W .
We denote by U the set of all boundary basis markings. �
Intuitively, a boundary basis marking Mb is a basis marking

such that i) it can be reached from initial basis marking M0

without passing any basis markings in F ∪ P ∪W; and ii) it
may reach some basis marking M ′

b ∈ F ∪ P ∪W via only one

arc labeled by an observable transition, i.e.,Mb
(t,y)−−−→ M ′

b where
�(t) ∈ E. Now, suppose that the set of consistent basis markings
M(w) of an observation w contains some boundary marking
Mb ∈ U . To guarantee “no missed alarm,” an alarm has to be
issued ifM(w) contains any boundary basis marking. However,
it may also happen that, from some consistent marking, there
exists an infinite-long trajectory along which a plant will not
reach S, which implies that such an alarm may be a false alarm.
Therefore, to guarantee “no false alarm,” we need to inspect
all markings M ∈ C(w) whether dmax(M) 
= ∞ holds or not.
Since C(w) = ⋃

Mb∈M(w) RI(Mb), it is sufficient to inspect
all consistent basis markings M(w) instead of all consistent
markings C(w). To characterize this, we introduce the following
notion of basis indicator.

Definition 5.3: [Basis indicator] Given a plant LPNG, a set of
alert markings S, and a BRG B that satisfies Condition 1, a basis
marking Mb is called a basis indicator if Mb /∈ F ∪ P ∪W and

there exists an integer K ∈ N such that

(∀σ ∈ T ∗)|σ| ≥ K,Mb[σ〉 ⇒ σ ∈ LMb,S . (6)

The set of all basis indicators is denoted as I. �
In other words, a basis marking Mb is a basis indicator if i)

Mb is not in F ∪ P ∪W , which implies that from Mb, the plant
will not reach S by firing only unobservable transitions; and ii)
from Mb, the plant will inevitably reach S. The following theo-
rem provides a characteristic of predictability in Definition 3.2
using basis indicators and boundary basis markings. Intuitively
speaking, a plant is predictable with respect to S if and only
if for any observation w such that M(w) contains at least one
boundary basis marking, all consistent basis markings in M(w)
necessarily be basis indicators.

Theorem 5.1: An LPNG = (N,M0, E, �) is predictable with
respect to S if and only if for any observation w ∈ L(G), the
following condition holds:

M(w) ∩ U 
= ∅ ⇒ M(w) ⊆ I.
Proof: (Only if) If G is predictable with respect to S, then for

all w such that C(w) ∩ S 
= ∅, there exists w̄, which is a strict
prefix of w, such that for all markings M ∈ C(w̄) there exists an
integer K = dmax(M) + 1 such that for all sequences σ with
length ≥ K, σ ∈ LM,S . Let Kw = 1 +maxM∈C(w̄) dmax(M).
Then, (6) holds.

(If) If G is not predictable with respect to S, there exists
a sequence σ ∈ LM0,S such that M0[σ〉M ∈ S and σ does
not satisfy the condition in Definition 3.2. We rewrite σ as
σ = σ1tσ2, where σ2 ∈ T ∗

uo and �(t) ∈ E. By the definition of
boundary basis marking, the consistent basis marking M(w)
of observation w = �(σ1) necessarily contains a boundary basis
marking. Since σ does not satisfy the condition in Definition 3.2,
there necessarily exist a sequence σ′ ∈ �−1(�(σ1)) \ LM0,S and
an infinite long sequenceσ′′ such thatM0[σ

′〉M ′σ′′,M ′ ∈ C(w),
andσ′σ′′ /∈ LM0,S . This indicates the nonexistence ofKw in (6).

�
To verify (6) in Theorem 5.1, one needs to inspect all basis

markings in M(w) for any observation w. This motivates the
notion of marking confusability that will be introduced in the
next subsection.

B. Confusability of Basis Markings

Definition 5.4: Given an LPNG = (N,M0, E, �) and a BRG
B = (M, T r,Δ,M0) that satisfies Condition 1, two basis mark-
ingsMb andM ′

b are said to be confusable if there exist two paths
φ1, φ2 ∈ Tr∗ such that

1) (M0, φ1,Mb,1), (M0, φ2,Mb,2) ∈ Δ and �(φ1) =
�(φ2);

2) for all φ̄i ∈ Pr(φi), i ∈ {1, 2}, (M0, φ̄i,M
′′
b ) ∈ Δ im-

plies M ′′
b /∈ F ∪ P ∪W .

�
In other words, two basis markingsMb,1,Mb,2 are confusable

if they can be reached from M0 via two paths in the BRG
having the same observation, and all basis markings reached
along on the paths are not alert. According to such a definition,
each boundary basis marking is confusable with itself (by letting
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φ1 = φ2). With the notion of confusability of basis markings,
Theorem 5.1 can be rewritten as the following.

Theorem 5.2: An LPNG = (N,M0, E, �) is predictable with
respect toS if and only if, for any two confusable basis markings
Mb,M

′
b ∈ M, that Mb is a boundary basis marking implies that

M ′
b is a basis indicator.
Proof: (⇒) This proof is by contrapositive. Suppose that

there exists two basis markings Mb,M
′
b ∈ M are confusable,

Mb is a boundary basis marking, and M ′
b is not a basis indi-

cator. We can conclude that there exists an observation w such
that Mb,M

′
b ∈ M(w), which means that M(w) ∩ U 
= ∅ and

M(w) � I. Hence, by Theorem 5.1, G is not predictable with
respect to S.
(⇐) This proof is by contrapositive. Suppose that G is

not predictable with respect to S. By Theorem 5.1, there ex-
ists an observation w ∈ L(G) such that M(w) ∩ U 
= ∅ and
M(w) � I. This implies that there exist two confusable basis
markings Mb,M

′
b ∈ M(w) such that Mb ∈ M(w) ∩ U and

M ′
b ∈ M(w) \ I (note that it may happen that Mb = M ′

b), i.e.,
Mb is a boundary basis marking whileM ′

b is not a basis indicator.
�

The confusability of two basis markings can be verified using
the BRG-observer [14] whose size is exponential in the size of
the BRG M. To further mitigate the computational complexity,
we propose to check confusability using a different structure
called the twin-BRG.

Definition 5.5: Given an LPN G = (N,M0, E, �) and its
BRG B = (M, T r,Δ,M0), the twin-BRG of B is a nondeter-
ministic automaton B = (X,E, δ, x0), where X ⊆ M×M,
x0 = (M0,M0), and the transition relation δ is iteratively de-
fined as

1) X = {(M0,M0)}
2) for all (M ′,M ′′) ∈ X

⎧⎪⎨
⎪⎩
(M ′, (t′, ·), M̄ ′) ∈ Δ

(M ′′, (t′′, ·), M̄ ′′) ∈ Δ

�(t′) = �(t′′) = e ∈ E

⇒
{
x̄ ∈ X

((M ′,M ′′), e, x̄) ∈ δ

(7)
where x̄ = (M̄ ′, M̄ ′′). �

The construction of twin-BRGs is analogous to the verifier
automaton in [43] using parallel composition of automata, and
hence it is omitted here due to the limit of space. Intuitively,
a twin-BRG captures all pairs of sequences having the same
observation in its single structure. We use the following example
to illustrate it.

Example 5.1: Consider the BRGB in Fig. 5 (a) where �(t1) =
�(t2) = a and �(t3) = ε. Its twin-BRGB is depicted in Fig. 5(b)
as follows. Initially, set X contains one state X = {(M0,M0)}.
Since (M0, (t1,y1),M1), (M0, (t2,y1),M3) ∈ Δ, and �(t1) =
�(t2) = a, by (7), four states (M1,M1), (M1,M3), (M3,M1),
and (M3,M3) are added to state set X , and four arcs labeled a
are also added. For state (M1,M1), by (M1, (t3,y3),M2) with
�(t3) = ε, three states (M1,M2), (M2,M1), and (M2,M2) are
added. Similarly, another two states (M2,M3) and (M3,M2)
are added to states (M1,M3) and (M3,M1), respectively. �

Fig. 5. (a) A BRG B and (b) its twin-BRG B.

The following proposition provides a way to verify confus-
ability of two basis markings using the twin-BRG.

Proposition 5.3: Given a BRG B = (M, T r,Δ,M0) and its
twin-BRG B = (X,E, δ, (M0,M0)), two basis markings Mb

and M ′
b are confusable if and only if there exists a path from

(M0,M0) to (Mb,M
′
b) such that all states (M̄b, M̄

′
b) reached

along the path satisfy M̄b, M̄
′
b /∈ F ∪ P ∪W . �

Proof: For the “if” part, suppose that in B, there exists a
path from (M0,M0) to (Mb,M

′
b) and all states on the path do

not contain basis markings in F ∪ P ∪W . By the construction
of the twin-BRG, from the path, we can extract two sequences
φ, φ′ ∈ Tr∗ such that in the BRG (M0, φ,Mb), (M0, φ

′,M ′
b) ∈

Δ holds, and all basis markings on the two paths M0
φ−→ Mb,

M0
φ′
−→ M ′

b are not in F ∪ P ∪W . According to Definition 5.4,
Mb andM ′

b are confusable. The “only if” part can be analogously
proved.

The complexity of computing a twin-BRG is of quadratic in
the number of basis markings in the corresponding BRG, i.e.,
O(|M|2). To check if two basis markings are confusable, it
suffices to remove all states in F ∪ P ∪W from the twin-BRG
and search if the pair considered is reachable in the remaining
structure. Therefore, checking whether or not two basis mark-
ings are confusable can be done with quadratic complexity in
the size of the BRG.

VI. COMPUTING BASIS INDICATORS: A SPECIAL CASE

In the previous sections, we have shown that checking mark-
ing predictability is equivalent to check if boundary basis mark-
ings are only confusable with basis indicators. The computation
of boundary basis markings is rather straightforward according
to their definition. However, deciding how to compute the set
of basis indicators is much more challenging. Specifically, for
the case of indicator states in finite-state automaton [17], an
indicator state can be checked by searching the existence of a
cycle without alert states. However, the BRG is an abstracted
structure with some information of markings implicitly stored.
Particularly, a path may pass a partially alert basis marking
without actually hittingS. Therefore, new techniques are needed
to handle indicator markings in the BRG.

In this section, we present our first main result on how to
compute basis indicators in a special case where there is no
partially alert basis marking. Although this special case looks
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restrictive, it provides useful implications that help us establish
a method applicable to general cases in the next section.

A. Computing Basis Indicators With No Partially Alert
Basis Marking

The following theorem shows that if there does not exist any
partially alert basis marking in the BRG (i.e., P = ∅), then the
set of basis indicators I can be computed by structural analysis
of the BRG.

Theorem 6.1: Given an LPN G = (N,M0, E, �), its BRG
B = (M, T r,Δ,M0) that satisfies Condition 1, and a set of alert
markingsS, suppose thatP = ∅. A basis markingMb /∈ F ∪W
is a basis indicator if and only if there exists an integer K such

that all path Mb
φ−→ with |φ| ≥ K necessarily contains at least

one basis marking in F .
Proof: (Only if) Suppose that Mb is a basis indicator, i.e.,

there exists an integer K ′ such that for all σ such that Mb[σ〉 and
|σ| ≥ K ′,σ ∈ LMb,S holds. Now we prove that there necessarily

exists an integer K such that all path Mb
φ−→ with |φ| ≥ K

necessarily contains at least one basis marking in F .
By contradiction, suppose that such an integer K does

not exist. Since the net is assumed to be deadlock-free (As-
sumption A1), from Mb, there necessarily exists an infinite-
long path Mb → Mb,1 → Mb,2 → · · · such that all Mbi satisfy
RI(Mb,i) ∩ S = ∅. From the path, we can construct the follow-
ing infinite-long trajectory:

Mb,0[σ1〉M1[ti1〉Mb,1[σ2〉M2[ti2〉Mb,2 · · ·
that does not pass any marking in S. This contradicts the fact
that Mb is a basis indicator. Therefore, there necessarily exists

an integer K such that all paths Mb
φ−→ with |φ| ≥ K contain at

least one basis marking in F .
(If) Suppose that there exists an integer K such that all paths

Mb
φ−→with |φ| ≥ K necessarily contain at least one basis mark-

ing in F . We prove that Mb is a basis indicator by contradiction.
Suppose that σ = σ1ti1 · · ·σKtiKσK+1, where tij ∈ TE and

σj ∈ T ∗
I for 1 ≤ j ≤ K + 1, is a sequence such that trajectory

Mb[σ〉M does not pass S. According to Proposition 2.1, in the
BRG, there exists a path

Mb

(ti1 ,·)−−−→ Mb,1

(ti2 ,·)−−−→ · · · (tiK ,·)−−−−→ Mb,K

such that all Mb,j /∈ F , which obviously contradicts the fact
that from Mb, all paths whose lengths are no less than K pass
some fully alert basis marking. Hence, all sequences σ such
that Mb[σ〉 with |σ↑TE

| ≥ K necessarily pass S. Since the TI -
induced subnet is acyclic, the length of all sequences σ with
|σ↑TE

| = K is also bounded. Therefore, Mb is a basis indicator.
Theorem 6.1 can be used to test if a basis markingMb is a basis

indicator: the existence of the integer K can be verified by first
removing all fully alert basis markings from the BRG followed
by checking if the remaining part of the BRG accessible from
Mb contains a cycle. Then, if there does not exist any partially
alert basis marking in the BRG, according to Theorem 5.2, the
predictability of G can be verified by checking confusability

Fig. 6. (a) LPN net of Example 6.1. (b) BRG with TE =
{t3, t5, t7, t10, t11}. (c) Twin-BRG.

using the twin-BRG of a plant. We use the following example
to illustrate this. �

Example 6.1: Consider the LPN in Fig. 6 (a) with a set
of alert markings S = {M | M(p7) + 2M(p8) ≥ 2}. Its BRG
with TE = {t3, t5, t7, t10, t11} is depicted in Fig. 6(b). With
Proposition 5.1, in the BRG, there are one boundary basis
marking U = {M3} = {2p4}, two fully alert basis markings
F = {M5,M6} = {2p8, 2p7}, and no partially or weakly alert
basis markings, i.e., P = W = ∅. Since P = ∅, Theorem 6.1
can be applied, and hence by inspecting the BRG, we have
I = {M1,M3}. By constructing the twin-BRG in Fig. 6(c),
we see that there exists a unique boundary basis marking M3
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that is only confusable with itself. Hence, according to Theo-
rem 5.2, G is predictable with respect to S. A correct predictor
is (abc)laa, l ≥ 0 ⇔ A = 1. �

Theorem 6.1 can be used to compute the set of basis indicators
I if there is no partially alert basis markings, based on which
Theorem 5.2 can be applied to verify the marking predictability
problem. However, the condition “P = ∅” is very strong that can
hardly be satisfied in practice. In the next subsection, we will
explain why the condition in Theorem 6.1 no longer holds when
P 
= ∅ and the difficulty for a general case. Furthermore, in the
next section, we will develop a more general method for marking
prediction without requiring the nonexistence of partially alert
basis markings.

B. Difficulties due to the Existence of Partially Alert
Basis Markings

In this subsection, we present observations on the existence of
partially alert basis markings that provide us some useful con-
ceptual intuitions. In the literature, many important properties of
Petri nets such as diagnosability [11], [39] and opacity [14] can
be verified by simply inspecting the basis markings in an arbi-
trary BRG that can be used for marking estimation. However, due
to the existence of partially alert basis markings, not all BRGs
can be used to solve the marking prediction problem. In general,
the properties of alertness of basis markings provide neither a
sufficient nor a necessary condition for marking predictability.

Fact 2: Given an LPN G = (N,M0, E, �) with BRG B =
(M, T r,Δ,M0) that satisfies Condition 1 and a set of alert

markings S, if there exists a pathMb
φ−→ M ′

b

φ′
−→ M ′′

b in the BRG
such that M ′

b ∈ P , it
1) neither implies that all sequences that coincide with

�(φφ′) pass S;
2) nor implies the existence of a sequence that coincides

with �(φφ′) does not pass S.
�

The first condition in Fact 2 is not difficult to be understood:
since M ′

b ∈ P implies RI(M
′
b) \ S 
= ∅, some infinite firing

sequences that coincide with �(φφ′) may pass some markings
in RI(M

′
b) \ S without passing S. On the other hand, it may

also happen that all firing sequences passing RI(M
′
b) \ S will

eventually pass some markings in S. We show the correctness
of Fact 2 using the following example.

Example 6.2: Consider the LPNGwithS = {M | M(p2) ≥
2} shown in Fig. 7 (a). Its BRG with respect toTE = {t1, t3, t4},
shown in the same figure, has six basis markings among which
there is one partially alert basis marking: M2 = 2p2 ∈ P . Al-
though M2 ∈ P (and M2 ∈ S), we cannot conclude that any
firing sequence passing RI(M2) necessarily passes S. For

instance, consider the path M0
(t1,0)−−−→ M1

(t1,0)−−−→ M2

(t3,yt2
)−−−−−→

M4, whereφ = (t1,0)(t1,0),φ′ = (t3,yt2), and �(φφ′) = aab.
Observing aab does not imply that the plant has passed S:
sequence t1t2t1t3 satisfies �(t1t2t1t3) = aab, but trajectory
M0[t1t2t1t3〉 does not pass S.

As another example, consider the LPN G with S = {M |
M(p3) ≥ 2} shown in Fig. 7(b). Its BRG with respect to TE =

Fig. 7. LPNs used in Examples 6.2 and 6.3.

{t1, t3, t4}, shown in the same figure, has four basis markings,
one of which is a partially alert basis marking, i.e., M2 = 2p2 ∈
P . Consider the path M0

(t1,0)−−−→ M1
(t1,0)−−−→ M2

(t3,yt2t2
)−−−−−−→ M3,

where φ = (t1,0)(t1,0), φ′ = (t3,yt2t2), and �(φφ′) = aab.
Although M2 /∈ S, one can verify that any firing sequence that
coincides with aab necessarily passes S. In fact, this system is
predictable—an alarm can be issued for w = ε. �

On the other hand, one may intuitively conjuncture that, for
a partially alert basis marking Mb, the existence of a sequence
that passes RI(Mb) without passing S can be determined by in-
specting the minimal explanations of explicit transitions firable
from Mb. Unfortunately, this conjecture is also false.

Fact 3: Given an LPN G = (N,M0, E, �) with BRG B =
(M, T r,Δ,M0) and a set of alert markings S, let Mb ∈ P and
σmin be a minimal explanation of t ∈ TE . That all trajectories
coinciding with Mb[σmint〉 pass S does not necessarily imply
that for all σ such that yσ ≥ yσmin

, Mb[σt〉 passes S. �
We use the following example to illustrate the above fact.
Example 6.3: Consider the LPN G with S = {M | M(p3) +

M(p5) ≥ 2} shown in Fig. 7(c). Its BRG with respect to
TE = {t1, t3, t4}, shown in the same figure, has three basis
markings among which M1 = p2 + p5 ∈ P . At M1 = p2 + p5,
the unique minimal explanation to fire t3 is σmin = t2, and the
trajectory M1[t2〉M [t3〉M2 passes marking M = p3 + p5 ∈ S.
However, observing the firing of t3 (i.e., event b) at M1 does not
necessarily imply that a marking inS has been reached, since the
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trajectory M1[t5t2t3〉 satisfies �(t5t2t3) = b but does not pass
S. �

Facts 2 and 3 show that the condition in Theorem 6.1 is not a
sufficient or a necessary condition for marking predictability if
P 
= ∅. On the one hand, one needs to enumeratively examine
the unobservable reach of a partially alert basis marking to
determine if S will be necessarily passed or not. On the other
hand, as we have mentioned before, there is no efficient way to
find a basis partition that guarantees P = ∅. To overcome this
problem, in the next section, we propose another condition on
the selection of explicit transitions such that the computation of
set I can be done by structural analysis.

VII. COMPUTING BASIS INDICATORS: GENERAL CASES

In this section, we discuss the computation of basis indicators
for general cases. The general idea is to add an additional
requirement on the basis partition before constructing the BRG
to circumvent the need of enumerating all explanations of basis
markings. Specifically, besides Condition 1, we require that the
basis partition used to compute the BRG should also satisfy the
following condition.

Condition 2: The basis partition π = (TE , TI) satisfies

wT · C(·, t) > 0 ⇒ t ∈ TE .

Remark 5: We remind that in some practical cases (e.g., Ex-
ample 3.1), set S is given in “≥” form, i.e., wT ·M ≥ k. Since
such an inequality can be equivalently rewritten as −wT ·M ≤
−k, in such a case, Condition 2 becomes “wT · C(·, t) < 0 ⇒
t ∈ TE .” �

Remark 6: We point out that Conditions 1 and 2 are not as-
sumptions on plants. Instead, the two conditions provide a guide-
line to the plant operator for choosing a suitable set of explicit
transitions—based on which the BRG-based state-abstraction
technique can be used for marking prediction. �

The quantity wT · C(·, t) is called the influence of a tran-
sition [37]. Therefore, Condition 2 essentially requires that all
transitions with positive influence should be selected as explicit
transitions. The following proposition shows that if the BRG
satisfies both Conditions 1 and 2, then the computation of the
set of basis indicators I can be done by inspecting the minimal
explanation vectors.

Proposition 7.1: Given an LPN G = (N,M0, E, �) with
BRGB = (M, T r,Δ,M0) that satisfies Condition 2 and a set of
alert markingsS, letMb ∈ P be a partial-alert basis marking and

Mb
(t,y)−−−→ be an outgoing arc from Mb where y is a minimal ex-

planation vector of t ∈ TE . Then,Mb + CI · y = M ∈ S if and
only if all trajectories Mb[σt〉 pass S, where σ ∈ T ∗

I ,yσ ≥ y.
Proof: For “⇐,” suppose that all trajectories Mb[σt〉 pass S.

There necessarily exists a minimal explanation σ′ whose corre-
sponding vector is yσ′ = y, that passes S, i.e., Mb[σ

′〉M passes
S. Suppose that σ′ = σ′

1σ
′
2 such that Mb[σ

′
1〉M ′[σ′

2〉M and
M ′ ∈ S, i.e., wT ·M ′ ≤ k. By Condition 2, wT · C(·, t) ≤ 0
holds for any t ∈ TI , which indicates that wT · CI · yσ′′ ≤ 0.
Therefore, wT ·M = wT ·M ′ +wT · CI · yσ ≤ k, which in-
dicates that M ′ ∈ S. �

For the “⇒” part, since M ∈ S, wT ·M = wT · (Mb +
CI · y) = wT ·Mb +wT · CI · y ≤ k holds. By Condition 2,

wT · C(·, t) ≤ 0 holds for any t ∈ TI . Hence, yσ ≥ y indi-
cates thatwT · CI · yσ ≤ wT · CI · y. Therefore, we havewT ·
Mb +wT · CI · yσ ≤ k, which indicates that Mb[σ〉M ∈ S,
i.e., trajectory Mb[σt〉 necessarily passes S.

According to Proposition 7.1, if Condition 2 is satisfied, and

if an arcMb
(t,y)−−−→ satisfiesMb + CI · y = M ∈ S, then any se-

quence whose Parikh vector is equal or larger than y necessarily
passes S. Then, if all outgoing arcs of Mb labeled by (tij ,yj)
satisfy Mb + CI · yj ∈ S, all trajectories from Mb containing
any transition t ∈ TE necessarily pass S. Such a type of basis
markings is called pseudo-partially alert basis markings.

Definition 7.1: Given an LPN G = (N,M0, E, �), its BRG
B = (M, T r,Δ,M0) that satisfies Conditions 1 and 2, and a
set of alert markings S = L(w,k), a basis marking Mb is a
pseudo-partially alert basis marking if Mb ∈ P and for all

t ∈ TE such thatMb
(t,y)−−−→,wT · (Mb + CI · y) ≤ k holds. The

set of pseudo-partially alert basis markings is denoted as PF . �
The computation of pseudo-partially alert basis markings PF

can be done by simply checking all basis markings in P if wT ·
(Mb + CI · y) ≤ k holds for all output arcs Mb

(t,y)−−−→ from Mb.
Then, we naturally deliver the following result.

Proposition 7.2: Given a pseudo-partially alert basis marking
Mb ∈ PF , for allσt such thatMb[σt〉whereσ ∈ T ∗

I and t ∈ TE ,
σt ∈ LMb,S holds.

Proof: Directly from Proposition 7.1. �
Now we can expose the main result of this section. That is, if a

BRG satisfies both Conditions 1 and 2, then the basis indicators
in the BRG can be computed by inspecting the fully and pseudo-
partially alert basis markings in the BRG.

Theorem 7.1: Given an LPN G, a set of alert markings S,
and a BRG satisfying both Conditions 1 and 2, a basis marking
Mb /∈ F ∪ P is a basis indicator if and only if there exists an

integer K such that all paths Mb
φ−→ with |φ| ≥ K necessarily

contain at least one basis marking in F ∪ PF .
Proof: (Only if) By contradiction, suppose that Mb is a basis

indicator and such an integer K does not exist. Since Mb is a
basis indicator, there exists an integer K ′ such that for all σ such
that Mb[σ〉 and |σ| ≥ K ′, σ ∈ LMb,S holds.

Now, for all basis markings M ′
b in the BRG B, we remove all

outgoing arcs M ′
b

(t,y)−−−→ such that M ′
b + CI · y ≤ k to obtain

a sub-BRG Bsub. Then, there are two cases both of which
eventually reach contradictions.

Case I: The accessible part of Bsub from Mb does not con-
tain cycles. Then, from Mb, by passing finite arcs, some basis
marking M̄b with no outgoing arc is reached. Since the net is
assumed to be deadlock-free (Assumption A1), in the original
BRG, each basis marking has at least one output arc. This
indicates that all original outgoing arcs of M̄b labeled (tij ,yj)
satisfy M ′

b + CI · yj ≤ k and hence are removed, which indi-
cates M̄b ∈ F ∪ PF . Let K be the length of the longest path

from Mb in B, and all paths Mb
φ−→ with |φ| ≥ K necessarily

pass F ∪ PF . This contradicts the assumption that the bound K
does not exist.

Case II: The accessible part of Bsub from Mb contains at least
one cycle. Then, from Mb, there exists an infinite-long path
Mb → Mb,1 → Mb,2 → · · · . From the path, we can construct
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the following infinite-long trajectory:

Mb[σ1〉M1[ti1〉Mb,1[σ2〉M2[ti2〉Mb,2 · · · .

Since wT · C(·, t) ≤ 0 for all t ∈ TI , Mb,j [σ̄〉M̄ /∈ S holds for
all σ̄ ∈ Pr(σj+1). Therefore, such a trajectory does not pass S.
This contradicts the assumption that Mb is a basis indicator.

(If) Suppose that there exists an integer K such that all

paths Mb
φ−→ with |φ| ≥ K necessarily contain at least one basis

marking in F ∪ PF . We claim that for all sequences σ such that
|σ↑TE

| ≥ K and σ is firable at Mb, trajectory Mb[σ〉 necessarily
passes S.

By contradiction, suppose that there exists a sequence σ =
σ1ti1 · · ·σKtiKσK+1, where tij ∈ TE and σj ∈ T ∗

I , 1 ≤ j ≤
K + 1, such that Mb[σ〉M does not pass S. According to
Proposition 2.1, in the BRG, there exists a path

Mb

(ti1 ,·)−−−→ Mb,1

(ti2 ,·)−−−→ · · · (tiK ,·)−−−−→ Mb,K

such that all Mb,j /∈ F ∪ PF . This contradicts the fact that from
Mb, all paths with length ≥ K pass some basis marking in F ∪
PF .

As a result, all trajectories Mb[σ〉 with |σ↑TE
| ≥ K necessar-

ily pass S. Since the TI -induced subnet is acyclic, the length of
all sequences σ with |σ↑TE

| = K is also bounded. Therefore,
Mb is a basis indicator. �

Theorem 7.1 can be used to compute basis indicators I in
general cases regardless of the emptiness of P . To test if a basis
marking Mb is a basis indicator, one can first remove all basis
markings in F ∪ PF from the BRG followed by testing if the
remaining part of the BRG accessible from M ′

b is acyclic, which
can be done in linear time to the scale of the BRG, i.e., |M|.
Hence, to compute all basis indicators (i.e., the set I) requires
O(|M|2) complexity. Once all basis indicators are obtained,
Theorem 5.2 can be applied to verify the marking predictability
problem. Finally, based on results obtained so far, we present
Algorithm 2 for marking predictability verification in LPNs.

In Algorithm 2, a basis partition satisfying Conditions 1 and 2
is found by step 1. We note that a partition that satisfies both
conditions always exists (e.g.,TE = T ), and Algorithm 3 in [38]
can be augmented to find a suitable partition π. Similar to the
argument in [38], such a procedure has polynomial complexity
O(|P | · |T |2). Then, steps 2 and 3 compute the BRG B and the
twin-BRG B, respectively. Step 4 computes the sets of fully,
partially, and weakly alert basis markings using Proposition 5.1
and Definition 7.1. Steps 5–7 compute the set of boundary basis
markings U , the set of pseudo-partially alert basis markings
PF , and the set of basis indicators I, respectively. In the loop
of steps 8–12, for each boundary marking Mb ∈ U , all basis
markings confusable with it are examined. If there exists some
basis marking M ′

b that is not a basis indicator and confusable
with Mb, the algorithm outputs NO and exit, meaning that the
plant G is not predictable with respect to S. Otherwise, it output
YES meaning that the plant is predictable.

Now let us discuss the complexity of Algorithm 2. As we
have discussed in the previous sections, the complexity of
Steps 1–7 of Algorithm 2 are as follows:O(|P | · |T |2),O(|M|),

Algorithm 2: Predictability Verification.

Input: An LPN G = (N,M0, E, �) and a set of alert
markings S = L(w,k)

Output: YES (predictable) / NO (not predictable)
1: Find a basis partition π = (TE , TI) that satisfies

Conditions 1 and 2;
2: Compute BRG B = (M, T r,Δ,M0);
3: Compute twin-BRG B = (X,E, δ, (M0,M0));
4: Compute the sets F ,P , and W;
5: Compute the set of boundary basis markings U ;
6: Compute the set of pseudo-partially alert basis

markings PF ;
7: Compute the set of basis indicators I;
8: for all Mb ∈ U , do;
9: for all M ′

b that is confusable with Mb, do ;
10: If M ′

b /∈ I, output NO, exit;
11: end for
12: end for
13: Output YES, exit.

Fig. 8. BRG of the LPN in Fig. 2 with TE = {t1, t2, t4, t9, t12}.

O(|M|2), O(|M|2), O(|M|), O(|M|), and O(|M|2), respec-
tively. Hence, the complexity of Steps 1–7 is O(|M|2 + |P | ·
|T |2). The complexity of the loop of Steps 8–12 is O(|M|2).
Therefore, the total complexity of Algorithm 2 is O(|M|2 +
|P | · |T |2) ≈ O(|M|2). Since the number of basis markings is
in general much smaller than the number of reachable mark-
ings [11], [38], our method for marking predictability verifica-
tion in LPNs is of efficiency.

Theorem 7.2: Algorithm 2 is correct.
Proof: Directly from Theorem 7.1. �
Example 7.1: Let us consider again the LPN in

Fig. 2. Now we use Algorithm 2 to verify the marking
predictability with respect to the set of alert mark-
ings S = {M | M(p4) +M(p11) + 2M(p12) ≥ 3}, i.e.,
w = [0, 0, 0,−1, 0, 0, 0, 0, 0, 0,−1,−2, 0]T , k = −3.

Although theTuo-induced subnet is acyclic, the basis partition
π = (TE , TI) with TE = To does not satisfy Condition 2. Since
there are two transitions t4 and t12 that satisfy wT · C(·, t) > 0,
let TE = To ∪ {t4, t12} = {t1, t2, t4, t9, t12}. The correspond-
ing BRG contains 11 basis markings depicted in Fig. 8 , as
listed in Table II . Among all basis markings, only marking
M8 is weakly alert, i.e., F = W = ∅ and P = {M8}, which
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TABLE II
BASIS MARKINGS IN FIG. 8 WITH TE = {t1, t2, t4, t9, t12}

indicates the set of boundary basis markings isU = {M6}. Since

from M8 there is a unique outgoing arc M8

(t4,yt3t3
)−−−−−−→ such that

wT · (M8 + CI · yt3t3) = −3 ≤ k, M8 is a pseudo-partially
alert basis marking, i.e., PF = {M8}. By Theorem 7.1, we
have two basis indicators I = {M4,M6}. The corresponding
twin-BRG has 13 states (not drawn) such that U(M6) = {M6},
i.e., boundary basis marking M6 is only confusable with itself.
By Theorem 5.2, the plant LPN is predictable with respect to S.

�

VIII. ONLINE MARKING PREDICTION ALGORITHM

In this section, we address the problem of online marking
prediction by showing how to design a predictor that correctly
issues an alarm when necessary, according to an observation
w. Specifically, we provide two approaches for designing a
predictor: one follows the idea of “predict when it has to” and
the other follows the idea of “predict whenever the information
is sufficient.” Both design approaches work correctly if a plant
is marking predictable.

As discussed in Section IV, one direct approach to design a
predictor is to issue an alarm when M(w) contains boundary
basis markings. Hence, we have the following proposition.

Proposition 8.1: If a plant G is predictable with respect to S,
the following predictor A is correct:

A(w) = 1 ⇔ M(w) ∩ U 
= ∅.
Proof: Suppose that M(w) ∩ U 
= ∅. Since from Mb ∈ U ,

there exists a sequence σ1tσ2 such that σ1, σ2 ∈ T ∗
uo, t ∈ To.

Hence, A satisfies “no missed alarm.” On the other hand, since
G is predictable with respect to S, all Mb ∈ M(w) are basis
indicators, which indicates that for allM ∈ C(w), there exists an
integer K such that M [σ〉, |σ| ≥ K implies σ ∈ LM,S . Hence,
A satisfies “no false alarm.” �

The predictor designed in Proposition 8.1 issues the alarm
when one or more boundary basis markings are consistent with
the current observation. However, the alarm is issued only one
step before S is reached, i.e., the plant may reach S by observ-
ing only one addition observable event. In fact, an alarm may
be issued earlier when all consistent basis markings are basis
indicators. This idea is explored by the following result.

Proposition 8.2: If a plant G is predictable with respect to S,
the following predictor A is correct:

A(w) = 1 ⇔ M(w) ⊆ I.
Proof: Since all Mb ∈ M(w) are basis indicators when an

alarm is issued, A satisfies “no false alarm.” On the other

TABLE III
ILLUSTRATION OF OBSERVATION w = abbacaa IN EXAMPLE 8.1

Algorithm 3: Online Marking Prediction.

Input: An LPN G = (N,M0, E, �) and a set of alert
markings S = L(w,k)

Offline Stage:
1: Call Algorithm 2. If return NO, exit;
2: Derive the BRG B and the set of basis indicators I

from Algorithm 2;
Online Stage:

3: Let w = ε and A(w) = 0;
4: Compute M(w);
5: if M(w) ⊆ I, then
6: A(w) = 1;
7: end if
8: Wait until some event e ∈ E fires, updated w := we,

goto Step 4.

hand, since G is predictable with respect to S, M(w) ∩ U 
= ∅
implies M(w) ⊆ I, which indicates that A satisfies “no missed
alarm.” �

Algorithm 3 summarizes the design of a predictor for online
marking prediction using Proposition 8.2. In the offline stage,
Step 1 calls Algorithm 2 to verify the marking predictability ofG
with respect to S. If G is predictable with respect to S, the BRG
B, the set of boundary basis markings U , and the set of basis
indicators I are derived from Algorithm 2. In the online stage,
the predictor monitors the events generated by the plant and
computes the consistent basis markings accordingly. It issues
an alarm if all consistent basis markings are basis indicators.
Since the complexity of Algorithm 2 is |M|2, the offline stage
of Algorithm 3 is also |M|2. Moreover, the online stage of Al-
gorithm 3 is a one-step-look-ahead procedure whose complexity
is negligible.

Example 8.1: Again consider the LPN in Fig. 2 where the set
of alert markings isS = {M | M(p4) +M(p11) + 2M(p12) ≥
3}, and the corresponding BRG with TE = To ∪ {t4, t12} =
{t1, t2, t4, t9, t12} is depicted in Fig. 8. According to Exam-
ple 7.1, G is predictable with respect to S, and the set of basis
indicators is I = {M4,M6}. According to Proposition 8.2, an
alarm is issued if M(w) ⊆ {M4,M6}.

Considering the observation w = abbacaa, the consistent
basis markings M(w) of each prefix of w are listed in Ta-
ble III . For all w̄ that are strict prefixes of w, M(w) � I,
and hence no alarm is issued. Finally, when w = abbacaa, we
have M(abbacaa) = {M4} ⊆ I, and an alarm is issued. One
can readily verify that from M4 = 2 · p1 + p10, the plant will
inevitably reaching S by further observing bb. �
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IX. CONCLUSION

In this article, we proposed a framework for marking predic-
tion of labeled Petri nets using BRG. The condition of mark-
ing predictability was proposed as the necessary and sufficient
condition for the existence of a correct predictor with no missed
alarm and no false alarm. We provided characteristics of marking
predictability in terms of basis markings. An effective algorithm
was then developed to verify marking predictability of a plant
based on the notion of minimal explanations and BRGs. The
complexity of the proposed algorithms is quadratic with respect
to the number of basis markings. Finally, an online marking
prediction algorithm for labeled Petri nets was also proposed.
In the future, we would like to extend our framework to the
stochastic setting as well as the decentralized setting for labeled
Petri nets.
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