Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

To Explore or Not to Explore: Regret-Based LTL
Planning in Partially-Known Environments *
Jianing Zhao* Keyi Zhu* Shaoyuan Li* Xiang Yin*

* Department of Automation, Shanghai Jiao Tong University

Shanghai 200240, China
(e-mail: {jnzhao,bail 2wp,syli,yinziang} Qsjtu.edu.cn)

Abstract: In this paper, we investigate the optimal robot path planning problem for high-
level specifications described by co-safe linear temporal logic (LTL) formulae. We consider the
scenario where the map geometry of the workspace is partially-known. Specifically, we assume
that there are some unknown regions, for which the robot does not know their successor regions a
priori unless it reaches these regions physically. In contrast to the standard game-based approach
that optimizes the worst-case cost, in the paper, we propose to use regret as a new metric for
planning in such a partially-known environment. The regret of a plan under a fixed but unknown
environment is the difference between the actual cost incurred and the best-response cost the
robot could have achieved if it realizes the actual environment with hindsight. We provide
an effective algorithm for finding an optimal plan that satisfies the LTL specification while
minimizing its regret. A case study on firefighting robots is provided to illustrate the proposed
framework. We argue that the new metric is more suitable for the scenario of partially-known
environment since it captures the trade-off between the actual cost spent and the potential
benefit one may obtain for exploring an unknown region.

Keywords: Discrete event systems, regret, autonomous robots, LTL planning.

1. INTRODUCTION

Path planning is one of the central problems in au-
tonomous robots. In this context, one needs to design
a finite or infinite path for the robot, according to its
dynamic and the underlying environment, such that some
desired requirements can be fulfilled. In the past years,
robot path planning for high-level specifications using for-
mal logics has been drawing increasingly more attentions
in the literature; see, e.g., Mahulea et al. (2020); Kloetzer
and Mahulea (2020); Yu et al. (2022).

Linear temporal logic (LTL) is one of the most popu-
lar languages for describing high-level specifications. In
the context of robotic applications, path planning and
decision-making for LTL specifications have been investi-
gated very extensively recently. For example, Smith et al.
(2011) studied how to generate an optimal open-loop plan
such that a given LTL formula is fulfilled. When the results
of control actions are non-deterministic, algorithms for
synthesizing reactive strategies have been developed using
two-player games (Fu and Topcu, 2016). The LTL path
planning problem has also been studied for multi-robot
systems (Yu and Dimarogonas, 2022) under both global
and local tasks.

The aforementioned works on LTL path planning all as-
sume that the environment is known in the sense that
the map geometry and the semantic structure are both
available at the planning stage. For partially-known en-
vironment, in Guo and Dimarogonas (2015), the authors

* This work was supported by the National Natural Science Foun-
dation of China (62061136004, 62173226, 61803259).

©2023 the authors. Accepted by IFAC for publication
under a Creative Commons Licence CC-BY-NC-ND

Known Wall

(«=]

Possible Wall

Regret-Based Plan
——— -

Worst-Case-Based Plan

Lo < >

Fig. 1. A motivating example, where a robot needs to
reach region 5 from regin 0 with partially-known
environment information.

provided a re-planning algorithm based on the system
model updated online. In Lahijanian et al. (2016), the
authors proposed an iterative planning algorithm in uncer-
tain environments. Recently, Kantaros et al. (2022) investi-
gated the LTL planning problem under environments with
known map geometries but with semantic uncertainties.

In this paper, we also investigate the LTL path planning
for robots in partially-known environments. Specifically,
here we assume that the location of each region in the map
is perfectly known but, for some regions, the robot does
not know their successor regions a priori unless it reaches
these regions physically. For example, in Figure 1, the
dashed line between regions 2 and 5 denotes a possible wall
that may prevent the robot from reaching region 5 directly
from region 2. Initially, the robot knows the possibility of
the wall, but it will actually know the (non-)existence of
the wall only when reaching region 2. Here, we distinguish
between the terminologies of mon-determinsitic environ-

12171

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

ments and partially-known environments. Specifically, the
former is referred to the scenario where the outcome of the
environment is purely random in the sense that even for
the same visit, the environment may behave differently.
However, the partially-known environment is referred to
the case where the robot has information uncertainty re-
garding the true world initially, but the underlying actual
environment is still fixed and deterministic.

To solve the path planning problem in partially-known
environments, a direct approach is to follow the same idea
for planning in non-deterministic environments, where
game-based approaches are usually used to minimize the
worst-case cost. Still, let us consider Figure 1, where the
robot aims to reach target region 5 with shortest distance.
Using a worst-case-based approach, the robot will follow
the red trajectory. This is because the short-cut from
regions 2 to 5 may not exist; if it goes to region 2, then
in the worst-case, it will spend additional effort to go
back. However, by taking the red trajectory, the robot
may heavily regret by thinking that it should have taken
the short-cut at region 2 if it knows with hindsight that
the wall does not exist. Therefore, a more natural and
human-like plan is to first go to region 2 to take a look
at whether there is a wall. If not, then it can take the
short-cut, which saves 7 units cost. Otherwise, the robot
needs to go back to the red trajectory. Compared with
the red path, although this approach may have two more
units cost than the worst-case, it takes the potential huge
advantage of exploring the unknown regions.

In this paper, we formulate and solve a new type of LTL
optimal path planning problem for robots working in an
aforementioned partially-known environment. We adopt
the notion of regret from game theory as the optimal-
ity metric. We propose the structure of partially-known
weighted transition systems (PK-WTS) as the model that
contains the set of all possible actual environments. The
regret of a plan under a fixed but unknown environment
is defined as the difference between its actual cost and the
best-response cost it could have achieved after it knows the
actual environment with hindsight. A value iteration algo-
rithm is developed for computing an optimal strategy. We
illustrate by case studies that, compared with the worst-
case-based synthesis for non-deterministic environments,
the proposed regret-based synthesis is more suitable for
partially-known environments.

The regret minimization problem is an emerging topic in
the context of graph games; see, e.g., Filiot et al. (2010);
Hunter et al. (2017). Particularly, Filiot et al. (2010) is
most related to our problem setting, where it solves a
reachability game, via a graph-unfolding algorithm, with
minimal regret for a player while the other player plays
unrestricted strategies or regret-minimizing strategies as
well. Furthermore, in the context of robotic applications,
the recent work Muvvala et al. (2022) uses regret to op-
timize human-robot collaboration strategies, based on the
algorithm in Filiot et al. (2010). However, when it refers
to the exploration problem, since the actual environment
is fixed, two critical issues arise in the two-player graph
game: i) the environment-player plays a positional strategy
rather than the unrestricted manner in Filiot et al. (2010);
Muvvala et al. (2022); and ii) to this end, the agent-player
needs to “memorize” the choices of the environment-

player, which renders the mechanism of knowledge update.
Therefore, it still remains open in the literature of re-
active synthesis/graph game to solve a regret-minimizing
reachability game against the environment-player playing
positional strategies. In this work, we use regret to capture
the issue of exploration in partially-known environments
and present an efficient algorithm to solve the regret-
minimizing planning problem.

2. LTL PLANNING IN FULLY-KNOWN
ENVIRONMENTS

2.1 Weighted Transition Systems

When the environment of the workspace is fully-known,
the mobility of the agent (or map geometry) is usually
modeled as a weighted transition system (WTS)

T = (Xv x076T7wT7AP7L)7

where X is a set of states representing different regions of
the workspace; x¢o € X is the initial state representing
the starting region of the agent; o7 : X — 2% is the
transition function such that, starting from each state
x € X, the agent can move directly to any of its successor
state @’ € or(x). We also refer dp(z) to as the successor
states of x; w : X x X — N is a cost function such that
w(x, «) represents the cost incurred when the agent moves
from z to z’; AP is the set of atomic propositions; and
L : X — 247 is a labeling function assigning each state a
set of atomic propositions.

Given WTS T, an infinite path of T is an infinite sequence
of states p=xgz122- - € X¥ such that x; 1 € 6r(x;),i >
0. A finite path is defined analogously. We denote by
Path”(T) and Path*(T) the sets of all infinite paths and
finite paths in T, respectively. Given a finite path p =
xoT1 -+ T, € Path™(T), its cost is defined as the sum of
all transition weights in it, which is denoted by cost(p) =
Z?:_Ol w(w;,rir1). The trace of a path p = xowiz2--- €
X% is an infinite sequence over 247 denoted by L(p) =
L(xzo)L(x1) - - -. Analogously, we denote by Trace”(T") and
Trace™(T') the sets of all infinite traces and finite traces in
T, respectively. We assume that T is fixed and connected,
i.e., there exists a path between any two states.

2.2 Linear Temporal Logic Specifications

The syntax of general LTL formula is given as follows

dp=Tla|=¢|d1Nd2| O¢ | p1Ud2,

where T stands for the “true” predicate; a € AP is an
atomic proposition; = and A are Boolean operators “nega-
tion” and “conjunction”, respectively; (O and U denote
temporal operators “next” and “until”, respectively. One
can also derive other temporal operators such as “even-
tually” by 0¢ = TU¢. LTL formulae are evaluated over
infinite words; the readers are referred to Baier and Katoen
(2008) for the semantics of LTL. Specifically, an infinite
word 7 € (247)¥ is an infinite sequence over alphabet 247
We write 7 =¢ if 7 satisfies LTL formula ¢.

In this paper, we focus on a widely used fragment of
LTL formulae called the co-safe LTL (scLTL) formulae.
Specifically, an scLTL formula requires that the negation

12172

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

operator — can only be applied in front of atomic proposi-
tions. Consequently, one cannot use “always” [in scLTL.
Although the semantics of LTL are defined over infinite
words, it is well-known that any infinite word satisfying a
co-safe LTL formula has a finite good prefiz. Specifically,
a good prefix is a finite word 7/ = 71 - - - 7,, € (24%)* such
that 7/7" = ¢ for any 7" € (24%)“. We denote by Eﬁref
the set of all finite good prefixes of scLTL formula ¢.

For any scLTL formula ¢, its good prefixes E?Tef can

be accepted by a deterministic finite automaton (DFA).
Formally, a DFA is a 5-tuple A = (Q, g0, %, f, QF), where
Q@ is the set of states; qo € @ is the initial state; X is
the alphabet; f : @Q x X — @ is a transition function;
and Qr C @ is the set of accepting states. The transition
function can also be extended to f:Q x X* — @ recursively.
A finite word 7 € X* is said to be accepted by A if
f(qo,7) € Qp; we denote by L(A) the set of all accepted
words. Then for any scLTL formula ¢ defined over AP, we
can always build a DFA over alphabet ¥ = 247 denoted

by Ay = (Q, 90,27, f,Qr), such that L(As) = ££mf.

Given a WTS T and an scLTL formula ¢, the path
planning problem is to find an finite path (a.k.a. a plan)

p€Path™(T') such that L(p) € Ei’mf and, at the same time,
its cost cost(p) is minimized.

To solve the scLTL planning problem, the standard ap-
proach is to build the product system between WTS
T= (Xa Zo, 6T’ w, AP) L) and DFA A¢ = (Q7 qo0, Z7 f7 QF)7
which is a WIS P=T ® Ay = (S, s0,0p, wp, Sr), where
S =X xQ is the set of states; sop = (9, qo) is the initial
state; dp : S — 29 is the transition function defined by:
for any s=(z,q) € S, we have dp(s) ={(2/,¢') €S | 2’ €
dr(x) Nqg = flg,L(x)}; wp : SxS — N is the weight
function defined by: for any s = (z,q),s = (¢/,¢') € S,
we have wp(s,s’) = w(z,2’); and Sp = X X QF is the
set of accepting states. By construction, for any path
p=(20,d0) - (T, gn) in the product system, (z,, gu) € S
implies p = ¢ -z, € Path®(T) and L(p) € Ef;ef. There-
fore, to solve the scLTL planning problem, it suffices to
find a path with minimum weight from the initial state to
accepting states Sp in the product system.

3. PLANNING IN PARTIALLY-KNOWN
ENVIRONMENTS

The above reviewed shortest-path-search-based LTL plan-
ning method crucially depends on that the mobility of
the robot, or the environment map 7' is perfectly known.
This method, however, is not suitable for the case of
partially-known environments. To be specific, we consider
a partially-known environment in the following setting:

A1 The agent knows the existence of all regions in the
environment as well as their semantics (atomic propo-
sitions hold at each region);

A2 The successor regions of each region are fixed, but the
agent may not know, a priori, what are the actual
successor regions it can move to;

A3 Once the agent physically reaches a region, it will
know the successor regions of this region precisely.

In this section, we will provide a formal model for such
a partially-known environment using the new structure of

partially-known weighted transition systems and use regret
as a new metric for evaluating the performance of the
agent’s plan in a partially-known environment.

8.1 Partially-Known Weighted Transition Systems

Definition 1. (Partially-Known WTS). A partially-kno-

wn weighted transition system (PK-WTS) is a 6-tuple
T= (Xa Jfo,A,UJ,AP,L),

where, similar to a WTS, X is the set of states with initial

state xg € X, w: X x X — N is the cost function and

L : X — 247 is a labeling function that assigns each

state a set of atomic propositions. Different from the WT'S,

A: X — 22 is called a successor-pattern function that
assigns each state x € X a family of successor states.

In PK-WTS T, for each state z € X, we have A(x) =
{o1,...,0/a()|}, where each o; € 2X is called a successor-
pattern representing a possible set of actual successor
states at state x. Hereafter, we will also refer each o; €
A(z) to as an observation at state x since the agent
“observes” its successor states when exploring state x.
Therefore, for each state z € X, we say x is a known state
if |A(z)| = 1; and unknown state if |A(z)| > 1. We assume
that the initial state xp is known since the agent has
already stayed at x(so that it has the precise information
regarding the successor states of xg. Therefore, we can
partition the state space as X = Xp,oUXun, where
Xino 1s the set of known states and X, is the set of
unknown states. In reality, the agent is moving in a specific
environment that is compatible with the possible world T,
although itself does not know this a priori. Formally, we
say a WIS T = (X, zo, 0, w, AP, L) is compatible with
PK-WTS T, denoted by T' € T, if Vo € X : 7 (z) € A(z).
Clearly, if all states in T are known, then its compatible
WTS is unique. We still assume that each compatible
environment 7' € T is fixed and connected.

3.2 History and Knowledge Updates

In the partially-known setting, the agent cannot make
decision only based on the finite sequence of states it
has visited. In addition, it should also consider what it
observed (successor-pattern) at each state visited. Note
that, when the agent visits a known state z € Xgy,, it will
not gain any useful information about the environment
since A(z) is already a singleton. Only when the agent
visits an unknown state, it will gain new information and
successor-pattern at this state will become known from
then on. Therefore, we refer the visit to an unknown state
to as an exploration.

To capture the result of an exploration, we call a tuple
k= (r,0) € Xx2%X where o € A(x), a knowledge obtained
when exploring state x, which means the agent knows that
the successor states of x are o. For each knowledge k, we
denote by k() and k(0), respectively, its first and second
components, i.e., K = (k(x), k(0)). We denote by
Kw = {r € X x 2% | k(o) € A(r(z))}, (1)

the set of all possible knowledges. A history in T is a finite
sequence of knowledges

h = koK1 kn = {T0,00){T1,01) -+ (Tp,0n) € Kw* (2)
such that

12173

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

(1) for any ¢ =0,...,n — 1, we have ;41 € 0;; and
(2) for any i,j =1,...,n, we have z; = z; = 0; = 0;.

For h = koK1« ki, € KW', we call ko(z)k1 () - - K (2) its
path. We denote by Path*(T) and Hist*(T) the set of all
paths and histories of T, respectively.

Along each history i = kgr1- -k, € Kw*, the agent
obtain a set of knowledges (or simply, a knowledge-set)
K={k;|i=0,...,n} CKw, (3)
which is an unordered set of knowledges. We define
KW ={K 2K |V, k' €K : k(z)=+'(2) = r(0)=+(0)}
4

as the set of knowledge-sets. Therefore, given a knowledge-
set K € KW, we say state x € X has been explored in
IC, if (x,0) € K for some o; we denote by X (K) the set
of explored states in C. If has been explored in K, we
denote by ox(z) € 2% the unique observation such that
(x, 0 (z)) € K.

Then the agent can maintain a finer possible world by in-
corporating with the knowledges it obtained. Specifically,
by having knowledge-set K € KW, the agent can update
the PK-WTS T = (X, zg, A, w, AP, L) to a finer PK-WTS
T’ = update(T, K) = (X, zo, A, w, AP, L),
where for any x € X, we have
iy J{ox(x)} if x € X(K)
Alw) = { Alz) ifrg X(K) -

Note that, the above update function is well-defined since
conflict knowledges (x,0), (z,0’) € Kw such that o # o
cannot belong to the same knowledge-set by the definition
of history and Equation (4).

3.3 Strategy and Regret

Under the setting of partially-known environment, the
plan is no longer an open-loop sequence. Instead, it is a
strategy that determines the next state the agent should
go to based what has been visited and what has known,
which are environment dependent. Formally, a strategy is
a function & : Hist*(T) — X U {stop} such that for any
h = K1 Kn, where k; = (x;,0;), either (i) £(h) € o,
i.e., it decides to move to some successor state; or (ii)
&(h) = stop, i.e., the plan is terminated. We denote by
Stra(T) the set of all strategies for T.

Although a strategy is designed to handle all possible
actual environments in the possible world T, when it is
applied to an actual environment 7" € T, the outcome of
the strategy can be completely determined. We denote by
pET =xgr1 - Tp € X the finite path induced by strategy &
in environment 7' € T, which is the unique path such that

o Vi< n:&({xg,or(xo)) - (xi,or(x;))) = ®it1; and

o E({xo, 07 (x0)) -+ (@p, 07 (x))) = stop.
Note that the agent does not know a priori which T' € T is
the actual environment. To guarantee the accomplishment
of the LTL task, a strategy & should satisfy

. T [
VI €T:pe €L, (5)

We denote by Stra,(T) all strategies satisfying (5).

To evaluate the performance of strategy &, one ap-
proach is to consider the worst-case cost of the strat-
egy among all possible environment, i.e., costyorst(§) :=

maxoqer cost(pET). However, as we have illustrated by the
example in Figure 1, this metric cannot capture the poten-
tial benefit obtained from exploring unknown states and
the agent may regret due to the unexploration. To capture
this issue, in this work, we adopt the notion of regret as
the metric to evaluate the performance of a strategy.

Definition 2. (Regret). Given a partially-known envi-
ronment described by PK-WTS T and a task described
by an scLTL ¢, the regret of strategy £ is defined by

min cost(pg/)) (6)

= st(pl) —
regr(€) = max (co (e) poin

3.4 Problem Formulation

After presenting the PK-WTS modeling framework as well
as the regret-based performance metric, we are now ready
to formulate the problem that we solve in this work.

Problem 1. (Regret-Based LTL Planning). Given a pos-
sible world represented by PK-WTS T and an scLTL task
¢, synthesize a strategy £ such that i) pET € L’fjmf for any
T € T; and ii) regp(§) is minimized.

4. GAME-BASED SYNTHESIS ALGORITHM

In this section, we solve the regret-based LTL planning
problem. Our approach is to first build a knowledge-
based game arena that is consistent with all possible
histories. Then, based on the game arena, an effective
value iteration algorithm is developed, which provides the
optimal strategy with minimum regret.

4.1 Knowledge-Based Game Arena

Given T = (X, z0, A, w, AP, L), its skeleton system is a
WTS T = (X, z0,07,w, AP, L), where for any z € X,
we have d7(z) = J{o € A(x)}, i.e., the successor states
of x is defined as the union of all possible successor-
patterns. To incorporate with the task information, let
Ap=(Q, g0, %, f,Qr) be the DFA that accepts all good-
prefixes of scLTL formula ¢. We construct the product
system between 7 and Ay, denoted by

P = T®A¢ = (S,SO,(SP,IU']D,SF),

where the product “®” has been defined before and recall
that its state-space is S = X x Q.

However, the state-space of P is still not sufficient for the
purpose of decision-making since the explored knowledges
along the trajectory are missing. Therefore, we further
incorporate the knowledge-set into the product state-space
and explicitly split the movement choice of the agent and
the non-determinism of the environment. This leads to the
following knowledge-based game arena.

Definition 3. (Knowledge-Based Game Arena). Given T,
the knowledge-based game arena is a bipartite graph

G = (V = VaUV;,7UO7E)7
where
e V,=X x Q x KW is the set of agent vertices;

o V. =X xQ x KW x X is the set of environment
vertices;

12174

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

e vy = (20,90, ko) € V, is the initial (agent) vertex,
where kg € Kw is the initial knowledge of the agent,
i.e., ko(x) = zg and A(zo) = {Ko(0)};

e FF C V x V is the set of edges defined by: for any
Vg = (xcuqaalca) eV, and Ve = (xe;qea}(:eai‘e) € Vvey
we have

- (Vq,ve) € E whenever
(1) (l‘e, Ge; ICe) = (l‘a, qa, Ka); and
(il) Z, € ok, (z4)-
- (Ve,vq) € E whenever
(i) o = &e; and
(11) (Iav(Ia) € 5P(IE7QE); and
(iii-1) if x4 € X (Ke), then K, = K¢;
(iii-2) if x4 ¢ X(K¢), then we have

Ko € {Ke U{(z4,0)} | 0 € Az4)}

Note that since x, is the current state, it has been
explored and we have z, € X(K,), i.e., we know that
the actual successor states of z, are ok, (z,). Therefore, it
can move to any environment state ve = (x4, o, Ka, &) by
“remembering” the successor state & € o, (z4) it chooses.
Now, at each environment state ve = (Ze, ge, Ke,), the
meanings of the first three components are the same as
those for agent state. The last component . denotes the
state it is moving to. Therefore, v, can reach agent state
Vo = (Ta,4a,Ka), where the first two components are
just the transition in the product system synchronizing
the movements of the WTS and the DFA. Note that we
have z, = Z. since the movement has been decided by the
agent. However, for the last component of knowledge-set
Ko, we need to consider the following two cases: i) if state
T, = T, has already been explored, then the agent must
observe the same successor-pattern as before. Therefore,
the knowledge-set is not updated; ii) if state x, = Z, has
not yet been explored, then the new explored knowledge
(xq,0) € Kw should be added to the knowledge-set K..
However, since this is the first time the agent visits z,
any possible observations o € A(z,) consistent with the
prior information are possible. Therefore, the resulting
knowledge-set IC. is non-deterministic.

4.2 Strategies and Plays in the Game Arena

We call a finite sequence of vertices m = vgvy---v, € V*
a play on G if (v;,v;41) € E and we denote by Play*(G)
the set of all finite plays on G. We call m a complete play
if last(w) € V4, where last(r) denotes the last vertex in .
Then for a complete play m = vyvy - - - vo, € V*V,, where
v = (24,43, K;),i = 0,...,n, it induces a path denoted
by Tpeth = ToT1 - -, as well as a history
This = (T0, 0K, (20)) (%1, 0, (1)) -+ (T 0k, (20))-

Note that, in the above, we have Ko C Ky C --- C K,, and
the knowledge-set constructed along history my;s is exactly
K... On the other hand, for any history i = koK1 - Kk €
Kw™, there exists a unique complete play in G, denoted by
7y, such that its induced history is A.

Since the first two components of G are from the product
of T and Ay, for any complete play m, we have L(mpq) €
ﬁﬁref iff the second component of last(r) is an accepting
state in the DFA. Therefore, we define

Vi = {(xmcﬂza’ca) eV, ‘ qa € QF}

the set of accepting vertices representing the satisfaction of
the scLTL task. Also, since only edges from V, to V, repre-
sent actual movements, we define a weight function for G
as wg: VxV =N, where for any v, = (%4, qa, Ko) and v, =
(Ze, Ge, Ke, Ze), we have weg(vg,ve) =0 and wg (ve, vg) =
w(Ze,xq). The the cost of a play m =vovy v, € V* is
defined as costq (1) =37 we (v, vig1)-

A strategy for the agent-player is a function o,
V*Va — Vo U {stop} such that for any = € V*V,, either
(last(mr), 04(m)) € E or o4(m) = stop. Analogously, a strat-
egy for the environment-player is a function o.: V*V, —V,
such that for any = € V*V,, we have (last(r),o.(7)) € E.
We denote by 3,(G) and . (G) the sets of all strategies for
the agent and the environment respectively. In particular,
a strategy o € X,(G) U X.(G) is said to be positional if
Vr, 7’ :last(w) =last(n’) = o(n) =0 (') and we denote by
Y1 (G) and BL(G) the corresponding sets of all positional
strategies respectively. Given strategies o, € X,(G) and
0. €. (G), the outcome play 7y, -, is the unique sequence
VUL + + - U €EVFV, st

o Vi<n:v €V,= o4(vov1---v;) = v;y1; and
o Vi<n:v € V.= 0.(vov1---v;) = v41; and
o g,(vouvy -+ vy,) = stop.

For the environment-player, under assumption A3, we can
further characterize its set of strategies as

e Ve, v, € Vet X(ve) = X (vp)
S = {"e €O X(ouue)) = X(oo(12) } @)

(&

where we denote by X(-) the first component of an agent
vertex v, = (g, qa, Ko) € V, as well as an environment
vertex ve = (e, e, Ke, Te) € Ve, i.e., for such v, ve, we have
X (vq) =4 and X (v.) = z.. For the agent-player, we say
0, is winning if for any o, € &,, we have last(7,, ».) €
Vi. We denote by &, C X,(G) the set of all winning
strategies. By assumption, we know |&f| > 1. Similarly
to Definition 2, we can also define the regret of strategy
0,€6, in G by

rege(0q) =max (costg(m,a,ae) — U]/rréiélcostg(wgwge)) (8)

In particular, we denote by regls(o,) := costg (7o, 0,) —
min,: eg £osta (7o, 0,) the regret of agent strategy o, € &,
w.r.t. an environment strategy o, € G..

Essentially, an agent-player’s strategy o, € &, uniquely
defines a corresponding strategy in T, denoted by &,, €
Stray(T) as follows: for any h € Hist*(T), we have &, (h) =
0o(7r). The environment-player’s strategy o, € &, essen-
tially corresponds to a possible actual environment T' € T
since it needs to specify an observation o € A(z) for each
unexplored z, and once z is explored, the observation is
fixed based on the construction of G. Since costg(-) is
defined only according to its first component, for any play
m € V*V,, we have costg(m) = cost(mpap)-

In summary, in order to solve Problem 1, it suffices to
find a winning strategy o, € &, of the agent-player in
the knowledge-based game arena G, such that reg.(o,) as
defined in (8) is minimized. Then, based on the optimal
strategy o, € &,, we can induce a strategy &, € Stra(T)
for PK-WTS T. Therefore, hereafter, we will only focus on
the game graph G without considering T. Furthermore, it
suffices to find a positional winning strategy o, € &4 N

12175

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

21(G):=&) for the agent-player since it is unnecessary to
record the choices of the environment-player based on the
construction of the knowledge-based game arena G.

4.8 Synthesis via Min-Max Games

Since the optimal strategy on the arena G, we denote by
o, satisfies reg(o}) = min,_ca, rege(0q), it is natural for
us to reduce the strategy synthesis problem to the solution
of a min-maz reachability game Brihaye et al. (2017) in
which the optimal strategy o* satisfies

max W(mg+o,) = min max W(n,, s.) (9)
0.€6, 0,66, 0.6,

where W :Play”(G) — N is some cost function. To this end,,,

given knowledge-based game arena G, we first define the

best response w.r.t. a knowledge /C, EKW as
br(K,) = SHORTESTPATH(V,, (K,.), VF) (10)13
where V. (Ka) = {va € Vo | X(va) = o A K(va) =1,
Ko} is the set of agent vertices whose first component
are xo and third component is K, and we denote by
K(-) the third component of an agent vertex. Given two,g
subsets V1, Vo C V on G, the shortest path between them
SHORTESTPATH(V;, V2) can be directly computed via a

Dijkstra’s algorithm. 18

For the agent-player, the cost of all its positional winning
strategies is bounded by a constant B= M|V |€N, where
MC = max(,,,er Wa(v,v') denotes the largest cost of
the transitions in G. To this end, we deﬁnsz G= (V, g, E) j;
as the information game arena, where V. C V x [0, B],
9= (v0,0), E C VxV is defined by: for any fzz(v,u),@’:23
(v, u') € V, we have (9,9) € E if i) (v,v') € E and ii),,
u' =u+wea(v,v'). We also have partition V =V, UV,, based
on whether the first component of each vertex belongs to
V, or V.. Given é’, we define cost function M:E —N by

o for any (0,0') € E:9' ¢ Vi, we have pu(0,9')=0; 2
e for any (0,0")e E:9'=((x,q,K),u) € Vg, we have
w(0,9")=u — br(K). (11)

Based on the above construction, one can easily build the
“one-to-one correspondence” between a play p in G and
the play p in G, as well as strategies ¢ and &, which is
omitted here. Given a play p=0g01 -0y, € Play*(é), we
denote its cost w.r.t p by costl;(p) == >, pu(di, Dit1).
Then we obtain the following result and the detailed proof
is given in Zhao et al. (2022).

Proposition 1. Given game arena G with the informa-
tion game arena G and cost function u: E— N, for each
o, € &), we have

reg(0,) = max cost’ (ﬂ&m&e)
UCEG

(12)

With the result of Proposition 1, to obtain the optimal
regret-minimizing strategy, it suffices for us to solve a min-
max reachability game on G w.r.t. cost function . Now,
we summarize our solution as Algorithm 1 and obtain the
following result and the proof is given in Zhao et al. (2022).
Theorem 1. The strategy £* obtained from Algorithm 1

correctly solves the Regret-Based LTL Planning Problem
defined in Problem 1.

Algorithm 1: Optimal Regret-Minimizing LTL Plan
Input: PK-WTS T and scLTL ¢;

Output: Optimal Regret-Minimizing Plan £*
Construct skeleton-WTS 7 and DFA A, from ¢;
Construct product system P =T ® Ag;

Construct knowledge-based game arena Gj

Construct information game arena G
for (,9') € E do
| define its cost pu(0,7");

Obtain strategy 6% = SolveMinMax(G, w);
Obtain strategy o from 67;
Obtain strategy §* = &ox;

procedure SolveMinMax(G,)

11 for 7€V do

if © € Vp then
‘ WO () =0 and 0(0)()=
else

L W(O) D) =
while Jb € T W (k+1))(9) AW ®)(5) do
for 9, € V. do
W(k+1)(@e)

stop;

max
g ESuce(de)

(W (@) + (e 5a))

for 4, € V, do
if v, € V, then

‘ WD (5,) = 0 and 65 (4,) = stop;
else
W (k+1) (5,) = min (W““)()+u(ve7va))
e €Succ(dq)

A (k1) 4 .
gt)(va): arg min
Ve ESucc(vg)

(W (@)l))

B k?— k+1;
(k)

return o, ’;

5. CASE STUDY: A TEAM OF FIREFIGHTING
ROBOTS

We consider a team of firefighting robots consisting of a
ground robot and a UAV working in an urban district
shown in Figure 2. Specifically, the blue regions are rivers,
the black regions are bridges, the grey regions are squares,
the green regions are parks, the brown regions are buildings
and the yellow region is the base of the team of robots.
The firefighting mission in this district is undertaken
by the collaboration of the UAV and the ground robot.
Specifically, we assume that the district map is completely
unknown to the robotic system initially. When a fire
alarm is reported, the UAV takes off first and reconnoiters
over the district, which allows the system to obtain some
rough information of the distinct and leads to a possible
world map. More detailed connectivities for some unknown
regions in the possible world still remain to be explored by
the ground robot. In order to accomplish the firefighting
mission, the ground robot needs to first go to some regions
with extinguisher to get fire-extinguishers and then move
to the region with fire. Let AP = {fire, extinguisher}. The
mission can be described by the following scLTL formula:

¢ = (—fire U extinguisher) A Ofire (13)

12176

Preprints of the 22nd IFAC World Congress
Yokohama, Japan, July 9-14, 2023

(a) Trajectory in T}
Fig. 3. Simulation Results

(b) Trajectory in T>

Suppose that, after the reconnaissance, the UAV will get a
look down picture of the entire district. According to the
distinct picture, the system will know the map geometry
and the semantics. Specifically, it knows that there is a fire
in Square 4 and there are extinguishers in Parks 1-3. The
connectivities of all open regions including rivers, bridges,
squares, parks and the base are known. However, the
UAV cannot tell if each building has corresponding doors
connecting with its adjacent open regions. To figure out
the (non-)existence of those potential doors, the ground
robot has to move to the adjacent areas to explore.

Now, the environment is partially-known in the sense
that the accessibility of the buildings are unknown to
the robotic system until the ground robot reaches their
adjacent regions. Then based on the possible world model
T and the scLTL ¢, we can synthesize an strategy £* that
minimizes the regret while achieving ¢. We have imple-
mented our algorithm in robot simulator V-REP (Videos are
available at https://youtu.be/1LRT2pLfABA). As shown
in Figure 3, we consider two different actual environments
T1,T5 € T compatible to the possible world T when ap-
plying the same strategy £*. To minimize its regret, the
ground robot needs to first go to Square 2 to explore if
there exists a door connecting Building 3. Environment T
in Figure 3(a) actually corresponds to the case of the ex-
istence of such a door. Then by passing through this door,
the ground robot can easily find a extinguisher in Park 3
and then quench the fire in Square 4. This actual path
is shorter than the path planned based on the worst-case
by assuming no such a door exists. However, environment
T5 in Figure 3(b) corresponds to the case, where there is
no door between Square 2 and Building 3. Note that, the
ground robot will still first go to Square 2. However, when
it realizes that there is no such a door, it will turn back
and go to Park 1, where it finds a extinguisher and luckily,
there is a door to Building 2. Then the ground robot will
cross through Building 2 and finally reaches Square 4 to
quench the fire. Although this actual path is longer than
the path planned based on the worst-case, the robot will
not regret that much since it does not know, a priori, the
non-existence of such a door.

6. CONCLUSIONS

In this paper, we proposed a new approach for optimal
path planning for scLTL specifications under partially-

known environments. We adopted the notion of regret to
evaluate the trade-off between cost incurred in an actual
environment and the potential benefit of exploring un-
known regions. A knowledge-based model was developed
to formally describe the partially-known scenario and an
effective algorithm was proposed to synthesize an optimal
strategy with minimum regret. In the future, we would like
to extend our results to multi-agent systems with general
LTL specifications.

REFERENCES

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT press.

Brihaye, T., Geeraerts, G., Haddad, A., and Monmege, B.
(2017). Pseudopolynomial iterative algorithm to solve
total-payoff games and min-cost reachability games.
Acta Informatica, 54(1), 85-125.

Filiot, E., Gall, T.L., and Raskin, J.F. (2010). Iterated
regret minimization in game graphs. In International
Symposium on Mathematical Foundations of Computer
Science, 342-354.

Fu, J. and Topcu, U. (2016). Synthesis of joint con-
trol and active sensing strategies under temporal logic
constraints. IEEE Transactions on Automatic Control,
61(11), 3464-3476.

Guo, M. and Dimarogonas, D.V. (2015). Multi-agent
plan reconfiguration under local 1tl specifications. The
International Journal of Robotics Research, 34(2), 218
235.

Hunter, P., Pérez, G.A., and Raskin, J.F. (2017). Reactive
synthesis without regret. Acta Informatica, 54(1), 3-39.

Kantaros, Y., Kalluraya, S., Jin, Q., and Pappas, G.J.
(2022). Perception-based temporal logic planning in un-
certain semantic maps. IEEE Transactions on Robotics.

Kloetzer, M. and Mahulea, C. (2020). Path planning for
robotic teams based on 1tl specifications and petri net
models. Discrete Event Dynamic Systems, 30(1), 55-79.

Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E.,
Kress-Gazit, H., and Vardi, M.Y. (2016). Iterative tem-
poral planning in uncertain environments with partial
satisfaction guarantees. IEEE Transactions on Robotics,
32(3), 583-599.

Mahulea, C., Kloetzer, M., and Gonzélez, R. (2020). Path
Planning of Cooperative Mobile Robots Using Discrete
Event Models. John Wiley & Sons.

Muvvala, K., Amorese, P., and Lahijanian, M. (2022).
Let’s collaborate: Regret-based reactive synthesis for
robotic manipulation. arXiv preprint arXiw:2205.06861.

Smith, S.L., Tumov4, J., Belta, C., and Rus, D. (2011).
Optimal path planning for surveillance with temporal-
logic constraints. The International Journal of Robotics
Research, 30(14), 1695-1708.

Yu, P. and Dimarogonas, D.V. (2022). Distributed motion
coordination for multirobot systems under LTL specifi-
cations. IFEE Transactions on Robotics.

Yu, X., Yin, X., Li, S., and Li, Z. (2022). Security-
preserving multi-agent coordination for complex tem-
poral logic tasks. Control Engineering Practice, 123,
105130.

Zhao, J., Zhu, K., Yin, X., and Li, S. (2022). To explore
or not to explore: Regret-based Itl planning in partially-
known environments. arXiv preprint arXiv:2204.00268.

12177

