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Abstract— This paper proposes a mission planning algorithm
for the robot to operate in an environment with interference.
The robot is equipped with proximity sensor to roughly estimate
the environment and can apply active perception action to
detect the environment. The goal of the robots is to accomplish
complex tasks, captured by co-safe Linear Temporal Logic
(scLTL) formulas. With the interference created by environ-
ment, general observation-based solution will cause a huge
cost even if it can complete the task. When the robot without
active perception encounters a set of states that the proximity
observation can not tell, it will choose a conservative but costlier
action. We aim to design an active perception plan for the
robot to offset the impact which can reduce the cost. Our
algorithm can trade off security and cost, to find a strategy
to accomplish the complex task. We illustrate our method
on motion planning case studies and show that the proposed
algorithm can address complex planning tasks with smaller
costs through active perception action.

Multi-Robot Systems, Task Planning, Linear Temporal
Logic, Failure Robustness

I. INTRODUCTION

Temporal logic has been widely used in task planning in
recent years, as it can provide a fully automated correct-by-
design controller synthesis approach for autonomous robots.
Compared to simple point-to-point navigation task, Temporal
logics such as linear temporal logic (LTL) provides a formal
language that can accurately describe complex temporal
tasks. On the other hand, the decision-making is based on
information and the robot always makes task plan based on
the currently known information. In the complete informa-
tion environment, the robot is assumed that availability of
complete and precise information. The research of robot’s
task planning with complete information has been relatively
mature [1]–[8].

However, in the actual task execution process, the infor-
mation obtained is often limited, which corresponds to the
the partial observation situation. According to the modeling
of environment, it can be constructed into partial observ-
able Markov partial observable Markov decision process
(POMDP) and a two-person zero-sum game. The former is
applied to pure random environment [9] and the latter is
applied to uncertain environment [10]. Both of them can be
solved by constructing a subset [11], but their computational
complexity is exponentially related to the size of the state
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space [12], which limits the application of the algorithm.
Robot can use sensors to gain information about itself and
their environment, the algorithm’s complexity decreases as
the system learns more about the current state. The acqui-
sition of information is not arbitrary, we consider limited
information acquisition called active perception. Since the
acquisition of information is limited, active perception may
not necessarily have a positive impact on the task. Therefore,
it needs to consider whether information should be obtained
at the current moment and what information should be
obtained.

Active perception action strategies under temporal logic
constraints to accomplish complex task is also considered
in [13]–[17]. [13] consider a replanning algorithm for plan-
ning under partially observability with perception actions.
They generate a classical planning problem that reflects
information about the robot’s belief state, at each state by
using state sampling which leads to much smaller classical
planing problems. [14] also suggests an online algorithm that
repeatedly selects the next perception action to execute and
plans to achieve it in a classical setting. The difference is it
avoids the difficulty in representing and updating a belief by
using heuristic landmarks planner.In order to alleviate com-
putational effort in control strategies design for robot against
with uncontrollable environments under incomplete informa-
tion, [15] introduce active perception action to transforms a
deterministic controller under complete information into a
randomized controller based on observation. [16] allows for
active perception in complex tasks that improve confidence
in a belief when necessary to satisfy probabilistic temporal
logic over reals (PRTL) specifications. The above works
consider the active perception action as a free approach to get
extra information that can be used for robot acting decision
or the limitation of the active perception action is just the
location. In this paper, we assume that the robot’s active
perception action has cost which is more close to the real
scene and focus on the problem of synthesizing the optimal
control and active sensing joint policies at the discrete level
of abstraction.

The rest of this paper is organized as follows. We begin
with an informal problem statement and an overview of the
solution approach. In Section III, we review the theory of
LTL and automata. In ection IV, we present the problem
statement. In Section V, we first show how to construct
the belief strategy network. Then, we propose an active
perception strategy algorithm to synthesis controller. An
illustrative example is provided in Section VI. Finally, we
conclude the paper in Section VII.
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II. MOTIVATIONS

We study the following problem: Given the robot task
specified by temporal logic, a partially observable dynamic
environment, and a set of perception actions which can be
actively used to obtain additional information, construct a
controller with control inputs and active perception action
strategy which can control the system satisfies the specifica-
tion and optimizes the progress. We illustrate the motivations
of our approach through an example.

𝐼ଵ

𝐼ଶ

𝒲ଵ 𝒮 𝒲ଶ

Fig. 1. This figure show the example with one goal region S, two initial
regions I, two warehouses W and several obstacles. In this example, the
robot will start from I1.

Example 1: Consider the workspace in Fig. 1. in which
a robot has to collect the source in goal region S (yellow)
and deliver it to one of the warehouses W1 and W2 (blue)
while avoiding the gray obstacle area. The robot can move
in three ways: go ahead (M), turn left and go ahead (L) and
turn right and go ahead (R), one cell at a time. The robot
will initially be placed in the green area, with I1 orientation
set to right and the I2 orientation set to left. And the robot
only has a partial observation of the environment, but it is
equipped with sensors which can help the robot to locate.
When the robot apply perception action, it can know the
current location. Given the cost of perception action, so it
is not preferable to apply this locate sensor all the time in
the execution of task. Then, we want to design a strategy
that decides, at each step, whether it is necessary to apply
the perception action, and which control action to take, such
that the robot can accomplish its task and best fits the user’s
preferences at the same time.

Suppose that in this experiment, the robot start from I1.
In the absence of active perception, the strategy move three
steps forward and turn left is not a good choice cause if the
robot start from I2, it will run into an obstacle. To ensure
the completion of the task, it has to choose a long path
which is shown as blue arrows. And if the robot has the
additional information which can help it located itself obtain
by active perception, it can make decisions that previously
seemed risky shown as the red arrows in the figure.

We can accomplish the task with active perception action
in a way that users prefer. For example, if users believe
that the shorter the actual distance traveled to complete the
task, the better, our strategy can apply active perception
action as long as the robot a little confused about its current
state or physical action strategy. We now continue with
some preliminary and system model for the formal problem
formulation and our solution.

III. PRELIMINARIES

In this section, we give some definitions and introduce
some notations that we use in the rest of this paper. For
convenience, we use action to represent the physical action
and distinguish from perception action.

A. System Model

In the work, the robot motion as well as the environment
uncertainty are abstracted as a labeled transition system
(LTS) [18]

T = (X,Act,→, X0,AP, L) (1)

where X is a finite set of states represent the locations of
the robot; Act is a finite set of control actions the robot can
take; →⊆ X × Act × X is the transition relation, where
(x, a, x′) ∈→ (simplified as x a−→ x′) means that by taking
action a at state x, the robot may result in state x′; X0 ⊆ X
is a set of possible initial states the robot may start from; AP
is a set of atomic propositions representing some high-level
properties of interest; L : X → 2AP is the labeling function
that determines the set of atomic propositions that hold at
each state. For any state x ∈ X and control action a ∈ Act,
we define Post(x, a) = {x′ ∈ X : x

a−→ x′} as the set of
successor states of q under a, and define Pre(x, a) = {x′ ∈
X : x′

a−→ x} as the set of predecessor states of x under
a. In general, an LTS is non-deterministic in the sense that
|X0| > 1 and |Post(x, a)| > 1, i.e., the initial-states and the
successor states are not unique.

A path is an infinite sequence of states in the form of
τ = τ [1]τ [2] · · · such that τ [1] ∈ X0 and ∀i ≥ 0,∃a ∈
Act : τ [i]

a−→ τ [i + 1]. A finite path is defined analogously.
We denote by Pathω(T ) ⊆ Xω and Path∗(T ) ⊆ X∗,
respectively, the set of all infinite paths and finite paths
in T . The trace of an infinite path τ ∈ Xω , denoted
by Trace(τ) ∈ (2AP)ω , is the sequence of the set of
atomic propositions that hold at each instant in the path,
i.e., Trace(τ) = L(τ [1])L(τ [2]) · · · . A controller (with full
state information) is a mapping C : X∗ → Act that assigns
each finite path a control action. A path τ ∈ ω(T ) is feasible

under controller C if ∀i ≥ 0 : τ [i]
C(τ [1]···τ [i])−−−−−−−−→ τ [i+ 1], and

we denote by Pathω(C × T ) the set of all paths feasible
under C.

B. Linear Temporal Logic

We will use co-safe linear temporal logic (scLTL) [19] to
specify the desired system properties. Let AP be a set of
atomic propositions where π ∈ AP is a Boolean variable.
An scLTL formula over AP is defined as follow:

ϕ := π | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ U ϕ | ©ϕ (2)

where ¬(negation),∨(dis-junction), and ∧(conjunction) are
Boolean operators, and ©(next), U(until) are temporal oper-
ators. The semantics of an LTL formula ϕ are defined on an
infinite sequence σ = σ1σ2 . . . of truth assignments to the
atomic propositions, where for every i > 0, σi denotes the
set of atomic propositions that are true at position i. We use
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σ, i |= φ to indicate that an LTL formula ϕ satisfied by σ
at position i. Intuitively, the formula ©ϕ express that ϕ is
true in the next step and ϕ1Uϕ2 express the property that
ϕ1 is true until ϕ2 becomes true. In this paper, we consider
the co-safe LTL, for a language L ⊆ Σω of infinite words
over the alphabet Σ, L is co-safety iff every ω ∈ L has a
good prefix x ∈ Σ∗ such that for all y ∈ Σω , we have
the concatenation x . y of x and y in L. For a co-safety
language L, we denoted by pref(L) the set of good prefixes
for L. And with this constraint, we can derive the additional
temporal operator ”eventually”(♦ϕ = True U ϕ), where
the sequence σ satisfies the formula ♦ϕ if ϕ is true in some
position of the sequence. Note that we also will always �
to express the obstacle avoidance requirement, which is not
be defined in scLTL and different from the always in LTL.

From an scLTL formula ϕ, a deterministic finite automata
(DFA) can be constructed. Such a DFA is given by a tuple

Aϕ = (Q,Π, δϕ, Q0, QF ) (3)

where Q is a finite set of states; Π = 2AP is the input
alphabet, where each input symbol is a truth assignment to
the propositions in AP; δϕ ⊆ Q×Π×Q is a deterministic
transition function; Q0 ∈ Q is a set of initial states; and QF
is a set of accepting states.

A run of ρϕ of Aϕ over a finite symbol σ = σ1σ2 . . . σk ∈
(2AP)∗, is a sequence ρϕ = q0q1 . . . qk, where δϕ(qk, σk) =
qk+1,∀k ∈ N. A run ρϕ is called accepting is qk ∈ QF .
For all finite path τ in Path∗(T ), if its Trace(τ) =
L(τ [1])L(τ [2]) · · ·L(τ [k]) yields an accepting DFA run, we
say that the path satisfied ϕ.

IV. CONTROL UNDER ACTIVE INFORMATION
ACQUISITION

In this section, we introduce the observation model to the
system and the systematic account of the active perception.

A. Observation Model

At each time step, the robot can get a set of sensory mea-
surements to get an observation of itself and the environment
by taking perception actions. While the measurements may
be from multiple sensing units, for ease of notation, we
consider their observation model by a general observation
function.

We define Sense be a finite set of information acquisition
actions and define O a finite set of observation symbols.
What the robot can observe depend on both the current state
and the information acquisition action taken. Formally the
observation model of the robot is specified by a mapping

Obs : X × Sense→ O,

where Obs(x, s) = o means that the by applying acquisition
action s ∈ Sense at state x ∈ X , the robot will observe o.
Here we assume the observation mapping is deterministic.
And with the observation function we define the reveal
function as Obs−1(s, o) = {x : Obs(x, s) = o}.

The proposed the information acquisition model is very
general that captures many different observation models.

• Static Full State Observation: the robot always knows
the current state precisely. The case can be captured
by considering Sense = {I},O = X and ∀x ∈ X :
Obs(x, I) = x. Since the choice of acquisition action is
unique, this information can actually be omitted, which
boils down to the static full state observation setting.

• Active Location Acquisition: the robot may choose to
deploy GPS, UAV or global camera, when need, to get
its precise state information with costs. In case can
be captured by considering Sense = {Y,N},O =
X ∪ {NONE} and ∀x ∈ X : Obs(x, Y ) = x and
Obs(x,N) = NONE.

• Static Partial Observation: the robot does not know the
current state precisely but may know which equivalence
class of the state space it is currently at. This is a very
typical scenario, for example, the robot can only observe
its surrounding environment. This scenario is similar to
the case of static full state observation, for which we
consider a single identity acquisition action Sense =
{I}. The difference is that O is a new set of observation
symbols rather than Q and Obs essentially induces an
equivalence class on X , i.e., the observation model can
be simplified as Obs : X → O.

• Active Multiple Information Sources: in the most gen-
eral case, the robot may have both a static observation
specified by ObsS : X → Os and m different sensors
it can deploy actively, which can be represented as
Obsa,i : X × {Y,N} → Oa,i,∀i = 1, . . . ,m. Then
the entire observation model is Obs : X ×{Y,N}m →
Os ×Oa,1 × · · · × Oa,m

In the remaining part, we assume that the robot is equipped
with a passive a sensor that can observe its surrounding
environment (adjacent states of the current state) and can
deploy a global camera to get its precise location with cost.
That is, we have
• Sense = {Y,N}, where Y means that the global

camera is deployed and N means the contrary; and
• O = X ∪ {o1, o2, · · · , on}
If the robot choose to use the global camera, it will get the

information of the current state and if not, it will only get the
partial observation of surround region. The robot will choose
active perception actions to execute according to the active
perception strategy which will be defined in the subsequent
section.

B. Control under Active Information Acquisition

To control the robot under active acquisition of informa-
tion, we need two “controllers”: one controls the motion
actions of the robot and the other controls the acquisition
actions of the robot, which are referred to as the control
strategy and the sensing strategy, respectively. Both strategies
depend on the observation sequence rather than the internal
state run. To be more specific, we assume that the system
first issues an information acquisition to get an observation
and then issues a control action based on what observed,
and so forth. Therefore, the history available to the robot
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is an alternative sequence in the form of s1o1a1s2o2a2 · · · .
We denote by HISA = SenseO(ActSenseO)∗ as the set
of all finite histories ending up with observations symbols;
we use sub-script A as a control action should be taken
then. Similarly, we denote by HISS = (SenseOAct)∗
as the set of all finite histories ending up with control
actions; we use sub-script S as an acquisition action should
be taken then. Therefore, a control strategy is a mapping
STRAA : HISA → Act and a sensing strategy is a mapping
STRAS : HISS → Sense. Then the overall strategy is a tuple
STRA = (STRAA, STRAS).

A run is a sequence in the form of

ρ = x1(s1o1a1)x2(s2o2a2)x3 · · · ∈ X0(SenseOActX)ω.

The above run is said to be feasible in T under strategy
STRA = (STRAA, STRAS) if for any i ≥ 1, we have
• si = STRAS(s1o1a1 . . . si−1oi−1ai−1); and
• oi = Obs(xi, si); and
• ai = STRAA(s1o1a1 . . . sioi); and
• xi

ai−→ xi+1

We define Runω(T, STRA) as the set of runs fea-
sible in T under strategy STRA. We define a fi-
nite run be a prefix of a run that ends up with a
state of form x1(s1o1a1) · · ·xn−1(sn−1on−1an−1)xn ∈
X0(SenseOActX)∗. We define Run∗(T, STRA) as the set
of finite runs feasible in T under strategy STRA. The trace of
a run is defined by Trace(ρ) = L(x1)L(x2) · · · ∈ (2AP)ω .
We say that the joint strategy STRA achieves scLTL task ϕ
if ∀ρ ∈ Runω(T, STRA) : Trace(ρ) |= ϕ.

C. Optimal Synthesis Problem

We assume that both issuing control actions and issuing
information acquisition actions have costs. We denote by
CostA : Act → N and CostS : Sense → N the
control cost and the information acquisition cost, respec-
tively. Let ρ = x1(s1o1a1) · · ·xn−1(sn−1on−1an−1)xn ∈
Run∗(T, STRA) be a finite run feasible in T under strategy
STRA. The total joint cost incurred is the accumulated
control cost and acquisition cost, i.e.,

Cost(ρ) =
∑

i=1,...,n−1
CostA(ai) + CostS(si)

The cost of an infinite run can be infinite in general.
However, since we consider a scLTL ϕ, any infinite word
satisfying ϕ has a good prefix. Therefore, it is of interest
to only consider the accumulated cost up to the first instant
satisfying ϕ. Then let ρ = x1(s1o1a1)x2(s2o2a2)x3 · · · ∈
Runω(T, STRA) be an infinite run. We definite ρpref,ϕ be
the short prefix of ρ whose traces is in Lpref,ϕ. Then the
cost of an infinite run ρ is defined by

Cost(ρ) =

{
Cost(ρpref,ϕ) if Trace(ρpref,ϕ) |= ϕ

∞ if Trace(ρpref,ϕ) 6|= ϕ

Note that, since the transition function is non-deterministic,
which means that the control strategy is reactive to the
environment, Runω(T, STRA) is not a singleton in general.

Hence, the cost of the joint-strategy STRA is defined as the
worst-case, i.e.,

Cost(STRA) = max
ρ∈Runω(T,STRA)

Cost(ρ)

Note that Cost(STRA) = ∞ if STRA does not achieve
ϕ. Our goal is to minimize the joint cost while achieving
the scLTL specification, which is formally formulated as the
following optimal control synthesis problem.

Problem 1. Given a LTS T , an observation model Obs
and an scLTL task ϕ, find an optimal joint control and
acquisition strategy STRA = (STRAA, STRAS) achieving ϕ
with minimum Cost(STRA).

V. SOLUTION

This solution consist of two components: satisfying the
scLTL specification ϕ and optimization of Cost(STRA).

A. A belief-based strategy network for making progress

First, with the labeled transition system T and the DFAAϕ
represent the scLTL formula ϕ, we can construct a product
game used for control synthesis in transition system with
temporal logic constraints.

Definition 1. (product game) Given a LTS T = (X,Act,→
, X0, L) and a DFA Aϕ = (Q,Π, δϕ, Q0, QF ), a product
game is a tuple G = T ×Aϕ = (V,Act,∆, V0, VF ), where
• V = X ×Q is a finite set of states;
• Act is a finite set of control actions ;
• ∆ ⊆ V ×Act× V is the transition relation, defined as

∆((x, q), a) = (x′, q′) with x a−→ x′ and δϕ(q, L(x′)) =
q′;

• V0 ⊆ V is a set of ,initial states where v0 = (q0, x0) ∈
V0, q0 ∈ δϕ(q, L(x0) with q ∈ Q0 and x0 ∈ X0;

• VF = {(x, q)|q ∈ QF } is the accepting states.

A run in game G is a sequence of game states ρ = v0v1 . . .
such that v0 is the initial state and for all i > 0, there exists
control action a ∈ Act, vi = ∆(vi−1, a). It is easy to build
a state network using existing tools. However, the network
obtained based on full information, and the system can not
make a decision according to the current network state under
partial observation.

With partial observation model mentioned before, the
robot may not know the precisely current state but can
lock certain sets of states, denoted by B ⊆ 2V referred
to as belief state, which is the set of states that the
system thinks it can be. Initially, robot is in the initial states
b0 = {v0|v0 ∈ V0}. Since a controller can only make
decisions based on its belief state, we need to define the bad
belief state to avoid transition that may imply the mission
failure. Let Vbad ⊆ V be the set of states at which will be
verified mission failure, then we can define the allow action
Allow(v) = {a ∈ Act(v)|∆(v, a) 6⊆ Vbad}. Therefore, given
b ∈ B, let Allow(b) =

⋂
v∈bAllow(v) be the set of safe

actions with property: no matter in which state of the belief
state b, by taking action in Allow(b), no bad things will be
happened which can also called operating within a safe area.
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Then we define the accepting belief state. For an accepted
belief state b, we need to ensure all the states in b has been
accepted, i.e. {b ∈ BF | ∀v ∈ b, v ∈ VF }. When all the
information is available, robot can find out if the current state
has been accepted or not, intuitively if the task has already
been completed it does not need to make any additional
movement. Security constraints will no longer apply. But
when we consider the belief space, the task is not considered
complete until all the states are accepted. In other words,
even if only one state in belief state is not accepted, the robot
still needs to move in the safe area until all the situations are
accepted, that is, the mission is over. For example in Fig.4,
when the current belief is b2, because v4 can not be accepted
by the task, belief is not an accepted belief state. By apply
action a, ∆(v4, a) = v6 which can be accepted, robot can
be sure that it complete the task. But if v5 is danger area,
the action a will be prohibited and robot need to find other
way to an accepting belief state.

During the interaction with the environment, the robot
update its belief state depend on both the observation result
and the history information include previous belief states and
motion action taken. The robot alternately apply acquisition
action and motion action, therefore, there are two ways to
update the current belief state. We denote by BS as the set of
belief states need to apply acquisition action and BA as the
set of belief states need to apply control action. Formally,
the sensing update is a mapping

UpdateS : BS × Sense×O → BA

and a motion update is a mapping

UpdateA : BA ×Act→ BS

The first condition robot updates its belief by
applying information acquisition action, for example
UpdateS(b′, s, o) = b means that by taking acquisition
action s and get the observation result o, robot update
its belief state from b′ to b, where b = b′ ∩ Obs−1(s, o).
And the UpdateS(b′, s) represent the set of beliefs that
by applying acquisition action s the robot may reach. The
second condition robot update its belief state after take
a motion action, for example UpdateA(b′, a) = b, b =
{(x, q)|x′ a−→ x, δϕ(q′, L(x)) = q, (x′, q′) ∈ b′} means that
by taking action a, robot will probabilistically reach the
state in b′ according to the LTS T .

The above updating rules essentially consists of two steps:
take the perception action to update the state according to the
observation results and take the control action to update the
state according to the possible transition function. In order
to separate these two updating steps, we construct a belief-
based network that represents how the robot updates its
beliefs based on perception action and control action. Then,
we propose a synthesis method for joint control strategy
using the network structure.

Example 2: Consider a transition system shown in Fig.2.
Initially, the robot randomly appears in state x1 and x2, i.e.
X0 = {x1, x2}. In natural language, the desired specification

Fig. 2. The transition system in Example 2
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Fig. 3. Belief state network of Example 2 with active perception. Rectan-
gular states correspond to the BS -state and rectangular states with rounded
corners states correspond to the BA-state. We omit some rectangular which
need to apply acquisition action but only have one element. The red
rectangle is the accepted state and the shaded rectangles are unsafe states.

for the robot is as follows: Go the collect goal in the partic-
ular area and avoid all the danger area. This requirement is
captured the formula ϕ = ♦q1 ∧�¬q2, where L(x10) = q1
and L(x9) = q2.

In Example 2, from initial state, robot’s initial belief state
is b1 = {v1, v2} and we assume that these two state have
the same passive observation results to the system, in other
words, if the robot does not apply acquisition action, it can
not identify which specific state it is located. At this situation,
it can choose to take useful acquisition action to judging by
different outcomes such UpdateS(b1, s1, o1) = {v1} and
UpdateS(b1, s1, o2) = {v2}. Also, it can choose not to
apply acquisition action, with no extra information, b2 =
UpdateS(b1, s0, o) = {v1, v2}. Then we can apply control
action a ∈ Allow(b′) , take the robot to the next state and
update the belief state by UpdateA(b′, a). If the current
belief state has more than one element and Allow(b) = ∅, it
can choose to use acquisition action to eliminate the doubt.
Then continues like this, we get the belief-based strategy
network which is shown in Fig. 3.

To get the strategy for completing the task, then we need
to prune all belief state from which no accepting belief state
bf can be reached. For instance, in Fig. 3 b3, b6, b10 and b12
need to be pruned. After that, we get a belief-based network
that at any point of the network we can find the appropriate
joint control strategy to reach an accepting state.

B. An active perception strategy for reducing cost

In order to find the minimum cost strategy, we will drop
weights to the states in the network we obtained in the
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Fig. 4. The accepted belief state

previous section. The weights to the states is a mapping

W : B → Z+,

where W (b) is the cost of actions that can be taken to drive
the robot from the current belief state b to an accepting
state in BF . To get the value of W (b), we use a recursion
algorithm.

This algorithm can be divided into two parts. The first part
is to assign state values according to the network built by
the method mentioned in IV-A, and the second part is to get
the request run according to the state value obtained by the
first part.

Initially, we set the value of the accepted belief states in
BF to 0, i.e., W0(x) = 0,∀x ∈ BF , and initialize the number
of iteration to 0. Then we defined a set of the belief states
which value has been assigned by Bi where i is equal to
the number of iterations.For iteration assignment, we can
still think of it as a two-player game between the robot and
the environment. The goal of the robot is to minimize the
total cost incurred, while the environment wants to maximize
the cost. So from the current belief state by taking action a
or s, when we estimate the cost of completing a task after
the action, we need to consider the worst case. Similarly,
in the process of iterative assignment, the worst case should
be considered for the same action, and due to the robot’s
initiative the least cost should be considered for different
actions. Then we compute the value of each belief state by
value iteration as follows:

Wk+1(b)=


min

s∈Sense
CostS(s) + maxWk(b′) if b ∈ BS

min
a∈Act(b)

CostA(a) + maxWk(b′) if b ∈ BA
(4)

where b′ ∈ Bk has been set value and b′ ∈ UpdateS(b, s, o)
and b′ ∈ UpdateA(b, a), respectively.

The value iteration will converge to the value function by
W ∗. It is known that such a value for each state can be
determined only by a finite number of iterations for at most
L = n steps, where n = |BS ∪ BA| is the number of states
in network. Specifically, by computing value function WL,
we have

W ∗(b) = WL(b) (5)

In the second part, we restart from the initial state to
find the path with the minimum cost. The W ∗(b0) is the
optimal cost one can guarantee the robot to achieve. Then
at each BS state, robot choose the acquisition action from
arg min
s∈Sense

(CostS(s)+max W ∗(b′, s)) to get the observation

Algorithm 1 Get the cost value of the network tree
Input: Belief state network, control action cost function

CostA and acquisition action cost S.
Output: The belief state network tree with cost value

1: Let B0 ← {b|b ∈ BF }, W0(b)← 0,∀x ∈ B0 and i← 0
2: while the number of iteration i < n where n = |BS∪BA|

do
3: i← i+ 1
4: Wi(b) ← mins∈Sense CostS(s) + maxWk(b′)

where b ∈ BS , b′ ∈ Bi−1, and ∃s ∈ Sense such that
b′ ∈ UpdateS(b, s, o)

5: Wi(b) ← mina∈Act(b) CostA(a) + maxWk(b′)
where b ∈ BA, b′ ∈ Bi−1, and ∃a ∈ Act such that
b′ ∈ UpdateA(b, a)

6: Bi ← {b|Wi(b) 6= 0} ∪ Bi−1
7: end while
8: Return the state network tree with cost value

result. And at each BA state, robot can choose control action
from arg min

a∈Allow(b)

(CostA(a)+max W ∗(b′, a)) to move to the

next state. Because we are considering the worst case, the
results of observation and action may carry a smaller cost,
but the cost of ensuring the completion of the task is still
W ∗(b0). By constantly choosing the acquisition action and
control action in turn, we will get the optimization STRA.

VI. SIMULATION AND RESULTS

In this section, we will apply our method in the grid simu-
lation environment. And then, by comparison with other two
algorithms, we aim to show the benefits of our algorithms.

The proposed strategy is applied for a treasure hunt task
on the gridworld shown in Figure 5. The treasure is buried
in the region rg which is the yellow region in the figure.
The robot can move to an adjacent cell at a time denoted by
′N ′,′ S′,′E′,′W ′, and The robot system is equipped with a
short range detector. The detector can detect whether there
are obstacles which is black area in the figure or walls
around the grid where the robot is located and return an
array of four elements as the passive observation, i.e. if
the robot’s current location is (0, 0), the observation result
is Obs(N,S,E,W ) = (0, 1, 0, 1), which means there are
obstacles or walls in the south and west of the current grid.
In addition of the passive observation, the robot can apply
active perception action to obtain extra information to locate.
And we assume that when robot is closer to the target,
the perception action’s cost CostS(s) will become more
expensive, in this case, the perception cost of perception is
CostS(s) = 13−dis(x, rg) where dis(x, rg) is the distance
between the current position and the goal position. And the
control action cost is the distance between two adjacent
regions which is shown in the figure. There is a special
region in the workspace with the property of interference
labeled with blue, called fringe area. When robot in the blue
region, its control action will be disturbed by the environment
and lead to different results, for example when robot is in
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the fringe area and make a physical action ′E′ which is the
blue arrow in Fig.5, then in the next time the robot will
appear in ′East − North′ or ′East − South′ cell that the
red arrows point to. The objective of the robot is to arrive
in the treasure region and get the treasure while avoiding
obstacles and the danger area. Formally, the temporal logic
formula is φ = ♦(rg ∧ dig) ∧ �¬rd ∧ �¬rb where dig is
the action to get the treasure, rb is the obstacle and rd is the
danger area.

𝐼ଵ

ℱ 𝑟௚

𝐼ଶ

Fig. 5. The gridworld of areas with different properties. The black cells,
red cells, blue cell, green cells and yellow cell are obstacles, danger areas
rd, fringe area, initial states and goal state rg , respectively. The blue arrow
is the action chosen by the robot and the red arrows are the actions disturbed
by the environment in fringe area.

(a) (b) (c)
Fig. 6. Possible run with different strategys. In this example, robot start
from I1 and the environment will cause the robot to deflect downwards in
fringe area.

In what follows, we show three experiments with different
planning strategy (1. Planning without perception action.
2. Using active perception action whenever it can use. 3.
Using the strategy that mention in the section before). A
possible execution of the different strategies is depicted in
Fig. 6, where the robot start in I1. Fig. 6(a) shows the
trajectory of the strategy without perception action. The robot
is guaranteed to complete its mission, it has to choose a long
way around the dangerous area to get the goal region. In
Fig. 6(b), robot’s strategy applies the active perception action
whenever it has doubts, so it can always find the closest path.
Because the perception cost increases when the robot close
to the goal, the cost can sometimes be higher than the first
strategy. Finally, in Fig. 6(c), the robot uses the Algorithm
1 getting the active perception strategy to accomplish the
task. The robot can autonomously choose whether to adopt
the active perception action, so it can complete the task at a

VII. CONCLUSION

In this paper, we proposed to use active perception for
robot to accomplish complex task captured by co-safe linear

lower cost than the previous two methods.
temporal logic with a low cost in an interference environ-
ment. The robot is equipped with proximity sensor that
allow it to roughly estimate the current state and the active
perception action can get more and accurate information
to counteract environmental influences. Compared with the
observation-based strategy without active perception, the
active perception strategy leads to a cost-efficient way of
perception design and path planning.
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