
2314 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

Online Supervisory Control of Networked
Discrete Event Systems With Control Delays

Zhaocong Liu , Student Member, IEEE, Xiang Yin , Member, IEEE,
Shaolong Shu , Senior Member, IEEE, Feng Lin , Fellow, IEEE,

and Shaoyuan Li , Senior Member, IEEE

Abstract—We investigate state estimation and safe con-
troller synthesis for networked discrete-event systems
(DESs), where supervisors send control decisions to plants
via communication channels subject to communication de-
lays. Previous works on state estimation of networked DES
are based on the open-loop system without utilizing the
knowledge of the control policy. In this article, we pro-
pose a new approach for online estimation and control
of networked DES with control delays. We first propose a
new state estimation algorithm for the closed-loop system
utilizing the information of control decision history. The
proposed state estimation algorithm can be implemented
recursively upon the occurrence of each new observable
event. Then we investigate how to predict the effect of con-
trol delays in order to calculate a control decision online at
each instant. We show that the proposed online supervisor
can be updated effectively and the resulting closed-loop
behavior is safe. Furthermore, we compare the proposed
online supervisor with the predictive supervisor proposed
in the literature and show that our proposed online super-
visor is more permissive than predictive supervisor in the
sense of language inclusion.

Index Terms—Control delay, discrete-event systems
(DES), networked control systems, supervisory control.

I. INTRODUCTION

A. Motivation

IN THIS article, we investigate the problem of
supervisory control of discrete-event systems (DES).

Manuscript received May 5, 2020; revised October 31, 2020; ac-
cepted May 1, 2021. Date of publication May 14, 2021; date of cur-
rent version April 26, 2022. This work was supported in part by the
National Key Research and Development Program of China under
Grant 2018AAA0101700, and in part by the National Natural Sci-
ence Foundation of China under Grants 62061136004, 61803259,
61833012, 61773287, and 62073242. Recommended by Associate Ed-
itor J. Komenda. (Corresponding author: Xiang Yin.)

Zhaocong Liu, Xiang Yin, and Shaoyuan Li are with the Department of
Automation, Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
zhaocongl@sjtu.edu.cn; yinxiang@sjtu.edu.cn; syli@sjtu.edu.cn).

Shaolong Shu and Feng Lin are with the School of Electron-
ics and Information Engineering, Tongji University, Shanghai 201804,
China, and also with the Department of Electrical and Computer En-
gineering, Wayne State University, Detroit MI 48202 USA (e-mail:
flin@wayne.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3080495.

Digital Object Identifier 10.1109/TAC.2021.3080495

Supervisory control is a widely used approach for synthesizing
controllers/supervisors with formal correctness guarantees of
the desired specifications [38]. In many modern applications,
supervisors are connected to the plants via communication
networks. Such networked information structures provide more
flexible ways for controlling DES, e.g., one is allowed to
implement the supervisor on the cloud such that more powerful
computational resources can be utilized to handle complex
specifications. On the other hand, the networked information
structure also brings many new research challenges, e.g., the
effectiveness of communication delays/losses [7], [27], [35],
[47], [48] and the security issue [9], [12], [39]. Therefore,
networked DESs have drawn considerable attention in the past
few years in the DES literature; see, e.g., [1], [18], [19], [22],
[29], [37], [39], [44]–[46].

B. Related Works

The study of supervisory control of networked DES dates
back to the work of Balemi [4], where the robustness of su-
pervisors under communication delays was investigated. In [20]
and [21], Park and Cho also studied the supervisory control
problem of networked DES. In particular, it is assumed that
each controllable event is disabled by default and it is enabled
when sufficient information is obtained. In [24], the authors
investigate the supervisory control problem in the setting where
the supervisor and the plant cannot be synchronized perfectly
due to communication delays and losses. In [45] and [46],
Zgorzelski and Lunze used extended I/O automata to investi-
gate the tracking control of networked DES and applied the
solution to handling systems. Recently, Lin [16] proposed a
general framework for supervisory control of networked DES.
In particular, it considers communication delays and losses in
both control channels and observation channels. Necessary and
sufficient conditions, termed as networked controllability and
networked observability, were provided for the existence of a
nonpredictive supervisor that exactly achieves a given specifi-
cation language.

Following the framework of Lin, many works on control of
networked DES have been done in the literature in the past
few years [13], [30], [31], [33], [50]. Particularly, in [33], the
authors proposed a predictive supervisor and showed that the
specification language is achievable if and only if the predictive
supervisor can do so. The predictive supervisor has also been

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9165-9764
https://orcid.org/0000-0003-1944-1570
https://orcid.org/0000-0001-7343-1782
https://orcid.org/0000-0002-6831-4458
https://orcid.org/0000-0003-3427-2912
mailto:zhaocongl@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
mailto:syli@sjtu.edu.cn
mailto:flin@wayne.edu
https://doi.org/10.1109/TAC.2021.3080495

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2315

extended to modular systems by [13], where the monolithic
system consists of a set of local modules that run concurrently.
In [32], deterministic control of networked DES is studied in
order to eliminate language uncertainty by enforcing the large
language and the small language to be equal. The decentralized
supervisory control of networked DES is investigated in [30],
where the plant is controlled by a set of local supervisors that
send local information to a fusion center in order to obtain a
global decision. In [3], [23],[25], and [49], supervisory control
of networked DES has also been extended to the setting of
timed DESs. An approach that transforms the networked control
problem to the nonnetworked setting under uncertain conditions
was proposed in [50]. Networked supervisory control theory has
also been applied to railway traffic control systems [16] and
manufacturing systems [46].

In many applications, it is very difficult to achieve a given
specification language exactly, i.e., supervisor existence problem
is not solvable. Therefore, one is interested in synthesizing a
supervisor such that the closed-loop language is a sublanguage
of the desired specification. This problem is referred to as the
supervisor synthesis problem in the literature, which is one of the
central problems in the supervisory control theory [6], [10], [11],
[14], [15], [34], [41]–[43]. The goal of the supervisor synthesis
problem is to restrict the behavior of the system within the safety
language but as permissive as possible. In the context of control
of networked DES, in [2],[26], [28], [36], and [40], supervisor
synthesis under observation delays and losses were investigated.
For example, in [36] and [40], Mealy automata were used to
model unreliable and nondeterministic observations. To our
knowledge, however, the supervisor synthesis problem with
control delays has not yet been fully investigated in the literature.
For example, the work of [31] tackles the supervisor synthesis
problem for safety specification under both control and obser-
vation delays. However, the approach in [31] requires to restrict
the solution space a priori, while the solution space is infinite
in general. When the specification language cannot be exactly
achieved, the predictive supervisor proposed in [33] can also
be used to solve the synthesis problem for safety. However, the
control decision of the predictive supervisor is very conservative
making the closed-loop behavior unnecessarily restrictive.

C. Our Results

In this article, we investigate the supervisor synthesis problem
for networked DESs with safety specifications. Specifically, we
focus on the case of control delays and assume that the system
is only partially observed (see Fig. 1). It is worth noting that
the synthesis problem under control delays is quite different
from the case of observation delays. Particularly, in the standard
supervisory control problem, the effective control decision can
be updated immediately once a new event is observed. However,
due to control delays, in the networked setting, the control
decision issued currently may affect the closed-loop behavior in
the future as the plant may still use a previous control decision
issued by the supervisor. This issue has to be taken into account
in the synthesis problem, which is also the main difficulty in the
networked synthesis problem.

Fig. 1. Supervisory control of networked DES with control delays.

To solve this supervisor synthesis problem, we proposed a
novel online control algorithm for networked DES with control
delays. The proposed online control algorithm essentially con-
sists of three parts: the state estimation part, the state prediction
part, and the decision-making parting. The state estimation part
aims to estimate the current state of the system based on both the
observation and the control decision histories. To this end, a new
concept called the extended state is proposed that augments the
original plant state with the control channel configuration. We
show that the extended state is the real “state” in the entire dy-
namic system as it also encodes the effect of previous control de-
cision into the plant state. We propose an approach for estimating
the extended state of the closed-loop system recursively online.
Then, based on the estimated extended state, we discuss how to
choose a control decision online by predicting its effect in the
future. Specifically, we require that the selected control decision
should not only be locally safe but also safe in the future before
its effect expires. Finally, we integrate the state estimation, state
prediction, and control selection techniques into an interactive
online control algorithm and show its correctness. The general
idea of online supervisory control was originally studied for
standard DES without control delays; see, e.g., [5] and [11]. To
the best of our knowledge, online supervisory control has never
been applied to networked DES with communication delays.

Then we further compare the proposed online supervisor with
the predictive supervisor proposed in [33]. It was shown in [33]
that 1) the predictive supervisor can exactly achieve the specifi-
cation language when the system is controllable and networked
observable; and 2) it is still safe when the specification cannot
be achieved. In fact, the predictive supervisor also contains a
state estimation part and a state prediction part for the purpose
of decision making. However, there is a significant difference
between the estimation/prediction techniques in our work and
those in [33]. Specifically, in the predictive supervisor, both
the state estimation and the state prediction are based on the
open-loop system without control. Such strategies are easy to
implement, but the information of the closed-loop control policy
is not used. Therefore, the state estimation and the state predic-
tion used in the predictive supervisor coincide with our strategies
only when the specification can be exactly achieved. In general,
the estimated and predicted states of the predictive supervisor are
overly conservative. On the other hand, both our state estimation
and our state prediction techniques utilize the information of
control decision history, which make the estimated/predicted

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2316 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

state more precise. Consequently, the online supervisor is more
permissive than the predictive supervisor when the specification
language cannot be exactly achieved.

D. Organization

The remainder of this article is organized as follows. In Sec-
tion II, we introduce some necessary notations and formulate the
problem to be solved. Online state estimation and state predic-
tion techniques are provided in Sections III and IV, respectively.
Also, we formally present the online control algorithm and prove
its correctness in Section IV. In Section V, we further present
a modified online control algorithm and show that it always
outperforms the predictive supervisor proposed in the literature.
Finally, we conclude the article by Section VI. Preliminary and
partial versions of some of the results in this article are presented
in [17]. Compared with [17], this article consists of proofs
omitted in [17] as well as detailed explanations and example.
Also, we provide a comparison between the proposed online su-
pervisor with the predictive supervisor and show that the online
supervisor can always outperform the predictive supervisor in
terms of the permissiveness.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let Σ be a finite set of events. A string is a finite sequence of
events. We denote by Σ∗ the set of all strings over Σ including
the empty string ε. A language L ⊆ Σ∗ is a set of strings. The
prefix-closure of a language L is defined by L = {w ∈ Σ∗ :
∃t s.t. wt ∈ L}. The concatenation of two languages La, Lb ⊆
Σ∗ is defined by LaLb = {sasb ∈ Σ∗ : sa ∈ La, sb ∈ Lb}.

For any string s = σ1σ2 . . . σn, σi ∈ Σ, we denote by |s| its
length, i.e., |s| = n. Also, we denote by s−i the string obtained
by removing the last i events in s, i.e., s−i = σ1 . . . σ|s|−i; we
define s−i = ε, if |s| ≤ i. For any natural number N ∈ N, we
denote by [0, N] the set of natural numbers from 0 to N .

A DES is modeled by a finite-state automaton

G = (Q,Σ, δ, q0)

where Q is a finite set of states, Σ is a finite set of events,
δ : Q× Σ → Q is a partial transition function, and q0 is
the initial state. For any states q, q′ ∈ Q and event σ ∈ Σ,
δ(q, σ) = q′ implies that there exists a transition from q to q′

labeled with event σ. The transition function is also extended
to δ : Q× Σ∗ → Q in the usual manner; see, e.g., [8]. For the
sake of simplicity, we write δ(q, s) as δ(s) if q = q0. Then the
language generated byG is defined asL(G) = {s ∈ Σ∗ : δ(s)!},
where “!” means “is defined.”

In many situations, the original system G may not satisfy
some desired specification. Therefore, the supervisory control
theory was introduced in order to restrict the system’s behavior
such that the closed-loop system fulfills the specification. In the
supervisory control framework, the event set Σ is partitioned as

Σ = Σc∪̇Σuc = Σo∪̇Σuo

where Σc and Σuc denote the set of controllable events and the
set of uncontrollable events, respectively. Similarly, Σo and Σuo

denote the set of observable events and the set of unobservable

events, respectively. Note that, in general, there is no relationship
between controllable events and observable events.

We defineΓ = {γ ∈ 2Σ : Σuc ⊆ γ} as the set of control deci-
sions. That is, a supervisor cannot disable uncontrollable events.
The natural projection P : Σ∗ → Σ∗

o is defined recursively as
follows: For any s ∈ Σ∗, σ ∈ Σ, we have

P (ε) = ε and P (sσ) =

{
P (s)σ if σ ∈ Σo

P (s) if σ ∈ Σuo.
(1)

That is, upon the occurrence of a string s ∈ Σ∗, the supervisor
can only be observed as P (s) ∈ Σ∗

o.
A supervisor is a mechanism that enables/disables events

dynamically based on its observation. Formally, a supervisor
is a mapping

S : P (L(G)) → Γ.

That is, the supervisor decides to enable events inS(P (s))when
string s is generated by the system.

In the networked setting, the supervisor needs to send its
control decisions to the plant via control channels, where com-
munication delays may occur. In this setting, the plant may still
use a previous control decision even when a new control decision
has been issued. We assume that the communication delays are
bounded by a nonnegative integer Nc. In practice, the delay
boundNc can be identified by, e.g., communication experiments.
Then the language generated by the closed-loop system (subject
to control delays), denoted by L(S/G), is defined recursively as
follows [16].

1) ε ∈ L(S/G).
2) For any s ∈ Σ∗ and σ ∈ Σ, we have sσ ∈ L(S/G) if and

only if
1) sσ ∈ L(G);
2) s ∈ L(S/G);
3) σ ∈ S(P (s)) ∪ S(P (s−1)) ∪ · · · ∪ S(P (s−Nc

)).
Remark 1: Intuitively, the definition of L(S/G) says that, at

each instant, the plant may use any control decision issued by the
supervisor in the previous Nc steps due to control delays. This
language is also referred to as the “large language” (or the upper
bound language) in the literature [32]. Note that this language
is essentially an overapproximation of the actual behavior of
the networked system and may contain some strings that are
not feasible; see, e.g., [33] for detailed discussions. On the other
hand, this definition provides a relatively simple language-based
characteristic and is very suitable for the purpose of safety as it
is conservative in the sense that it captures all possible actions
the supervisor may take under control delays. Our article will
also focus on the synthesis of safe supervisor; this is why we
adopt this definition of the closed-loop language.

As we mentioned earlier, our goal is to design a supervisor
such that the closed-loop system satisfies some requirement.
Here, we consider a safety specification. Specifically, we assume
that the specification is given as a legal language K ⊆ L(G)
and we want to make sure that the behavior of the closed-loop
system is within the legal language. Then we formulate the safety
control problem with control delays (SCPCD) that we solve
in this article. As we have discussed earlier, we consider the
synthesis problem under the following assumptions.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2317

1) The observation channel is perfect, i.e., each occurrence
of observable event can be received by the supervisor
instantly.

2) The control channel is subject to communication delays
and the number of delays (counted by event occurrences)
is upper bounded by a nonnegative integer Nc.

3) The initial control decisions is not subject to control
delays, which can be, for example, embedded in actuators
of the plant initially.

Problem 1: (SCPCD) LetG be a networked DES with control
delays bounded by Nc. Let K ⊆ L(G) be a safety specification
language. Find a safe supervisor S such that L(S/G) ⊆ K.

Without loss of generality, we assume hereafter that K is
recognized by a strict subautomaton of G, denoted by H =
(QH ,Σ, δH , q0). That is, QH ⊆ Q,L(H) = K ⊆ L(G), and
for any string s ∈ L(G), we have s ∈ K if and only if δ(q0, s) ∈
QH . We define

Qgood = {q ∈ QH : ∀s ∈ Σ∗
uc s.t. δ(q, s) ∈ QH}

as the set of states that cannot reach a state in Q \QH via un-
controllable transitions. We assume that q0 ∈ Qgood. Therefore,
to guarantee safety, we need to make sure that the system can
only reach states in Qgood.

Remark 2: SCPCD can be solved by designing a supervisor
that always disables all controllable events. However, this solu-
tion is not very interesting as the closed-loop behavior is very
restrictive. Let S and S ′ be two safe supervisors. We say that S ′

is more permissive than S if L(S/G) ⊂ L(S ′/G). Therefore,
we not only want to find a solution to SCPCD but also want the
solution to be as permissive as possible.

Remark 3: In [33], the authors have investigated under what
condition the specification language K can be exactly achieved
subject to control delays. This problem is usually referred to as
the supervisor existence problem in the literature [8]. Specifi-
cally, it has been shown that K can be exactly achieved if and
only if the specification is controllable and networked observ-
able. Our problem setting implicitly assumes that the existence
conditions are not satisfied and we need to consider the synthesis
problem rather than the existence problem.

III. ONLINE STATE ESTIMATION UNDER CONTROL DELAYS

In the partial observation setting, in order to make control
decision at each instant, the supervisor needs to estimate the
set of all possible states the system can be in currently based
on all information available. Formally, let G be a system, S
be a supervisor (with control delays bounded by Nc), and α ∈
P (L(S/G)) be an observable string. Then the state estimate
upon the occurrence of α is defined by

ES(α) = {q ∈ Q : ∃s ∈ L(S/G) s.t. P (s) = α ∧ δ(s) = q}.
Note that we use subscript “S” inES(·) in order to emphasize

that we are considering the state estimate of the closed-loop
system controlled by supervisorS. When supervisorS is given or
we know a priori that the supervisor will exactly achieve a given
language, the state estimate can be computed by constructing
the (networked) observer based on the closed-loop behavior

L(S/G) [16]. However, this state estimation technique essen-
tially utilizes the entire functionality of the supervisor including
the future control actions, which are unknown in the synthesis
problem. In order to synthesize control decisions effectively, we
need to estimate the state of the system online only based on the
information available up to the current instant.

In order to state our online state estimation algorithm, first,
we introduce the concept of channel configuration.

Definition 1: Let G be a networked DES with control delays
bounded by Nc. A channel configuration is a set of pairs in the
form of

θ = {(γ1, n1), (γ2, n2), . . . , (γk, nk)}
where each γi ∈ Γ is a control decision and each ni ∈ [0, Nc]
is a nonnegative integer smaller than or equal to Nc. We denote
by Γ(θ) the union of all control decision components in θ, i.e.,
Γ(θ) = ∪i=1,...,kγi. Finally, we denote byΘ ⊆ 2Γ×[0,Nc] the set
of all channel configurations.

Intuitively, each channel configuration specifies the control
decisions that remained in the control channel and their timing
information. That is, (γi, ni) means that decision γi is delayed
in the control channel and will still be effective for the next ni

steps. Essentially, the channel configuration models the “state”
of the control channel. Therefore, in our setting, the true “state”
of the closed-loop control system consists of both the state of
the plant and the channel configuration, and we call this the
extended state.

Definition 2: Let G be a networked DES with control delays
bounded by Nc. An extended state is a plant state augmented
with a channel configuration in the form of q̃ = (q, θ), where
q ∈ Q and θ ∈ Θ. We define Q̃ := Q×Θ as the set of all
extended states.

To precisely estimate the state of the system, we should not
only track all possible states of the plant but also track the chan-
nel configuration of each possible state since delayed control
decisions may affect the behavior of the system in the future.
That is, we want to estimate all possible extended states based on
the information available. Next, we describe how the extended
state estimate evolves when new information is obtained (either
when a new event is observed or when a new control decision is
issued).

Let θ ∈ Θ be a channel configuration. We define the “next”
operator NX : Θ → Θ as follows: for any θ ∈ Θ,

NX(θ) = {(γ, n− 1) ∈ Γ×N : (γ, n) ∈ θ, n ≥ 1}.
That is, NX(θ) decreases the timing index of each control
decision in θ by one unit and it only keeps control decisions
whose timing indices are nonnegative (which means that the
delay has not yet expired).

Now we are ready to present how the extended state estimate
can be updated recursively online based on new information
obtained. Suppose that our current estimation of the extended
state of the system is x ∈ 2Q̃. Then we need to update this set
for the following two scenarios:

1) a new control decision γ ∈ Γ is issued;
2) a new observable event σ ∈ Σo is observed.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2318 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

We formalize the estimation updating procedures for
the above two scenarios by operators networked unobserv-
able reach (NUR) : 2Q̃ × Γ → 2Q̃ and networked observable
reach (NOR) : 2Q̃ × Σo → 2Q̃, respectively, as follows.

Definition 3: Letx ∈ 2Q̃ be a set of extended states and γ ∈ Γ
be a control decision. Then the NUR of x under γ, denoted by
NURγ(x), is defined recursively as follows.

1) For any extended state (q, θ) ∈ x, we have

(q, θ ∪ {(γ,Nc)}) ∈ NURγ(x). (2)

2) For any extended state (q, θ) ∈ NURγ(x) and any unob-
servable event σ ∈ Σuo, we have

σ ∈ Γ(θ) and δ(q, σ)!

⇒ (δ(q, σ),NX(θ) ∪ {(γ,Nc)}) ∈ NURγ(x). (3)

Intuitively, NURγ(x) is the updated extended state estimate
immediately after a new control decision γ (but before the
occurrence of the next observable event) based on the latest state
estimatex. The update is implemented by searching all extended
states that can be reached unobservably from x. More specifi-
cally, first, we add the latest control decision γ and its timing
index Nc to each extended state in x. Then, for each extended
state (q, θ) ∈ NURγ(x), we need to consider all unobservable
and feasible events from x. By feasible, we mean that the event
is defined at q and is enabled by some control decision in the
control channel, i.e., σ ∈ Γ(θ). For such (q, θ) and σ, we then
add its successor extended state (δ(q, σ),NX(θ) ∪ {(γ,Nc)})
to NURγ(x). The second component of the successor state is
NX(θ) ∪ {(γ,Nc)} since 1) the execution of σ will decrease
the timing index of each previous control decision in θ by one
unit; and 2) we also need to add the current control decision with
its timing index Nc.

Definition 4: Let x ∈ 2Q̃ be a set of extended states and
σ ∈ Σo be an observable event. Then the NOR of x upon the
occurrence of σ, denoted by NORσ(x), is defined by

NORσ(x) = {(δ(q, σ),NX(θ)) ∈ Q̃ : (q, θ) ∈ x, σ ∈ Γ(θ)}.
(4)

Intuitively, NORσ(x) is the set of extended state estimate that
can be reached immediately after observing σ but before the
next control decision is issued, based on the latest state estimate
x. Therefore, for each state (q, θ) ∈ x considered, event σ must
be feasible in G and be enabled by some control decision in
the control channel, i.e., σ ∈ Γ(θ). Upon the occurrence of σ,
the plant state will be updated and we also need to decrease the
timing index of each control decision in θ by one unit.

We use the following example to illustrate how NUR and
NOR are computed.

Example 1: Let us consider system G shown in Fig. 2
with Σo = {a, b},Σc = Σ = {a, b, u1, u2, u3}, and Nc = 1.
Suppose that the current extended state estimate is x1 =
{(1, {(Σ, 1)})}, which means that the system is at state 1 and
there exists a control decision γ0 = Σ that will still be effective
in one step. From this instant, if we observe event a, then we

Fig. 2. System with Σo = {a, b},Σc = Σ and Nc = 1.

have

x̂2=NORa(x1)={(δ(1, a),NX({(γ0, 1)}))}={(2, {(γ0, 0)})}.
From x̂2, if we make control decision γ1 = Σ \ {u2} =
{a, b, u1, u3}, then we have the following.

1) (2, {(γ0, 0)} ∪ {(γ1, 1)}) ∈ NURγ1
(x̂2).

2) Since u3 ∈ Γ({(γ0, 0), (γ1, 1)}) and δ(2, u3)=3,
we have (3,NX({(γ0, 0), (γ1, 1)}) ∪ {(γ1, 1)}) ∈
NURγ1

(x̂2).
3) Since u1 ∈ Γ({(γ0, 0), (γ1, 1)}) and δ(2, u1) = 4,

we have (4,NX({(γ0, 0), (γ1, 1)}) ∪ {(γ1, 1)}) ∈
NURγ1

(x̂2).
Therefore, we have

NURγ1
(x̂2) = {(2, {(γ0, 0), (γ1, 1)}), (3, {(γ1, 0), (γ1, 1)}),

(4, {(γ1, 0), (γ1, 1)})}.
We are now ready to present our online state estimation

algorithm. The main idea is to employ NURγ(·) and NORσ(·)
alternatively so that the extended state estimate can be updated
recursively online. Formally, let G be a DES and S be a supervi-
sor with control delays bounded by Nc. Let α ∈ P (L(S/G)) be
an observable string generated by the closed-loop system. We
define two sets ÊS(α) and ES(α) recursively as follows: for any
α ∈ Σ∗

o and σ ∈ Σo, we have

ÊS(ε) = {(q0, ∅)} (5)

ES(α) = NURS(α)(ÊS(α)) (6)

ÊS(ασ) = NORσ(ES(α)). (7)

Intuitively, ÊS(α) is the extended state estimate immediately
after observing α and ES(α) is the extended state estimate
after making control decision S(α) with unobservable reach
included. Hereafter, we will formally show that ES(α) is indeed
the extended state estimate of the closed-loop system upon the
observation of α. A very important feature of ES(α) is that its

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2319

computation only utilizes the information available up to the
instant of α = σ1 . . . σn, σi ∈ Σo, i.e., the following alternating
sequence of control decisions and observations:

S(ε)σ1S(σ1)σ2 . . . σnS(σ1 . . . σn).

This makes online control synthesis possible as all information
needed are available up to the current instant.

To state our result, for any s ∈ L(S/G), we define

θ(s)={(γ,Nc − n) : 0≤n≤min{Nc, |s|}, γ=S(P (s−n))}
(8)

as the channel configuration upon the execution of s. Using this
notation, for any s ∈ L(S/G), we have

Γ(θ(s)) = S(P (s)) ∪ S(P (s−1)) ∪ · · · ∪ S(P (s−Nc
)). (9)

The following result shows that our proposed state estimate
ES(α) indeed correctly estimates the plant state together with
its channel configuration.

Theorem 1: Let G be a DES and S be an arbitrary supervisor
with control delays bounded by Nc. For any α ∈ P (L(S/G)),
we have

ES(α) = {(δ(s), θ(s))∈Q̃ : ∃s∈L(S/G) s.t. P (s)=α}.
(10)

Proof: We prove by induction on the length of α.
Induction Basis: We consider the case of |α| = 0, i.e., α =

ε. Then we know that ES(ε) = NURS(ε)({(q0, ∅)}). Next, we
show that

NURS(ε)({(q0, ∅)})={(δ(s), θ(s))∈Q̃ : s∈L(S/G)∩Σ∗
uo}.
(11)

(LHS ⊆ RHS) First, let (q, θ) ∈ NURS(ε)({(q0, ∅)}) be an
element of the LHS of (11). By Definition 3, we know that
there exists a sequence of unobservable events σ1 . . . σn ∈ Σ∗

uo

inducing the following extended states.
1) (q0, θ0) = (q0, ∅ ∪ {(S(ε), Nc)}).
2) For any k = 1, . . . , n, we have

(qk, θk)=(δ(qk−1, σk),NX(θk−1) ∪ {(S(ε), Nc)})
such that σk ∈ Γ(θk−1) and (qn, θn) = (q, θ).
Since σi ∈ S(ε) ∩ Σuo and δ(q0, σ1 . . . σn) = q, we know

that σ1 . . . σn ∈ L(S/G) ∩ Σ∗
uo. Therefore, to show that (q, θ)

is also an element of the RHS of (11), it remains to show that θ =
θ(s). Again, we show this by induction on the length of s. For
|s| = 0, we know immediately that θ0 = {(S(ε), Nc)} = θ(ε).
Now, we assume that θk = θ(σ1 . . . σk). Then we have

θk+1 = NX(θk) ∪ {(S(ε), Nc)}
= NX(θ(σ1 . . . σk)) ∪ {(S(ε), Nc)}
= θ(σ1 . . . σkσk+1).

Therefore, we have LHS ⊆ RHS.
(RHS⊆LHS) Let (q, θ) be an element of the RHS of (11), i.e.,

there exists a sequence of unobservable events s = σ1 . . . σn ∈
L(S/G) ∩ Σ∗

uo such that (δ(s), θ(s)) = (q, θ). Hereafter, we
show that (q, θ) ∈ NURS(ε)({(q0, ∅)}). Still, we show this by
induction on the length of s. When |s| = 0, we know that
(δ(s), θ(s)) = (q0, {(S(ε), Nc)}) ∈ NURS(ε)({(q0, ∅)}). Now,
we assume that (δ(s), θ(s)) ∈ NURS(ε)({(q0, ∅)}) for |s| = k.

Then for the case of |s| = k + 1, i.e., s = σ1 . . . σk+1, we know
that

1) σk+1 ∈ ∪i=0,...,Nc
S(P ((σ1 . . . σk)−i)) =

Γ(θ(σ1 . . . σk));
2) δ(δ(σ1 . . . σk), σk+1)!

Therefore, by Definition 3, we have

(δ(s),NX(θ(σ1 . . . σk)) ∪ {(S(ε), Nc)}) ∈ NURS(ε)({(q0, ∅)}).
Also, since θ(s) = NX(θ(σ1 . . . σk)) ∪ {(S(ε), Nc)}), we have
(δ(s), θ(s)) ∈ NURS(ε)({(q0, ∅)}) for |s| = k + 1.

Induction Step: Now, let us assume that (10) holds for |α| = m
and we want to show that

ES(ασ) = {(δ(s), θ(s))∈Q̃ : ∃s∈L(S/G) s.t. P (s)=ασ}
(12)

where σ ∈ Σo is a new observable event such that ασ ∈
P (L(S/G)). Similar to the induction basis, we still show this
by two parts.

(LHS ⊆ RHS) First, let (q, θ) ∈ NURS(ασ)(ÊS(ασ)) be
an element of the LHS of (12). Note that ES(ασ) =
NURS(ασ)(NORσ(ES(α))). By Definitions 3 and 4, we know
that there exist an extended state (q,′ θ′) ∈ ES(α) and a sequence
of events σσ1 . . . σn, where σ1 . . . σn ∈ Σ∗

uo, inducing the fol-
lowing extended states.

1) (q1, θ1) = (δ(q,′ σ),NX(θ′)∪{(S(ασ), Nc)}).
2) For any k = 1, . . . , n, we have

(qk+1, θk+1)=(δ(qk, σk),NX(θk)∪{(S(ασ), Nc)})
such that
a) σ ∈ Γ(θ′), σk ∈ Γ(θk);
b) (qn+1, θn+1) = (q, θ).

Let t ∈ L(S/G) be a string that P (t) = α and (δ(t), θ(t)) =
(q,′ θ′). Next, we show the following by induction:

1) tσσ1 . . . σk ∈ L(S/G);
2) θk+1 = θ(tσσ1 . . . σk).

For k = 0, we have θk = θ′ = θ(t). Since q′ = δ(t),
δ(q,′ σ) = q1, andΓ(θ′) = Γ(θ(t)) = ∪i=0,...,Nc

S(P (t−i)), we
have tσ ∈ L(S/G). Also, we have

θ1 = NX(θ′)∪{(S(ασ), Nc)} = NX(θ(t))∪{(S(ασ), Nc)}
= θ(tσ). (13)

Now we assume that the above two conditions hold for k and we
consider the case of k + 1. Still, since qk+1 = δ(tσσ1 . . . σk),
δ(qk+1, σk+1)!, and σk+1 ∈ Γ(θk+1) = Γ(θ(tσσ1 . . . σk)) =
∪i=0,...,Nc

S(P ((tσσ1 . . . σk)−i)), we have sσσ1 . . . σk+1 ∈
L(S/G). Also, we have

θk+2 = NX(θk+1)∪{(S(ασ), Nc)}
= NX(θ(tσσ1 . . . σk))∪{(S(ασ), Nc)}
= θ(tσσ1 . . . σkσk+1). (14)

Therefore, by taking tσσ1 . . . σn as string s in the RHS of (12),
we have that (q, θ) = (qn, θn) is also an element in the RHS of
(12).

(RHS ⊆ LHS) Let (q, θ) be an element of the RHS of (12),
i.e., there exists a string s ∈ L(S/G) such that P (s) = ασ
and (δ(s), θ(s)) = (q, θ). We write string s in the form of
s = tσσ1 . . . σn, whereσ1 . . . σn ∈ Σ∗

uo is the unobservable tail.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2320 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

We define the following sequence of extended states recursively
by the following.

1) (q1, θ1) = (δ(tσ),NX(θ(t))∪{(S(ασ), Nc)}).
2) For any k = 1, . . . , n, we have

(qk+1, θk+1)=(δ(qk, σk),NX(θk)∪{(S(ασ), Nc)}).
First, we note that θi+1 = θ(tσσ1 . . . σi)∀i = 0, . . . , n. Next,

we show by induction that (qi, θi) ∈ ES(ασ)∀i = 1, . . . , n+ 1.
Initially, since P (t) = α, by the induction hypothesis (on

|α|), we know that (δ(t), θ(t)) ∈ ES(α). Since tσ ∈ L(S/G),
we know that σ ∈ Γ(θ(t)). Therefore, by Definition 4, we know
that

(δ(tσ),NX(θ(t))) ∈ NORσ(ES(α)).
Then by Definition 3, we know that

(q1, θ1) = (δ(tσ),NX(θ(t)) ∪ {(S(ασ), Nc)})
∈ NURS(ασ)(NORσ(ES(α))) = ES(ασ). (15)

Now we assume that (qk, θk) ∈ ES(ασ) and we consider the
case of k + 1. Since tσσ1 . . . σk−1σk ∈ L(S/G), we have

σk ∈ ∪i=0,...,Nc
S(P ((tσσ1 . . . σk−1)−i))

= Γ(θ(tσσ1 . . . σk−1)) = Γ(θk). (16)

Again, since (qk+1, θk+1) = (δ(qk, σk),NX(θk) ∪
{(S(ασ), Nc)}, by Definition 3, we have (qk+1, θk+1) ∈
ES(ασ).

Overall, we prove the equality in (10). �
For any set of extended states x = {(q1, θ1), . . . , (qn, θn)},

we denote byQ(x) the set of all states in its first component, i.e.,
Q(x) = {q1, q2, . . . , qn}. Then we have the following corollary
of Theorem 1 by restricting our attention to the first component
of x.

Corollary 1: LetG be a DES andS be an arbitrary supervisor
with control delays bounded by Nc. For any α ∈ P (L(S/G)),
we have Q(ES(α)) = ES(α).

We illustrate our online state estimation procedure by the
following example.

Example 2: Let us still consider the system G shown in Fig. 2
withΣc = Σ,Σo = {a, b} andNc = 1. Suppose that the system
is controlled by supervisor S defined by the following:

1) S(ε) = γ0 := Σ;
2) S(a) = γ1 := Σ \ {u2}.

We now compute the proposed extended state estimation
ES(a) and ES(a), respectively.

Initially, we have ÊS(ε) = {(1, ∅)}. After mak-
ing the first control decision S(ε) = γ0, we have
ES(ε) = NURγ0

(ÊS(ε)) = {(1, {(γ0, 1)})}. Then upon
observing a, we have ÊS(a) = NORa(ES(ε)) =
{(2, {(γ0, 0)})}. After making the second control decision
S(a) = γ1, we further have ES(a) = NURγ1

(ÊS(a)) =
{(2, {(γ0, 0), (γ1, 1)}), (3, {(γ1, 0), (γ1, 1)}), (4, {(γ1, 0),
(γ1, 1)})}. Note that state 5 is not contained in ES(a) since
u2 /∈ Γ({(γ1, 0), (γ1, 1)}) = {a, b, u1, u3}.

On the other hand, by definition of ES(·) and L(S/G), we
have {ε, a, au1, au3} ⊆ L(S/G). However, au3u2 /∈ L(S/G)
since u2 /∈ S(P (au3)) ∪ S(P ((au3)−1)) = γ1. Therefore,
we have ES(a) = {δ(s) ∈ Q : s ∈ L(S/G) s.t. P (s) =

a} = {2, 3, 4}. This is consistent with our result that
ES(a) = Q(ES(a)).

IV. ONLINE CONTROL ALGORITHM

In the previous section, we have shown how to compute the
state estimate of the system online in the presence of control
delays. In this section, we will discuss how to choose a safe
control decision at each instant based on the state estimate.

A. Uncontrollable State Prediction

Note that in the standard supervisory control framework
without control delays, the choice of control decision at each
instant will only affect reachable states until the occurrence
of the next observable event since the control decision can be
updated immediately. However, in our setting, the current control
decision may affect reachable states in the next Nc steps due to
control delays. Therefore, to precisely evaluate the effect of a
control, we need to predict all possible states that can be reached
in the presence of control delays. To this end, we introduce the
concept of uncontrollable state prediction (USP).

Let θ = {(γ1, n1), (γ2, n2), . . . , (γk, nk)} be a channel con-
figuration and m ∈ [0, Nc] be a nonnegative integer. We denote
by Γ≥m(θ) the union of all control decisions that will still be
effective after m steps, i.e.,

Γ≥m(θ) =
⋃

i∈{1,...,k}:ni≥m

γi. (17)

Clearly, we have Γ≥0(θ) = Γ(θ) and Γ≥m(θ) ⊆ Γ(θ). Then we
define the uncontrollable language from θ by

Luc(θ) := Γ≥0(θ)Γ≥1(θ) · · ·Γ≥Nc
(θ)

where the second part is the prefix-closure of the concatenation
of event sets Γ≥i(θ) from i = 0 to i = Nc. Intuitively, if the
current channel configuration is θ, then we cannot prevent any
string in Luc(θ) from happening due to existing delayed control
decisions in the channel.

Definition 5: Let q̃ = (q, θ) ∈ Q̃ be an extended state, then
the USP of q̃, denoted by USP(q̃), is defined by

USP(q̃) = {δ(q, s) ∈ Q : s ∈ Luc(θ)} . (18)

The USP is also extended to a set of extended states x ∈ 2Q̃ by
USP(x) = ∪q̃∈xUSP(q̃).

The intuition of the USP is similar to that of the uncontrollable
language. It essentially captures the set of states we cannot
prevent from reaching from x no matter what control decisions
we take in the future. We illustrate this concept by the following
example.

Example 3: Let us still consider the system G shown in
Fig. 2 with Σc = Σ,Σo = {a, b} and Nc = 1. Note that there
are three illegal states that should be avoided which are in the
shape of solid red circles, i.e., Q\QH = {15, 16, 17}. Suppose
we are now at extended state q̃ = (11, {(γ, 0), (γ, 1)}), where
γ = Σo = {a, b}, and we want to compute its uncontrollable
state prediction USP(q̃). First, we have

Luc(θ) = Γ≥0(θ)Γ≥1(θ) = {a, b}{a, b}

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2321

= {aa, ab, ba, bb}.
Therefore, we have

USP(q̃)={δ(11, s) ∈ Q : s ∈ Luc(θ)}={11, 13, 17}.
Therefore, we know that we will unavoidably reach illegal state
17 starting from such extended state q̃ = (11, θ).

B. Choice of Control Decision

Suppose that stringα ∈ Σ∗
o is observed and the extended state

estimate of the system (before the latest unobservable reach) is
computed as ÊS(α) ∈ 2Q̃. Now, let us discuss how to choose
a control decision at each instant for the purpose of safety. As
we discussed above, once we choose control decision γ ∈ Γ at
ÊS(α), the extended state estimate will be updated as ES(α) =
NURγ(ÊS(α)). Moreover, the system will possibly reach any
state in USP(ES(α)) no matter what control decisions we take
in the future. Therefore, we say that a control decision γ ∈ Γ is
safe at ÊS(α) if

USP(NURγ(ÊS(α))) ⊆ Qgood. (19)

Therefore, to guarantee safety, we need to make sure that the
control decision at each instant is safe; otherwise, the system
may unavoidably reach an illegal state in Q \QH .

So far, we have discussed how to estimate the state of the
system recursively online and how to predict the effect of a
control decision based on the current state estimate. Now, we
combine the estimation and prediction techniques together to
finally present our online control algorithm.

The online control procedure is formally provided in Algo-
rithm ONLINE-CONTROL, which computes a control decision at
each instant upon the occurrence of a new observable event.
More specifically, the procedure starts from the initial state
estimate ÊS(ε) = {(q0, ∅)}. Then it wants to find a safe control
decision γ at ÊS(ε) in the sense of (19). Moreover, to achieve
permissiveness, we want this control decision to be maximal,
i.e., there does not exist another safe control decision γ′ at ÊS(ε)
such that γ ⊂ γ′. Once the control decision is chosen, we update
our state estimate to ES(ε) using the NURγ(·) operator and then
wait for the occurrence of the next observable event. Once a new
observable eventσ is observed, first, we update the state estimate
to ÊS(σ) using the NORσ(·) operator. Then, we go to line 7 to
choose a safe control decision and repeat the above procedure
indefinitely.

Remark 4: The maximal safety control decision in lines 2 and
7 of Algorithm 1 can be found by an “add-and-test” manner.
Specifically, we can start from the set of uncontrollable events
and then add a controllable event to it and test whether or not
the resulting set is still safe. If so, we keep this event and repeat
this procedure until no event can be added anymore. Similar
procedure has been described in more detail in the literature;
see, e.g., [5].

Let us use the following example to illustrate Algorithm 1.
Example 4: Let us return to the systemG shown in Fig. 2 with

Σc = Σ,Σo = {a, b} and Nc = 1. The specification language
K is generated by the subautomaton obtained by removing

illegal states (shown in red solid circles) from G. For this
example, we have QH = Qgood as all events are controllable.

Next, we apply the proposed online control algorithm to com-
pute control decision for the first three instants, i.e., S(ε), S(a),
and S(aa).

Initially, the algorithm starts from Ê(ε) = {(q0, ∅)} and we
want to choose a maximal control decision S(ε) = γ0 such
that USP(NURγ0

(ÊS(ε))) ⊆ Qgood. One can check that γ0 =
Σ is such a maximal control decision. Then the state esti-
mate is updated to ES(ε) = NURγ0

(ÊS(ε)) = {(1, {(γ0, 1)})}.
If event a is observed, then we first update the state esti-
mate to ÊS(a) = NORa(ES(ε)) = {(2, {(γ0, 0)})}. Then we
again want to find a maximal control decision S(a) = γ1 such
that USP(NURγ1

({(2, {(γ0, 0)})})) ⊆ Qgood. For this, we can
choose γ1 = {a, b, u1, u3}. Note that we cannot add event u2

to γ1 since illegal state 15 will be reached in the unobservable
reach. Then the immediate state estimate upon the occurrence
of the next observable event a is Ê(aa) = {(6, {(γ1, 0)})}. By
applying the online algorithm recursively again, we can obtain
control decision S(aa) = γ2 = Σ.

C. Correctness of Online Control Algorithm

In this subsection, we formally prove the correctness of the
proposed online control algorithm. Specifically, we show that
Algorithm 1 is what follows:

1) recursively feasible, i.e., we can always find a control
decision satisfying the condition in lines 2 and 7 in the
while-loop at each instant, no matter what events and
control decisions are executed in the past;

2) safe, i.e., the resulting online supervisor will never reach
an illegal state.

First, we show the recursive feasibility of Algorithm 1 by the
following theorem.

Theorem 2: Algorithm 1 is recursively feasible. That is, at
each instant, we can always find a control decision γ ∈ Γ such
that USP(NURγ(ÊS(α))) ⊆ Qgood.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2322 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

Proof: To show this, it suffices to show that
USP(NURΣuc

(ÊS(α))) ⊆ Qgood. That is, at least disabling all
controllable events is a valid choice at lines 2 and 7. We proceed
by induction on the length of the observation string.

Induction Basis: Initially, we have α = ε and
ÊS(ε) = {(q0, ∅)}. Therefore, for any extended state
(q, θ) ∈ NURΣuc

(ÊS(ε)), we know that q is reached via
some string in Σ∗

uc from q0 and ∀0 ≤ i ≤ Nc : Γ≥i(θ) = Σuc,
which implies that Luc(θ) ⊆ Σ∗

uc. Since q0 ∈ Qgood, we have

USP((q, θ)) ⊆ {δ(q0, s) ∈ Q : s ∈ Σ∗
uc} ⊆ Qgood.

Since (q, θ) is arbitrary, we have USP(NURΣuc
(ÊS(ε))) ⊆

Qgood, which proves the induction basis.
Induction Step: Now, let ασ ∈ Σ∗

o be an observable sequence
that can happen under the control of online supervisor, where
σ ∈ Σo and |α| = k. We assume that the condition in (19) can
always be fulfilled at each instant along α and we need to
show that control decision Σuc can still fulfill this condition
for the instant of ασ. To this end, we assume, for the sake of
contradiction, that

USP(NURΣuc
(NORσ(ES(α))) �⊆ Qgood. (20)

This implies that there exists an extended state

(q, θ) ∈ NURΣuc
(NORσ(ES(α))

such that USP((q, θ)) �⊆ Qgood. That is, there exists a string

s ∈ Luc(θ) = Γ≥0(θ)Γ≥1(θ) · · ·Γ≥Nc
(θ)

such that δ(q, s) /∈ Qgood.
Since (q, θ) ∈ NURΣuc

(NORσ(ES(α))), by the definitions
of NUR and NOR, there exists a state (q̂, θ̂) ∈ ES(α) and a
string σ1σ2 . . . σm ∈ Σ∗

uo that induce the following sequence of
extended states:

(q̂, θ̂)
σ−→ (q1, θ1)

σ1−→ · · · σm−−→ (qm+1, θm+1)

where
1) σ∈Γ(θ̂) and (q1, θ1)=(δ(q̂, σ),NX(θ̂) ∪ {(Σuc, Nc)});
2) for any 1 ≤ i ≤ m, we have σi ∈ Γ(θi) and

(qi+1, θi+1) = (δ(qi, σi),NX(θi) ∪ {(Σuc, Nc)});
3) (qm+1, θm+1) = (q, θ).

Then, for the above sequence, we have

Γ(θi) =

{
Γ≥i(θ̂) if i ≤ Nc

Σuc if i > Nc
. (21)

This implies that, starting from extended state (qm+1, θm+1) =
(q, θ), we also have

Γ≥i(θm+1)=

{
Γ≥i(θ̂) if m+ 1 + i ≤ Nc

Σuc if m+ 1 + i > Nc.
(22)

Recall that δ(qm+1, s) �∈ Qgood and s ∈ Luc(θm+1). Therefore,
we have

σσ1 . . . σms ∈ Γ≥0(θ̂) · · ·Γ≥Nc
(θ̂)Σ∗

uc = Luc(θ̂)Σ
∗
uc.

Let s′ ∈ Luc(θ̂) be the longest prefix of σσ1 . . . σms such that
the last event is controllable. By the definition ofQgood, we know
that δ(q̂, s′) �∈ Qgood. However, by the induction hypothesis,

we have USP(ES(α)) ⊆ Qgood, which implies that {δ(q̂, t) ∈
Q : t ∈ Luc(θ̂)} ⊆ Qgood. This is a contradiction. Therefore,
we know that USP(NURΣuc

(NORσ(ES(α))) ⊆ Qgood, which
completes the induction step. �

Next, we show that the proposed online supervisor is safe.
This result follows directly from the choice of control decision
at each instant, which guarantees that no state in Q \Qgood can
be reached.

Theorem 3: Let G be a DES and we denote by Sonline

the online supervisor defined in Algorithm 1. Then we have
L(Sonline/G) ⊆ K.

Proof: We assume, for the sake of contradiction, that
L(Sonline/G) �⊆ K. Let s ∈ L(Sonline/G) \K be a string vi-
olating the specification. Let P (s) = α. We assume without
loss of generality that α �= ε; the case of α = ε can be shown
analogously. Since δ(q0, s) ∈ ES(α) and δ(q0, s) �∈ Qgood, there
exists a longest prefix of α, denoted by α′, such that ES(α

′) ⊆
Qgood. Note that ES(ε) ⊆ Qgood is guaranteed by the initial
choice ofS(ε)when line 2 was executed for the first time. We de-
note by σ the following event of α′ in α, i.e., ES(α

′σ) �⊆ Qgood.
By Corollary 1, we know thatQ(ES(α′σ)) = ES(α

′σ). Further-
more, by the definition of USP, we know that Q(ES(α′σ)) ⊆
USP(ES(α′σ)). By the choice of control decision S(α′σ) at
line 7, we then have

ES(α
′σ) = Q(ES(α′σ)) ⊆ USP(ES(α′σ)) ⊆ Ggood.

However, this is a contradiction, which means that
L(Sonline/G) ⊆ K. �

V. COMPARISON WITH PREDICTIVE SUPERVISOR

In the previous section, we have provided an online approach
for solving SCPCD. In [33], a supervisor called predictive
supervisor was proposed in order to solve the supervisor ex-
istence problem that aims to achieve K exactly. Moreover, the
author also shows that when K is not exactly achievable, the
synthesized supervisor is still safe, i.e., the predictive supervisor
can also provide a solution to SCPCD.

In this section, we formally compare our solution with the
predictive supervisor in the literature when it is used for the
synthesis problem. Specifically, we show the following.

1) In general, the proposed online supervisor in Algorithm 1
is incomparable with the predictive supervisor.

2) With an additional criterion on the choice of control
decision at each instant, which can always be fulfilled, the
proposed online supervisor can outperform the predictive
supervisor in terms of the permissiveness.

A. Review of Predictive Supervisor

First, we review the predictive supervisor proposed in [33] for
the case of control delays.

Recall that the specification language K is recognized by a
strict subautomaton H = (QH ,Σ, δH , q0), with Qgood ⊆ QH .
We further assume, without loss of generality, that K is control-
lable, which implies Qgood = QH ; otherwise, we can compute
the supremal controllable sublanguage ofK. Then we define the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2323

observer of H by

Hobs = (Y,Σo, ξ, y0)

where Y ⊆ 2QH is the set of states, y0 = {δH(q0, w) ∈ QH :
w ∈ Σ∗

uo} is the initial state. The transition function ξ : Y ×
Σo → Y is defined by the following: for any y ∈ Y and σ ∈ Σo,
we have

ξ(y, σ) = UR({δH(q, σ) ∈ QH : q ∈ y})
where UR(·) is the standard unobservable reach operator defined
by the following: for any y ∈ 2QH , we have

UR(y) := {δH(q, w) ∈ QH : q ∈ y, w ∈ Σ∗
uo}.

For the sake of simplicity, we only consider the reachable part
of Hobs. Essentially, the observer computes the current state-
estimate based on H , i.e., for any string α ∈ P (L(H)), we have
ξ(y0, α) = E(α), where

E(α) := {δH(q0, s) ∈ QH : ∃s ∈ L(H) s.t. P (s) = α}
is the current state estimate of α in H .

To deal with effect of control delay, ReachN (·) operator is
introduced to compute the set of all states that can be reached
within N steps, i.e., for any y ∈ 2QH , we have

ReachN (y) = {δH(q, s)∈QH : ∃q∈y, s∈Σ∗ s.t. |s| ≤ N}.
The predictive supervisor, denoted by Spnc : Σ

∗
o → Γ, is de-

fined as follows. For any observable string α ∈ P (L(H)), the
control decision of Spnc is defined by

Spnc(α) = Σ \ D(ReachNc(E(α))) (23)

where D(·) represents the set of events that should be disabled
as their occurrences may lead to illegal region, i.e., for any y ∈
2QH , we have

D(y) = {σ ∈ Σc : ∃q ∈ y s.t. δ(q, σ) /∈ Qgood}.
It is shown in [33] that the predictive supervisor is safe, i.e.,
L(Spnc/G) ⊆ K. This result is rather straightforward as it op-
erates in a conservative manner by disabling all possible events
that may cause illegal behavior.

Finally, for any observable stringα ∈ P (L(H)), similar to the
current-state estimate E(α), we also define Ê(α) as the set of
states that can be reached immediately after observingαwithout
the unobservable tail, i.e.,

Ê(α) = {δH(s) ∈ QH : ∃s ∈ Σ∗Σo ∪ {ε} s.t. P (s) = α}.
Clearly, we have Ê(ε) = {q0} and E(α) = UR(Ê(α)).

B. Improving the Predictive Supervisor

As we can see, similar to the proposed online supervisor, the
predictive supervisor Spnc proposed in [33] also consists of the
following two parts:

1) state estimation part: ξ(y0, α) = E(α), which estimates
the current state of the system upon the occurrence of α
using the observer of H;

2) state prediction part: ReachNc(·), which predicts states
that can be reached in the next Nc steps.

Fig. 3. System with Σ = Σc = Σo and Nc = 1.

However, compared with our state estimation and predic-
tion techniques, the state estimation and prediction techniques
utilized in Spnc are based on the open-loop systems. That is,
both the estimation and the prediction are based on the origi-
nal specification automaton H , which is independent from the
control policy. This strategy is sufficient when considering the
supervisor existence problem since we know a priori that the
closed-loop language should be K = L(H). However, this is
not the case for the synthesis problem since the closed-loop
language is just a sublanguage ofK in general. Therefore, using
the original H to perform state estimation and state prediction
may be overly conservative by taking some states that are not
reachable in the closed-loop system into account.

The above observation suggests that the state estimation and
state prediction techniques proposed in our article are more pre-
cise than those used in the predictive supervisor. Consequently,
the proposed online supervisor should be strictly more per-
missive than the predictive supervisor. However, the following
simple example shows that it is not the case if we choose control
decision in lines 2 and 7 of Algorithm 1 arbitrarily and the
proposed online supervisor and the predictive supervisor may
be incomparable.

Example 5: Let us consider system G shown in Fig. 3 with
Σ = Σc = Σo and Nc = 1. The specification language K is
generated by the subautomaton obtained by removing the single
illegal state 5 from G. Let us discuss the initial control decision
of the system.

First, using the predictive supervisor, we have E(ε) = {1},
ReachNc({1}) = {1, 2, 3, 4} and D({1, 2, 3, 4}) = {b, c, d}.
Therefore, the initial control decision is Spnc(ε) = {a}.

Now, let us use Algorithm 1 to compute the initial con-
trol decision of Sonline. Initially, the algorithm starts from
Ê(ε) = {(q0, ∅)}. Then consider the following two candidates
of maximal control decision satisfying the condition in (19):

1) Sonline(ε) = {a, b} or
2) Sonline(ε) = {c, d}.

In Algorithm 1, there is no specific criterion for which control
decision we need to choose. However, if we chooseSonline(ε) =
{c, d}, then the closed-loop language of the online supervisor
will be incomparable with that of Spnc.

The above example reveals the following issue. In general,
there may have multiple maximal control decisions satisfying
(19) in lines 2 and 7 of Algorithm 1. Specifically, some control
decisions may not contain the control decision of Spnc even
though they are locally maximal. In order to guarantee that

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2324 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

the online supervisor can outperform the predictive supervisor,
one straightforward way is to strengthen the condition in (19)
by choosing control decision γ such that Spnc(α) ⊆ γ. Clearly,
if the control decision γ chosen at each instant contains the
control decision of the predictive supervisor, then Sonline must
outperform (at least equal to) Spnc. Then the question arises as
to whether or not we can always find such a “matching” control
decision at each instant. The existence of such a control decision
γ is not straightforward. In particular, in the partial observation
setting, once a control decision of a supervisor is enlarged at
some instant, the state estimate will become more uncertain in
the future as more behaviors are allowed, which may, on the other
hand, make the future control decision more conservative in
order to maintain safety. Examples of such a phenomenon can be
found in [5] and [43]. Therefore, the state prediction procedure
should also take the future decisions of the given supervisor that
we want to match into account in order to preserve the ability of
“decision matching” at each instant. To this end, we generalize
the USP to the uncontrollable matched state prediction, which
not only takes all uncontrollable behaviors into account but also
considers all possible behaviors we need to execute in order to
match the given supervisor.

Definition 6: Let θ ∈ Θ be a channel configuration, S be
a supervisor, and α ∈ P (L(S/G)) be an observable string.
Then the uncontrollable matched language from θ and α under
supervisor S, denoted by LS

uc(θ, α), is defined recursively as
follows.

1) ε ∈ LS
uc(θ, α).

2) For any s ∈ Σ∗, σ ∈ Σ, we have sσ ∈ LS
uc(θ, α) if

1) |s| ≤ Nc;
2) s ∈ LS

uc(θ, α);
3) σ ∈ Γ≥|s|(θ) ∪ (

⋃
i=0,1,...,|s| S(αP (s−i))).

The intuition of the uncontrollable matched language is as
follows. Suppose that S is a given supervisor, the channel
configuration of the system is θ, and the current observation
is α. Then all behaviors in LS

uc(θ, α) are unavoidable if we want
to match the behavior under the control of S. Clearly, if we
consider the most restrictive supervisor Sres that always disables
all controllable events, then LSres

uc (θ, α) coincides with Luc(θ)
for any α. Similar to the USP, we also define the uncontrollable
matched state prediction as follows.

Definition 7: Let q̃ = (q, θ) ∈ Q̃ be an extended state, S be a
supervisor, and α ∈ P (L(S/G)) be an observable string. Then
the uncontrollable matched state prediction of q̃ w.r.t. S and α,
denoted by USPS

M (q̃, α), is defined by

USPS
M (q̃, α) = {δ(q, s) ∈ Q : s ∈ LS

uc(θ, α)}. (24)

The uncontrollable matched state prediction is also ex-
tended to a set of extended states x ∈ 2Q̃ by USPS

M (x, α) =
∪q̃∈xUSPS

M (q̃, α).
Based on the above discussion, we propose a modified online

control algorithm specified by Algorithm 2. The structures of
Algorithms 1 and 2 are exactly the same. That is, upon each
occurrence of new observable event, the supervisor chooses
a new control decision by checking the USP assuming this
decision is taken. The only difference is line 7, where the

condition in (19) in Algorithm 1 is replaced by two conditions
in Algorithm 2: (25) guarantees that the control decision choice
at each instant contains the decision of the predictive supervisor
and (26) guarantees that we should maintain the ability of
“decision matching” in the future by looking ahead.

Next, we discuss the correctness of Algorithm 2. First, we
show that Algorithm 2 is still recursively feasible, i.e., the mod-
ified conditions (25) and (26) can still be fulfilled recursively.

Theorem 4: Algorithm 2 is still recursively feasible. That is,
at each instant of α ∈ P (L(G)), we can always recursively find
a control decision γ ∈ Γ such that both

1) Spnc(α) ⊆ γ and

2) USPSpnc

M (NURγ(ÊS(α)), α) ⊆ Qgood.
Proof: See the Appendix.
Let us denote byS∗

online the modified online supervisor defined
in Algorithm 2. According to the definitions of USP(·) and
USPS

M (·, ·), we have USP(q̃) ⊆ USPS
M (q̃, α) for any S and α.

This means that the choice of control decision in Algorithm 2 is
more conservative than that of Algorithm 1. Hence, by the same
argument in Theorem 3, we also know that S∗

online is safe, i.e.,
L(S∗

online/G) ⊆ K. Furthermore, at each instant, S∗
online(α) is

chosen such that Spnc(α) ⊆ S∗
online(α). Therefore, we also have

L(Spnc/G) ⊆ L(S∗
online/G). The above discussion is summa-

rized by the following theorem.
Theorem 5: LetG be a DES and Spnc be the predictive super-

visor and S∗
online be the modified online supervisor defined in

Algorithm 2. Then we have L(Spnc/G) ⊆ L(S∗
online/G) ⊆ K.

In [33], it was shown that controllability together with net-
worked observability (the reader is referred to [33] for the def-
initions) provide the necessary and sufficient conditions under
which K can be exactly achieved by the predictive supervisor.
Then, we also have the following corollary.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2325

Fig. 4. Observer Hobs for system G in Fig. 2.

Corollary 2: Let G be a DES and S∗
online be the modified on-

line supervisor. If K is controllable and networked observable,
then we have L(S∗

online/G) = L(Spnc/G) = K.
We now use the following example to demonstrate our online

supervisor indeed works better than predictive supervisor.
Example 6: Again, we consider system G shown in Fig. 2

with Σc = Σ,Σo = {a, b}, and Nc = 1. We synthesize the pre-
dictive supervisor and the modified online supervisor to control
the system, respectively, and compare their performances. First,
we compute the predictive supervisor Spnc. To this end, we need
to compute the observer Hobs, which is shown in Fig. 4 . Then
we use (23) to compute the control decision at each instant. For
example, at the initial instant, we have

E(ε) = {1}, ReachNc(E(ε)) = {1, 2}
and Spnc(ε) = Σ \ D(ReachNc(E(ε))) = Σ.

When event a is observed, we then have

E(a) = {2, 3, 4, 5}, ReachNc(E(a)) = {2, 3, 4, 5, 6, 8}
and Spnc(a) = Σ \ D(ReachNc(E(a))) = Σ \ {u2, b}.

Similarly, we can obtain Spnc(aa) = Σ \ {b} and Spnc(aaa) =
Σ \ {a, b}. The closed-loop language L(Spnc/G) under control
is generated by the automaton shown in Fig. 6(a).

Next, we synthesize the modified online supervisor S∗
online.

Initially, we have ÊS(ε) = {(1, ∅)}. Since Spnc(ε) is already Σ,
by Theorem 4, we immediately get

S∗
online(ε) = Σ =: γ0

and update the extended state estimate to

ES(ε) = NURγ0
(ÊS(ε)) = {(1, {(γ0, 1)})}

which is the initial state of the structure shown in Fig. 5. When
the first observable event a occurs, first, we update the extended
state estimate to

ÊS(a) = NORa(ES(ε)) = {(2, {(γ0, 0)})}.
Then we find a maximal control decision

S∗
online(a) = Σ \ {u2} =: γ1

Fig. 5. Closed extended state estimate flow of G in Fig. 2.

such that Spnc(a) ⊂ γ1 and USPSpnc

M (NURγ1
(ÊS(a)), a) ⊆

Qgood. To see the latter more clearly, we have

NURγ1
(ÊS(a)) = {(2, θ), (3, θ′), (4, θ′)}

where θ = {(γ0, 0), (γ1, 1)} and θ′ = {(γ1, 0), (γ1, 1)}. More-
over, we can obtain the following:

L
Spnc
uc (θ, a) = {ε} ∪ (γ0 ∪ γ1 ∪ Spnc(a))

∪ (γ0 ∪ γ1 ∪ Spnc(a)) (γ1 ∪ Spnc(a))

L
Spnc
uc (θ′, a) = {ε} ∪ (γ1 ∪ Spnc(a))

∪ (γ1 ∪Spnc(a)) (γ1 ∪Spnc(a) ∪Spnc(aa))

which gives USPSpnc

M (NURγ1
(ÊS(a)), a)={2, 3, 4, 6, 7, 9}⊆

Qgood. Similarly, we can find S∗
online(aa) = Σ =: γ2 as a con-

trol decision when string aa is observed. Note that at the instants
of a and aa, S∗

online is strictly more permissive than Spnc.
Specifically, Spnc needs to disable b to prevent the system from
reaching illegal state 16 from state 8 via event b. However,
by utilizing the control information, S∗

online knows that state
8 is not reachable as we have already disabled u2. Therefore,
the transition from state 6 to state 7, which does not exist in
L(Spnc/G), can be allowed by S∗

online. Finally, when string
aaa is observed, S∗

online can choose either
1) S∗

online(aaa) = Σ \ {a} := γ3
2) S∗

online(aaa) = Σ \ {b} := γ′
3.

Both of them strictly contain the corresponding control deci-
sion Spnc(aaa) = Σ \ {a, b} issued by the predictive supervi-
sor. Suppose that we choose S∗

online(aaa) = γ3. Then the entire
information flow of the extended state estimate under S∗

online

and the associated control decisions are depicted in Fig. 5. The
closed-loop language L(S∗

online/G) under control is generated
by the automaton shown in Fig. 6(b). Clearly, we see that the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2326 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

Fig. 6. Closed-loop languages induced by Spnc and Sonline, respec-
tively. (a) L(Spnc/G). (b) L(S∗

online/G).

modified online supervisor S∗
online is strictly more permissive

than the predictive supervisor Spnc.
Remark 5: We conclude by discussing the complexity of

the proposed online control algorithms. First, operator NX(θ)
is just a one-step reachability operation, which is linear in
the size of θ (|θ| ≤ Nc). Also, the complexities of comput-
ing NORσ(x) and NURγ(x), x ∈ 2Q̃ are O(|Q| · |Θ|) and
O(|Σ| · |Q| · |Θ|), respectively. Furthermore, the complexity for
computing USP(x), x ∈ 2Q̃ is also O(|Σ| · |Q| · |Θ|), which is
essentially an Nc-step reachability search. Therefore, in Al-
gorithm 1, it takes O(|Σ| · |Q| · |Θ|) to compute ÊS(·), ES(·)
(lines 1, 4, 5, and 9) and takesO(|Γ| · |Σ| · |Q| · |Θ|), |Γ| = 2|Σc|

to find some maximal control decision γ (lines 2 and 7) because
we need to test all possible control decisions in Γ and for each
control decision to compute its USP and test the set inclusion
(which can be done simultaneously).

The case of Algorithm 2 is similar, the only difference is
the computation of uncontrollable matched state prediction
USPSpnc

M (NURγ(ÊS(α)), α). Here, we also need to use addi-
tionally computed control decisions of the predictive supervisor.
Note that the predictive supervisor can be implemented by a
networked observer that is exponential in the size ofG. However,
this part can be done offline and be stored. Therefore, the online
computation of USPSpnc

M (·) is still O(|Σ| · |Q| · |Θ|) and the
overall complexity of Algorithm 2 for each online instant (each
execution of the while-loop) is also O(|Γ| · |Σ| · |Q| · |Θ|).

Finally, we note that the set Θ contains no more than |Γ|Nc =
2|Σc|·Nc channel configurations. Therefore, the complexity of
the online algorithm for each execution is polynomial in the
number of states but exponential in the number of controllable
events and the delay bound. In practice, the number of events
is much smaller than the number of states in G. Furthermore,
in most real-world applications, Nc is usually relatively small.
Otherwise, it is more natural for engineers to first improve the
hardware to reduce delays and then to use networked control
algorithms to compensate the effect of delays.

VI. CONCLUSION

We investigated the supervisor synthesis problem in the con-
text of networked DESs. First, a novel structure called channel
configuration was proposed to dynamically capture past control
history; hence, closed-loop state estimate was realized and it
was more accurate compared with that computed according
to the observer built beforehand. Then, based on the channel
configuration, we proposed an operator called USP to guarantee
that the system always retains in the safe region under our online
supervisory control and put forward a safe and recursive feasible
algorithm. Finally, we formally prove that our proposed online
supervisor always works better than the predictive supervisor
in the sense that it can always obtain a larger (at least equal to)
event set than the latter along the system trajectory. Note that the
control specification considered in this work is safety; liveness
specifications such as nonblockingness and deadlock-freeness
are not considered. The main reason is that liveness is a global re-
quirement that cannot be enforced using online control algorithm
on-the-fly. To guarantee liveness, one may need to first construct
the entire reachable information space offline and then compute
the supervisor, which loses the main computational advantage
of the online control approach. Also, this work only considers
communication delays in control channel. In the future, we also
plan to extend our results to DES with both observation and
control delays.

APPENDIX

Proof of Theorem 4

Proof: To show this, it suffices to show that

USPSpnc

M (NURSpnc(α)(ÊS(α)), α) ⊆ Qgood.

That is, at least choosing the decision of Spnc satisfies (25)
and (26). We proceed by induction on the length of the observa-
tion string.

Induction Basis: Initially, we have α = ε and ÊS(ε) =
{(q0, ∅)}. Let (q, θ) be an arbitrary extended state in
NURSpnc(ε)(ÊS(ε)) and s ∈ (Spnc(ε) ∩ Σuo)

∗ be an arbitrary
string such that (δ(s), θ(s)) = (q, θ). First, we know that q ∈
Qgood as Spnc is a safe supervisor. Then we consider an arbitrary

string w ∈ L
Spnc
uc (θ, ε). By matching the definition of L(S/G)

and L
Spnc
uc (θ, ε), we have sw ∈ L(Spnc/G). This implies that

δ(q0, sw) ∈ Qgood. Since all strings and states considered are
arbitrary, we have

USP
Spnc

M (NURSpnc(ε)(ÊS(ε)), ε) ⊆ Qgood.

This proves the induction basis.
Induction Step: Now, let ασ ∈ Σ∗

o be an observable sequence
that can happen under the control of the modified online supervi-
sor, whereσ ∈ Σo and |α| = k. We assume that (25) and (26) can
always be fulfilled at each instant along α and we need to show
that control decision Spnc(ασ) can still fulfill these conditions
for the instant of ασ.

Let us consider an arbitrary extended state

(q, θ) ∈ NURSpnc(ασ)(NORσ(ES(α))).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2327

By the definitions of NUR and NOR, there exists a state (q̂, θ̂) ∈
ES(α) and a string σ1σ2 . . . σm ∈ Σ∗

uo that induce the following
sequence of extended states:

(q̂, θ̂)
σ−→ (q1, θ1)

σ1−→ · · · σm−−→ (qm+1, θm+1)

where we have the following:
1) σ ∈ Γ(θ̂) and (q1, θ1) = (δ(q̂, σ),NX(θ̂) ∪

{(Spnc(ασ), Nc)});
2) for any 1 ≤ i ≤ m, we have σi ∈ Γ(θi) and

(qi+1, θi+1) = (δ(qi, σi),NX(θi) ∪ {(Spnc(ασ), Nc)});
3) (qm+1, θm+1) = (q, θ).

Since (q̂, θ̂) ∈ ES(α), we know that there exists a string
s ∈ L(S/G) such thatP (s) = α and (δ(s), θ(s)) = (q̂, θ̂). Note
that, although supervisor S has only made control decisions up
to the instant of α, L(S/G) and θ(s) are still well defined as
they only depend on the information in the history. Moreover,
by the induction hypothesis, we have

USP
Spnc

M ((δ(s), θ(s)), α) ⊆ Qgood. (27)

Now, let us consider an arbitrary string w ∈ L
Spnc
uc (θ, ασ) such

that δ(q, w)! To be more specific, we write w in the form of w =

σ1
wσ

2
w . . . σ

|w|
w ∈ Σ∗. By Definition 6, we have |w| ≤ Nc + 1 and

σi+1
w ∈ Γ≥i(θm+1) ∪

⎛
⎝ ⋃

k=0,...,i

S(ασP ((σ1
w . . . σi

w)−k))

⎞
⎠ .

Then we consider the following two cases.
Case 1: 1 +m+ |w| ≤ Nc + 1.
In such case, by considering L

Spnc
uc (θ̂, α) and the above

specified sequence of extended states and string w, we
have σσ1 · · ·σmw ∈ L

Spnc
uc (θ̂, α). Therefore, we know that

δ(q̂, σσ1 · · ·σmw) = δ(q, w) ∈ Qgood by (27).
Case 2: 1 +m+ |w| > Nc + 1.
In such case, we proceed our proof by two parts. Without loss

of generality, we assume that m ≥ Nc. If m < Nc holds, we
will see that, on the basis of Case 1, the proof is degenerated to
only the second part.

First, we prove that the state reached via unobservable string
is in Qgood. By Corollary 1 and the definitions of E(α) and
Ê(α), we know that q̂ ∈ Q(ES(α)) ⊆ E(α), which implies
q1 ∈ Q(ÊS(ασ)) ⊆ Ê(ασ). Note that Spnc in (23) can also be
rewritten as

Spnc(ασ) = Σ \ D(ReachNc(E(ασ)))

= Σ \ D(ReachNc(UR(Ê(ασ))))

which means no event in Spnc(ασ) can lead a state in
ReachNc(UR(Ê(ασ))) out of Qgood. Furthermore, since qm+1

is reached under NURSpnc(ασ)(·) operator, and σ1 · · ·σm ∈ Σ∗
uo

with σi ∈ Γ(θi), following the same argument in Case 1, i.e., no
event in Γ(θ̂) can lead a state in ReachNc(UR(Ê(ασ))) out of
Qgood, we know that q1, q2, . . . , qm+1 ∈ Qgood.

Second, we prove that the state reached via w ∈
L
Spnc
uc (θm+1, ασ) is also in Qgood. For this, let us consider states

reached along string w. Note that Γ(θm+1) = Spnc(ασ) since

m ≥ Nc. Then consider the first state q1 = δ(qm+1, σ
1
w). If

σ1
w ∈ Σuo, then this reduces to the first part. Therefore, we as-

sume σ1
w ∈ Σo and a new control decision S(ασP (σ1

w)) will be
issued. Since q1 is reached from state qm+1 ∈ ReachNc(E(ασ))
via event σ1

w ∈ Spnc(ασ), we know from the same argument
in the first part that q1 ∈ Qgood. Then consider the second
state q2 = δ(qm+1, σ

1
wσ

2
w), where we have σ2

w ∈ Spnc(ασ) ∪
Spnc(ασσ

1
w). On the one hand, if σ2

w ∈ Spnc(ασ), then we
obtain immediately that q2 ∈ Qgood as q1 ∈ ReachNc(E(ασ)).
On the other hand, if σ2

w ∈ Spnc(ασσ
1
w), then based on the

construction of Spnc(ασσ
1
w), i.e., Σ \ D(ReachNc(E(ασσ1

w))),
we also have q2 ∈ Qgood since we know for sure that q1 ∈
ReachNc(E(ασσ1

w)). This means that for any feasible event,
no matter it is enabled by past control decisions in the channel
or by the latest effective control decision, the transition from
state q1 to q2 is always safe as it is also allowed in the pre-
dictive supervisor. Therefore, by applying the above argument
iteratively and the fact that |w| ≤ Nc + 1, we have q|w| ∈ Qgood,

where q|w| = δ(qm+1, σ
1
w · · ·σ|w|

w).
Because w is an arbitrary string in L

Spnc
uc (θ, ασ), we know that

USPSpnc

M (q, θ) ⊆ Qgood. Since (q, θ) is also chosen arbitrarily, we
further have

USP
Spnc

M (NURSpnc(ασ)(NORσ(ES(α))), ασ) ⊆ Qgood

which completes the induction step.

REFERENCES

[1] M. V. S. Alves and J. C. Basilio, “State estimation and detectability
of networked discrete event systems with multi-channel communication
networks,” in Proc. IEEE Amer. Control Conf., 2019, pp. 5602–5607.

[2] M. V. S. Alves, J. C. Basilio, A. E. Carrilho da Cunha, L. K. Carvalho,
and M. V. Moreira, “Robust supervisory control against intermittent loss
of observations,” in Proc. 12th Int. Workshop Discrete Event Syst., vol. 12,
2014, 12, pp. 294–299.

[3] M. V. S. Alves, L. K. Carvalho, and J. C. Basilio, “Supervisory control of
timed networked discrete event systems,” in Proc. 56th IEEE Conf. Decis.
Control, 2017, pp. 4859–4865.

[4] S. Balemi, “Input/output discrete event processes and communication
delays,” Discrete Event Dyn. Syst., vol. 4, no. 1, pp. 41–85, 1994.

[5] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and dis-
tributed algorithms for on-line synthesis of maximal control policies under
partial observation,” Discrete Event Dyn. Syst.: Theory Appl., vol. 6, no. 4,
pp. 379–427, 1996.

[6] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 3, pp. 659–670, Mar. 2015.

[7] L. K. Carvalho, J. C. Basilio, and M. V. Moreira, “Robust diagnosis of dis-
crete event systems against intermittent loss of observations,” Automatica,
vol. 48, no. 9, pp. 2068–2078, 2012.

[8] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
2nd ed. Berlin, Germany: Springer, 2008.

[9] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089–1100,
May 2010.

[10] C. Gu, X. Wang, and Z. Li, “Synthesis of supervisory control with partial
observation on normal state-tree structures,” IEEE Trans. Autom. Sci. Eng.,
vol. 16, no. 2, pp. 984–997, Apr. 2019.

[11] M. Heymann and F. Lin, “On-line control of partially observed discrete
event systems,” Discrete Event Dyn. Syst.: Theory Appl., vol. 4,no. 3,
pp. 221–236, 1994.

[12] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

2328 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 5, MAY 2022

[13] J. Komenda and F. Lin, “Modular supervisory control of networked
discrete-event systems,” in Proc. 13th Int. Workshop Discrete Event Syst.,
2016, pp. 85–90.

[14] J. Komenda, T. Masopust, and J. H. Van Schuppen, “Synthesis of con-
trollable and normal sublanguages for discrete-event systems using a
coordinator,” Syst. Control Lett., vol. 60, no. 7, pp. 492–502, 2011.

[15] J. Komenda, T. Masopust, and J. H. van Schuppen, “Supervisory control
synthesis of discrete-event systems using a coordination scheme,” Auto-
matica, vol. 48, no. 2, pp. 247–254, 2012.

[16] F. Lin, “Control of networked discrete event systems: Dealing with com-
munication delays and losses,” SIAM J. Control Optim., vol. 52, no. 2,
pp. 1276–1298, 2014.

[17] Z. Liu, X. Yin, S. Shu, and S. Li, “Online supervisory control of networked
discrete-event systems with control delays,” in Proc. 58th IEEE Conf.
Decis. Control, 2019, pp. 6706–6711.

[18] J. Lunze, Control Theory of Digitally Networked Dynamic Systems. Berlin,
Germany: Springer, 2014.

[19] C. E. V. Nunes, M. V. Moreira, M. V. S. Alves, L. K. Carvalho, and J.
C. Basilio, “Codiagnosability of networked discrete event systems subject
to communication delays and intermittent loss of observation,” Discrete
Event Dyn. Syst., vol. 28, no. 2, pp. 215–246, Jun. 2018.

[20] S.-J. Park and K.-H. Cho, “Delay-robust supervisory control of discrete-
event systems with bounded communication delays,” IEEE Trans. Autom.
Control, vol. 51, no. 5, pp. 911–915, May 2006.

[21] S.-J. Park and K.-H. Cho, “Supervisory control of discrete event systems
with communication delays and partial observations,” Syst. Control Lett.,
vol. 56, no. 2, pp. 106–112, 2007.

[22] S.-J. Park and K.-H. Cho, “Achieving a global objective with competing
networked agents in the framework of discrete event systems,” Int. J.
Control, vol. 93, no. 4, pp. 889–897, Apr. 2020.

[23] S. Pruekprasert and T. Ushio, “Supervisory control of communicating
timed discrete event systems for state avoidance problem,” IEEE Contr.
Syst. Lett., vol. 4, no. 1, pp. 259–264, Jan. 2020.

[24] A. Rashidinejad, M. Reniers, and M. Fabian, “Supervisory control of
discrete-event systems in an asynchronous setting,” in Proc. 15th Int. Conf.
Autom. Sci. Eng., 2019, pp. 494–501.

[25] A. Rashidinejad, M. Reniers, and L. Feng, “Supervisory control of timed
discrete-event systems subject to communication delays and non-fifo
observations,” in Proc. 14th Int. Workshop Discrete Event Syst., 2018,
pp. 456–463.

[26] K. Rohloff, “Sensor failure tolerant supervisory control,” in Proc. 44th
IEEE Conf. Decis. Control, 2005, pp. 3493–3498.

[27] W. H. Sadid, L. Ricker, and S. Hashtrudi-Zad, “Robustness of synchronous
communication protocols with delay for decentralized discrete-event con-
trol,” Discrete Event Dyn. Syst., vol. 25, no. 1-2, pp. 159–176, 2015.

[28] A. M. Sánchez and F. J. Montoya, “Safe supervisory control under observ-
ability failure,” Discrete Event Dyn. Syst.: Theory Appl., vol. 16, no. 4,
pp. 493–525, 2006.

[29] Y. Sasi and F. Lin, “Detectability of networked discrete event systems,”
Discrete Event Dyn. Syst., vol. 28, no. 3, pp. 449–470, 2018.

[30] S. Shu and F. Lin, “Decentralized control of networked discrete event
systems with communication delays,” Automatica, vol. 50, no. 8,
pp. 2108–2112, 2014.

[31] S. Shu and F. Lin, “Supervisor synthesis for networked discrete event
systems with communication delays,” IEEE Trans. Autom. Control, vol. 60,
no. 8, pp. 2183–2188, Aug. 2015.

[32] S. Shu and F. Lin, “Deterministic networked control of discrete event sys-
tems with nondeterministic communication delays,” IEEE Trans. Autom.
Control, vol. 62, no. 1, pp. 190–205, Jan. 2017.

[33] S. Shu and F. Lin, “Predictive networked control of discrete event systems,”
IEEE Trans. Autom. Control, vol. 62, no. 9, pp. 4698–4705, Sep. 2017.

[34] S. Takai and T. Ushio, “Effective computation of an Lm(G)-closed,
controllable, and observable sublanguage arising in supervisory control,”
Syst. Control Lett., vol. 49, no. 3, pp. 191–200, 2003.

[35] S. Takai and T. Ushio, “Verification of codiagnosability for discrete event
systems modeled by mealy automata with nondeterministic output func-
tions,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 798–804, Mar.
2012.

[36] T. Ushio and S. Takai, “Nonblocking supervisory control of discrete
event systems modeled by mealy automata with nondeterministic output
functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 799–804, Mar.
2016.

[37] G. S. Viana, M. S. Alves, and J. C. Basilio, “Codiagnosability of timed
networked discrete-event systems subject to event communication delays
and intermittent loss of observation,” in Proc. 56th IEEE Conf. Decis.
Control, 2017, pp. 4211–4216.

[38] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event Sys-
tems. Berlin, Germany: Springer, 2018.

[39] S. Yang, J. Hou, X. Yin, and S. Li, “Opacity of networked supervisory
control systems over insecure communication channels,” IEEE Control
Netw. Syst., to be published, 2021, doi: 10.1109/TCNS.2021.3050131.

[40] X. Yin, “Supervisor synthesis for mealy automata with output functions:
A model transformation approach,” IEEE Trans. Autom. Control, vol. 62,
no. 5, pp. 2576–2581, May 2017.

[41] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially observed discrete event systems,” IEEE Trans. Autom.
Control, vol. 61, no. 5, pp. 1239–1254, May 2016.

[42] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[43] X. Yin and S. Lafortune, “Synthesis of maximally-permissive supervisors
for the range control problem,” IEEE Trans. Autom. Control vol. 62, no. 8,
pp. 3914–3929, Aug. 2017.

[44] M. Zgorzelski and J. Lunze, “A method for the synchronisation of net-
worked discrete-event systems,” in Proc. 13th Int. Workshop Discrete
Event Syst., 2016, pp. 444–451.

[45] M. Zgorzelski and J. Lunze, “A. new approach to tracking control of
networked discrete-event systems,” in Proc. 14th Int. Workshop Discrete
Event Syst., 2018, pp. 448–455.

[46] M. Zgorzelski, P. Ostendarp, and J. Lunze, “Experimental application of
a networked tracking control method to the discrete-event demonstrator
HANS,” in Proc. IEEE Conf. Control Tech. Appl., 2018, pp. 450–457.

[47] R. Zhang, K. Cai, Y. Gan, and W. M. Wonham, “Delay-robustness in
distributed control of timed discrete-event systems based on supervisor
localisation,” Int. J. Control, vol. 89, no. 10, pp. 2055–2072, 2016.

[48] R. Zhang, K. Cai, Y. Gan, and W. M. Wonham, “Distributed supervisory
control of discrete-event systems with communication delay,” Discrete
Event Dyn. Syst., vol. 26, no. 2, pp. 263–293, 2016.

[49] B. Zhao, F. Lin, C. Wang, X. Zhang, M. P. Polis, and L. Y. Wang,
“Supervisory control of networked timed discrete event systems and its
applications to power distribution networks,” IEEE Control Netw. Syst.,
vol. 4, no. 2, pp. 146–158, Jun. 2017.

[50] Y. Zhu, L. Lin, S. Ware, and R. Su, “Supervisor synthesis for networked
discrete event systems with communication delays and lossy channels,” in
Proc. 58th IEEE Conf. Decis. Control, 2019, pp. 6730–6735.

Zhaocong Liu (Student Member, IEEE) re-
ceived the B.Eng degree in mechanical engi-
neering from Zhejiang University in 2018, the
M.S. degree in control engineering from the
Shanghai Jiaotong University, in 2021. He is
currently working toward the Ph.D. degree at the
Chinese University of Hong Kong.

His research interests includes the supervi-
sory control of discrete event systems, multi-
agent systems andnonlinear control systems.

Mr. Liu was a recipient of the National Schol-
arship from China.

Xiang Yin (Member, IEEE) was born in Anhui,
China, in 1991. He received the B.Eng. degree
from Zhejiang University, Hangzhou, China, in
2012, and the M.S. and Ph.D. degrees from
the University of Michigan, Ann Arbor, MI, USA,
in 2013 and 2017, respectively, all in electrical
engineering.

Since 2017, he has been with the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, where he is currently an As-
sociate Professor. His research interests include

formal methods, discrete-event systems, and cyber–physical systems.
Dr. Yin is serving as the Co-Chair of the IEEE CSS Technical Com-

mittee on Discrete Event Systems, an Associate Editor for the Journal of
Discrete Event Dynamic Systems: Theory & Applications, and a member
of the IEEE CSS Conference Editorial Board. He was the recipient of the
Best Student Paper Award Finalist in IEEE Conference on Decision and
Control (CDC) 2016.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TCNS.2021.3050131

LIU et al.: ONLINE SUPERVISORY CONTROL OF NETWORKED DISCRETE EVENT SYSTEMS WITH CONTROL DELAYS 2329

Shaolong Shu (Senior Member, IEEE) received
the B.Eng. degree in automatic control and the
Ph.D. degree in control theory and control engi-
neering from Tongji University, Shanghai, China,
in 2003 and 2008, respectively.

Since 2008, he has been with the School of
Electronics and Information Engineering, Tongji
University, where he is currently a Full Profes-
sor. From 2007 to 2008 and from 2014 to 2015,
he was a Visiting Scholar with Wayne State
University, Detroit, MI, USA. His main research

interests include state estimation and control of discrete event systems
and cyber–physical systems.

Feng Lin (Fellow, IEEE) received the B.Eng.
degree in electrical engineering from Shanghai
Jiao Tong University, Shanghai, China, in 1982,
and the M.A.Sc. and Ph.D. degrees in electri-
cal engineering from the University of Toronto,
Toronto, ON, Canada, in 1984 and 1988, re-
spectively.

He was a Postdoctoral Fellow with Harvard
University, Cambridge, MA, USA, from 1987 to
1988. Since 1988, he has been with the Depart-
ment of Electrical and Computer Engineering,

Wayne State University, Detroit, MI, USA, where he is currently a Profes-
sor. His current research interests include discrete event systems, hybrid
systems, robust control, and their applications in alternative energy,
biomedical systems, and automotive control. He has authored a book
entitled Robust Control Design: An Optimal Control Approach.

Dr. Lin coauthored a paper that received a George Axelby Outstand-
ing Paper Award from the IEEE Control Systems Society. He was an
Associate Editor for IEEE TRANSACTIONS ON AUTOMATIC CONTROL.

Shaoyuan Li (Senior Member, IEEE) was born
in Hebei, China, in 1965. He received the B.S.
and M.S. degrees in automation from the Hebei
University of Technology, Tianjin, China, in 1987
and 1992, respectively, and the Ph.D. degree
from Nankai University, Tianjin, China, in 1997.

Since 1997, he has been with the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, where he is currently a Pro-
fessor. His current research interests include
model predictive control, dynamic system opti-

mization, and cyber–physical systems.
Dr. Li is the Vice-President of the Chinese Association of Automation.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 07,2023 at 02:29:15 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

