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Abstract—Cloud computing is an emerging paradigm to enable
computation and data-intensive automotive systems for improved
safety and drivability. In this article, we propose a hierarchical,
decentralized, and auction-based resource allocation model for
cloud-enabled automotive vehicles. In this model, cloud-enabled
vehicles bid for resources at a high level, inducing a multi-
player game; at a low level, each vehicle performs an onboard
resource optimization to allocate its obtained resources to its
cloud-based applications. The Nash equilibrium of the induced
game is defined, and we show the existence and uniqueness of
the equilibrium. A constrained optimization problem is solved
for onboard resource allocation. A distributed update mecha-
nism is considered: asynchronized update where only a subset
of vehicles updates their bid at each iteration. This mecha-
nism shares desired features of requiring little communication
and being secure. Convergence to Nash equilibrium is proved
for the proposed update mechanism. Furthermore, the robust-
ness to stochastic task arrival rate is characterized in terms of
total variance distance. Numerical simulations are presented to
demonstrate the efficacy of the proposed framework.

Index Terms—Cloud computing, game theory, Nash equilib-
rium, resource allocation.

I. INTRODUCTION

THERE is a growing interest in employing cloud comput-
ing for automotive applications [1], [2]. Ready access to

distributed information and computing resources can enable
computation and data intensive vehicular applications for
improved safety, drivability, and entertainment. Several cloud-
based automotive applications have been identified. For
instance, a cloud-based driving speed optimizer is studied
in [3] to improve fuel economy for everyday driving. In [4], a
cloud-aided safety-based route planner is prototyped to boost
driving safety by considering both travel time and road risk
level. A cloud-based semi-active suspension control is studied
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in [5] to enhance suspension performance by utilizing road
preview and great computation power from the cloud.

As such, cloud computing has been both an immense oppor-
tunity and a crucial challenge for the automotive industry:
opportunity because of the great potential to improve driving
safety, comfort, and entertainment; challenge because cyber-
security and resource allocation are critical issues that need to
be carefully considered. A cloud resource allocation scheme
concerns how a cloud server or multiple cloud servers, such
as Amazon’s EC2 and Google Cloud distributes resources to
its many clients (vehicles in our context) efficiently, effec-
tively, and profitably. These (conflicting) objectives make a
good resource allocation design a nontrivial, yet important
task.

Not surprisingly, resource allocation problems have been
extensively studied in the general utility computing and cloud
computing frameworks. The existing approaches can be cate-
gorized as centralized and decentralized. In general, central-
ized approaches [6], [7], [8] assume that there is a central
resource allocator that can monitor all clients’ information
and thus can allocate the resource via a centralized manner.
Although centralization can ensure high system performance,
it has inherent single-point-of-failure drawback. To avoid
this issue, different decentralized approaches [9], [10], [11]
have been proposed. In particular, the bidding-based decen-
tralized techniques are widely used to formulate various
resource allocation problems [12], [13], [14], [15], [16], [17]
from an economic-theoretical perspective, where each client
makes a bid for the underlying resource. Aside from avoid-
ing the single-point-of-failure drawback inherent in centralized
resource allocation schemes, these decentralized schemes also
have the important practical benefit that each client is not
incentivized to lie to the resource allocator in terms of the
resource needs, since the allocation is purely provisioned based
on how much one pays. Several studies have also focused on
the implementation perspective of this class of decentralized
bidding schemes [18], [19], [20] and confirmed the advantages.

Cloud resource allocation for vehicle applications has
also recently emerged. For example, several works [21],
[22], [23], [24] use Markov decision process to formu-
late the resource allocation for vehicular cloud computing.
In [22] and [23], semi-Markov decision process (SMDP)
is applied to design the resource allocation to maximize
the long-term expected total reward and the expected aver-
age reward of the cloud computing system, respectively. An
extended SMDP model is proposed in [24] for resource
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allocation which additionally considers heterogeneous vehi-
cles and roadside units. Reinforcement learning (RL) [25],
[26], [27] is another effective tool to address the resource
allocation for vehicle applications. An RL approach is stud-
ied in [26] that trains a bidding policy by modeling all
other vehicles as an unknown environment. To support dif-
ferent vehicular applications, the work in [27] considers
two computing architectures and employs RL techniques to
address the derived multidimensional resource optimization
problems. Furthermore, a multiobjective optimization is for-
mulated in [28] to optimally allocate the resource from both
the provider’s and user’s perspectives. Note that most of the
aforementioned approaches require the cloud to collect and
monitor all related information, such as onboard tasks and
utility functions, and allocate the resource with centralized
manner, which not only shows low robustness to single-point-
of-failure but also raises concerns in vehicle privacy and
security since information leaking in connected vehicles can
lead to various malicious activities [29], [30].

In this article, we propose a novel hierarchical model to
achieve robust and secure resource allocation for cloud-aided
automotive systems. Specifically, at a high level, a decen-
tralized, auction-based allocation scheme is considered where
each vehicle bids for the cloud resource under a proportional-
sharing mechanism. The obtained resource is then optimally
allocated for onboard applications that incorporate the queu-
ing nature of the applications. We formulate the interplay
between the vehicles as a multiplayer game and examine the
system response from the perspective of Nash equilibrium.
Results on the existence and uniqueness of the Nash equi-
librium are then established. An asynchronized bid update
mechanism is proposed and its convergence to the unique
Nash equilibrium is proved. The proposed auction-based bid-
ding mechanism is secure and requires little communication
efforts, making it suitable for vehicle applications that are
privacy-/security-sensitive.

The contributions of this article include the following. First,
we propose a novel and practical resource allocation model
for cloud-aided automotive systems that combines a high-
level auction-based resource bidding with a low-level onboard
optimization. Second, we characterize the auction-based inter-
play as a multiplayer game and establish the existence and
uniqueness of the Nash equilibrium. Furthermore, a decentral-
ized scheme that is secure and requires little communication is
proposed. Results on the convergence to the unique Nash equi-
librium are derived. Last but not least, numerical simulations
are presented to demonstrate the efficacy of the developed
framework. In particular, we characterize the scheme’s robust-
ness to stochastic environment using total variance distance
(TVD) and statistically show their stochastic stability under
random task arrival rate. There are important differences
between our work and the existing studies. The works [22],
[23], [24], [28] consider the resource allocation in vehic-
ular cloud computing, which require the cloud to collect
privacy-sensitive information, such as onboard tasks and util-
ity functions. While in this work, we focus on optimally
allocating the multiserver-based cloud resources for vehicle
applications, and the proposed hierarchical model and bidding

mechanism are light-weight in communication efforts and can
avoid privacy leakage of the vehicle. Moreover, due to the
special problem structure of resource allocation for the cloud-
enabled vehicles, our formulation has the crucial difference
from the existing literature on bidding-based decentralized
schemes [12], [13], [14], [15], [16], [17]. The existing litera-
ture focused exclusively on a single server resource allocation,
whereas we study network-based resource allocation due to the
nature of vehicle application. Further, our formulation is dif-
ferent in the aspect that each vehicle/participant also needs to
perform another level of optimization (to allocate resources
efficiently for its own set of tasks internally), which interacts
with and hence needs to be taken into account when decid-
ing the amount to bid. These differentiating aspects require us
to pose a different resource allocation model from the exist-
ing work and hence require us to understand its properties
differently.

The remainder of this article is organized as follows. In
Sections II and III, the resource allocation problem for cloud-
aided automotive systems is described and a hierarchical
allocation model is developed, respectively. In Section IV,
results on the existence and uniqueness of Nash equilibrium of
the induced game are established. Dynamics of reaching the
equilibrium is presented in Section V, where asynchronized
update scheme is proposed with proved convergence to the
unique Nash equilibrium. Numerical simulations are presented
in Section VI whereas Section VII concludes this article.

II. PROBLEM FORMULATION

This article considers a hierarchical and decentralized
framework of divisible resource allocation for cloud-enabled
vehicles, where the objective is to optimally allocate the
distinct server resource to subscribed vehicles with multiple
onboard applications by minimizing a combined backlog and
cloud usage-incurred cost (see Section III-C for details on
the cost term). A schematic of cloud resource allocation
for vehicle-to-cloud-to-vehicle (V2C2V) [2] applications is
illustrated in Fig. 1. Based on Fig. 1, a simple yet flexible
formulation of resource allocation is provided in this section.

A. Task Flow

The cloud consists of a network of M servers, and each
server Sk, k = 1, . . . , M, provides a distinct computational
resource that is needed for completing different jobs gener-
ated from vehicles. The total amount of resource at sever Sk is
denoted by γ k and we assume it can be arbitrarily allocated to
different cloud tasks. The resource γ k can be viewed as the ser-
vice rate: when the available resource is γ k, the amount of time
it takes to serve a job follows an exponential distribution with
parameter γ k [and hence mean processing time is (1/γ k)] [15].
Furthermore, we consider a fleet of N cloud-enabled vehicles,
and each vehicle Vi, i = 1, . . . , N, runs a (possibly different)
set of applications/tasks, Ti,1, Ti,2, . . . , Ti,mi , where the sub-
scripts i and mi, respectively, denote the vehicle index and the
total number of cloud-based applications running on Vi. The
jth task in vehicle i, Ti,j, i = 1, . . . , N, j = 1, . . . , mi, has a
stream of jobs that need to be processed using the resources in
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Fig. 1. Schematic of cloud resource allocation for V2C2V applications.

the network of servers. For instance, a task could be a virtual
intelligent assistant application, where the application needs
to constantly take the human voice as input and run various
speech recognition, classification and speech synthesis jobs to
assist the human driver. As such, we can view a task as a
stream of incoming jobs, each of which needs to be processed
by (possibly different) servers in the cloud and flows through
the network of servers via a (possibly random) path.

The entry point for all tasks’ streams of jobs is a source
station s (distinct from the M servers). Similar to [22], [23],
and [24], it is assumed that jobs from task Ti,j arrive at the
source station s via a Poisson process with arrival rate λi,j.
The source station performs preliminary processing and then
routes Ti,j to server Sk with probability psk

i,j ∈ [0, 1]. Without
loss of generality, we assume that this preprocessing time and
the task transmission time are negligible. After server Sk fin-
ishes processing task Ti,j, Ti,j will be routed to server Sk′ with
probability pkk′

i,j ∈ [0, 1], for all k, k′ ∈ {1, . . . , M} and will
also exist the network (representing the event that the task is
completely finished) with probability pkd

i,j ∈ [0, 1]. Note that
loops are allowed, i.e., k may be equal to k′. Furthermore,
these probabilities satisfy the following flow-conservation
constraints:

M∑

k′=1

pkk′
i,j + pkd

i,j = 1 ∀k ∈ {1, . . . , M}. (1)

The queuing network for task Ti,j among three servers is
presented in Fig. 2 for reference.

Based on the above description, it can be found that the
considered cloud-enabled vehicles are heterogeneous with dif-
ferent onboard applications, and the characteristics of the
onboard applications are reflected by the Poisson arrival rate
model and routing probabilities. We now explain the reason
for choosing such characteristics to formulate the queuing
model. Although automotive applications are in general sched-
uled with fixed periods, due to variations in execution time

Fig. 2. Queuing network for task Ti,j with the total server amount M being 3.

and higher-priority task interruptions, task arrivals are stochas-
tic with Poisson process being an appropriate modeling [22],
[23], [24]. Due to computation variation and random com-
munication delays, the processing time is also stochastic in
nature and exponential processing rate is a sensible assump-
tion. Different from the conventional M/M/N queue in which
multiple servers have the same computational resource and are
used to complete the same tasks, we consider that each task
will be processed by multiple servers with different computa-
tional resource and flows through the network of servers via
routing probabilities. The routing probabilities offer consider-
able flexibility in modeling. For instance, a common scenario
in the cloud-enabled vehicle application is that a task needs
to be processed by following a predetermined path of servers.
This scenario corresponds to setting all-but-one routing prob-
abilities to be 0, and the remaining one routing probability to
be 1, which is a situation known as “routepinning” in queu-
ing theory [31]. In addition, the routing probabilities can also
model the situation where the state of a task is random after
each service stage. Specifically, when a task is processed in
server Sk, whether it needs to be further processed and by
which server depends on a certain random event in the cur-
rent service stage. For example, if an error has occurred, then
the task needs to be routed back to the current server for repro-
cessing. If there are dependencies between two service stages,
then a current failure may require the task to be routed to
an earlier server on which the processing already took place.
In these scenarios, at each stage, there is inherent uncertainty
regarding the next service step for a task, and such uncertainty
can be precisely captured by the routing probabilities.

B. Single Task’s Perspective and Backlog

The resource provided by server Sk to process task Ti,j is
denoted by γ k

i,j, and the service procedure follows the first-
come-first-serve protocol. We note that the resulting queuing
network for each task Ti,j is an open Jackson network [32].
Specifically, for each task, the following list of conditions
holds.

1) Task Ti,j’s jobs arrive at server Sk according a Poisson
process with rate λi,jpsk

i,j.
2) All service times are independently and exponentially

distributed: the service time at server Sk is exp(γ k
i,j).

3) A task, upon completion of service at server Sk, enters
server Sk′ with probability pkk′

i,j and exits the system with
probability pkd

i,j .
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4) The exit probabilities pkd
i,j are nonzero for a nonempty

subset of {1, . . . , M}.
With the above notation, we can compute the effective

arrival rates to every server, including both external arrivals
and internal transitions. Specifically, let αk

i,j denote task Ti,j’s
effective arrival rate to server Sk, we have for each k ∈
{1, . . . , M}

αk
i,j = λi,jp

sk
i,j +

M∑

k′=1

αk′
i,jp

k′k
i,j .

We can write this compactly using matrix notation as follows:

�αi,j = (
I − Pi,j

)−1�λi,j (2)

where �αi,j =
[
α1

i,j, α
2
i,j, . . . , α

M
i,j

]T
, I is an identity matrix, Pi,j

is a matrix with its (k, k′) element being pk′k
i,j , and �λi,j =

[
λi,jps1

i,j, λi,jps2
i,j, . . . , λi,jpsM

i,j

]T
. Note that (I − Pi,j)

−1 always
exists since all eigenvalues of Pi,j are strictly less than 1.

By using Jackson’s Theorem [32], it can be concluded that
the mean/expected backlog of task Ti,j at server Sk is given
by

Bk
i,j :=

⎧
⎨

⎩

αk
i,j

γ k
i,j−αk

i,j
, ifγ k

i,j > αk
i,j

+∞, otherwise.
(3)

From (3), it follows that the total backlog cost of vehicle Vi

at server Sk is defined as

Bk
i :=

⎧
⎨

⎩

∑mi
j=1 wk

i,j
αk

i,j

γ k
i,j−αk

i,j
, if γ k

i,j > αk
i,j ∀j = 1, . . . , mi

+∞, otherwise
(4)

where wk
i,j > 0 is the weighting factor that describes the rel-

ative importance of different task of vehicle Vi at server Sk.
Higher priority task corresponds to larger weighting factor.

C. Main Question

The goal of each (selfish) vehicle is to obtain more resource
from the cloud so that the total backlog of all running appli-
cations/tasks, i.e., Bi = ∑M

k=1 Bk
i , is kept as small as possible.

This immediately raises the central question faced by the
administrator of the network: how should the resource γ k

at each server Sk be allocated to the vehicles with multiple
applications?

To address this problem, we propose a hierarchical, decen-
tralized, and auction-based resource allocation scheme. As
shown in Fig. 3, at a high level, each vehicle Vi bids for
resource at server Sk by submitting a price bk

i . How much
resource each vehicle gets from each server depends on how
much bid it pays as well as on how much other vehicles
pay. That is, each server Sk severally allocates its resource
γ k based on the received bid {bk

1, . . . , bk
N}. Let γ k

i be the
resource that vehicle Vi gets from server Sk during the bid-
ding process. Then, at a low level, vehicle Vi will further
optimally distributes each kind of server resource γ k

i into mi

portions {γ k
i,1, . . . , γ

k
i,mi

} with γ k
i,j being the resource provided

by server Sk to process task Ti,j. Since there are M different

Fig. 3. Hierarchical model for resource allocation at server Sk .

servers in the cloud, each vehicle needs to submit a bidding
vector �bi = [

b1
i , . . . , bM

i

]T
to the cloud for resource alloca-

tion and will receive a portion of the overall server resource
�γ i = [

γ 1
i , . . . , γ M

i

]T
.

We describe the resource allocation scheme in detail in the
next section. Before proceeding, note that if

∑N
i=1

∑mi
j=1 αk

i,j >

γ k, then at least one task will have an infinite job queue at
server Sk, no matter what the resource allocation scheme is.
In this article, we assume that

∑N
i=1

∑mi
j=1 αk

i,j < γ k ∀k =
1, . . . , M, meaning each server offers enough resources so that
there always exists a partition of the resources to keep all the
backlogs finite.

III. HIERARCHICAL RESOURCE ALLOCATION

A. Bidding Mechanism

If the cloud is trusted by all vehicles and can thus elicit
job-related information such as αk

i,j and the average backlog
function from all vehicles, then the cloud can in principal com-
pute the optimal allocation of server resources. However, there
are several issues with this centralized scheme.

First, the cloud needs to decide metrics for the “social wel-
fare” by aggregating the backlogs from all vehicles. However,
no vehicles would like to downplay its own importance. For
example, if a linear weighted sum of individual backlogs is
adopted as the overall “social” cost, the cloud will unlikely
get unanimous weights among the vehicles. Second, the cloud
should not expect the vehicles to provide truthful information
in the first place, since doing so would put the vehicle in a dis-
advantageous position in terms of getting resources. Therefore,
the vehicles have incentives to lie.

To address these issues, we consider a proportional-sharing
bidding scheme to allocate the multiserver resources: each
vehicle Vi makes a bidding vector �bi = [

b1
i , . . . , bM

i

]T
, and

given bk
i ≥ 0 the resource that vehicle gets from server Sk is

γ k
i =

{
γ k × bk

i∑N
l=1 bk

l
, if

∑N
l=1 bk

l > 0

0, otherwise.
(5)

While there are many other bidding schemes, we adopt linear-
proportional sharing, a commonly used bidding scheme whose
effectiveness has been demonstrated in a variety of different
applications [12], [33], [34], [35], [36]. In our case, each vehi-
cle only submits the bidding vector without any other auxiliary
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information to the cloud, and thus allocating the resource with
the bidding proportion is a suitable way to ensure fairness.
Furthermore, it takes O(N) operations to calculate the linear
proportional sharing, which can be easily implemented in the
cloud.

B. Vehicle-Level Resource Optimization

Essentially, the vehicle needs to make two decisions: 1) the
bidding price �bi and 2) allocation of the obtained resource
γ k

i to its onboard applications. After submitting a bidding
vector �bi, vehicle Vi will receive a portion of the overall
sever resource, �γ i = [

γ 1
i , . . . , γ M

i

]T
, based on the proportion-

sharing scheme in (5). Then the vehicle will distribute the
obtained resources γ k

i among its applications Ti,1, . . . , Ti,mi .

Let �γ k
i = [

γ k
i,1, . . . , γ

k
i,mi

]T
be the partitioning vector of

resource γ k
i , then the optimal vehicle-level resource parti-

tioning for vehicle Vi can be formulated as the following
constrained optimization problem:

minimize
�γ 1

i ,...,�γ M
i

Bi :=
M∑

k=1

Bk
i

subject to
mi∑

j=1

γ k
i,j ≤ γ k

i ∀k = 1, . . . , M

γ k
i,j ≥ αk

i,j ∀ j = 1, . . . , mi, k = 1, . . . , M (6)

where the cost function is the summation of all backlogs;
the first constraint characterizes the resource limit at each
server and the second constraint characterizes the minimum
required resource for each application to avoid infinite back-
log as shown in (3). Note that γ k

i ≥ ∑mi
j=1 αk

i,j ∀k = 1, . . . , M,
is needed to make (6) feasible. This is a reasonable assumption
as the servers are viewed as a pool of enormous resources. We
can always limit the initial bidding in a reasonable range to
satisfy γ k

i ≥ ∑mi
j=1 αk

i,j ∀k = 1, . . . , M. The solution of this
optimization problem is summarized in the following lemma.

Lemma 1: Let αk
i = ∑mi

j=1 αk
i,j be the minimal required

resource for vehicle Vi at server Sk. If γ k
i > αk

i ∀k =
1, . . . , M, then the optimal onboard resource partition in (6)

is γ k∗
i,j = ((γ k

i − αk
i )/(

∑mi
j=1

√
wk

i,jα
k
i,j))

√
wk

i,jα
k
i,j + αk

i,j and

the associated minimal cost is B∗
i = ∑M

k=1 Bk∗
i =

∑M
k=1 (

∑mi
j=1

√
wk

i,jα
k
i,j)

2/(γ k
i − αk

i ).
Proof: From (6), we define the Lagrangian

L
(
�γ 1

i , . . . , �γ M
i , �μ

)
=

M∑

k=1

⎛

⎝Bk
i + μk

0

⎛

⎝
mi∑

j=1

γ k
i,j − γ k

i

⎞

⎠

+
mi∑

j=1

μk
j

(
αk

i,j − γ k
i,j

)
⎞

⎠

where μk
j ≥ 0 ∀j = 0, . . . , mi, k = 1, . . . , M. The Karush–

Kuhn–Tucker conditions for the optimality in (6) are

∂L
∂γ k

i,j

= −wk
i,jα

k
i,j

(
γ k∗

i,j − αk
i,j

)2
+ μk

0 − μk
j = 0

∀j = 1, . . . , mi, k = 1, . . . , M (7)
mi∑

j=1

γ k∗
i,j ≤ γ k

i ∀k = 1, . . . , M (8)

γ k∗
i,j ≥ αk

i,j ∀ j = 1, . . . , mi, k = 1, . . . , M (9)

μk
0

⎛

⎝
mi∑

j=1

γ k∗
i,j − γ k

i

⎞

⎠ = 0 ∀ k = 1, . . . , M (10)

μk
j

(
αk

i,j − γ k∗
i,j

)
= 0 ∀ j = 1, . . . , mi, k = 1, . . . , M (11)

μk
0 ≥ 0, μk

j ≥ 0 ∀ j = 1, . . . , mi, k = 1, . . . , M. (12)

Note from (3), for each task Ti,j, the obtained resource γ k
i,j

from server Sk needs to be strictly greater than αk
i,j to keep

the backlog cost finite. Therefore, μk
j = 0 ∀j = 1, . . . , mi, k =

1, . . . , M. From (7), it follows that μk
0 �= 0, meaning

mi∑

j=1

γ k∗
i,j = γ k

i (13)

and (wk
i,1α

k
i,1)/(γ

k∗
i,1 − αk

i,1)
2 = (wk

i,2α
k
i,2)/(γ

k∗
i,2 − αk

i,2)
2 =

· · · = (wk
i,mi

αk
i,mi

)/(γ k∗
i,mi

− αk
i,mi

)2, which is equivalent to

γ k∗
i,1 − αk

i,1√
wk

i,1α
k
i,1

= γ k∗
i,2 − αk

i,2√
wk

i,2α
k
i,2

= · · · = γ k∗
i,mi

− αk
i,mi√

wk
i,mi

αk
i,mi

= σ (14)

with σ being a positive constant. Also note that
∑mi

j=1(γ
k∗
i,j −

αk
i,j) = γ k

i −∑mi
j=1 αk

i,j = σ
∑mi

j=1

√
wk

i,jα
k
i,j, which indicates

σ = γ k
i −∑mi

j=1 αk
i,j

∑mi
j=1

√
wk

i,jα
k
i,j

. (15)

Combining (14) and (15), we have

γ k∗
i,j = γ k

i −∑mi
j=1 αk

i,j
∑mi

j=1

√
wk

i,jα
k
i,j

√
wk

i,jα
k
i,j + αk

i,j. (16)

Plugging (16) into (4), we have Bk∗
i =

(
∑mi

j=1

√
wk

i,jα
k
i,j)

2/(γ k
i −∑mi

j=1 αk
i,j), indicating that

B∗
i = ∑M

k=1 Bk∗
i = ∑M

k=1 (
∑mi

j=1

√
wk

i,jα
k
i,j)

2/(γ k
i −∑mi

j=1 αk
i,j).

C. Induced Game

We consider that the total cost of vehicle Vi consists of two
parts: 1) the overall backlogs among all applications and 2) the
bidding price related to �bi. Each vehicle can weigh these two
costs differently and we use a weighted sum to represent the
total cost function

Ci

(�b
)

= B∗
i

(�b
)

+ �εT
i
�bi (17)

where �b = (�b1, . . . , �bN) denotes the bidding vector of the all
N vehicles and �εi = [

ε1
i , . . . , ε

M
i

]T
(εk

i > 0) is the weighting
factor that characterizes the relative importance placed on the
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bidding cost compared to waiting time from Vi. Based on the
fact that B∗

i = ∑M
k=1 Bk∗

i , (17) can be rewritten as

Ci

(�b
)

=
M∑

k=1

(
Bk∗

i + εk
i bk

i

)
=

M∑

k=1

Ck
i

(�bk
)

(18)

where �bk = [
bk

1, . . . , bk
N

]T
is the bidding vector of the N vehi-

cles submitted to server Sk, and Ck
i (

�bk
) = Bk∗

i + εk
i bk

i is the
subcost function with respect to server Sk. Note that the M

subcost functions Ck
i (

�bk
) are independent to each other, indi-

cating that minimizing each Ck
i (

�bk
) is equivalent to minimizing

the total cost function Ci(�b). Since the subcost function Ck
i (

�bk
)

in (18) is interdependent on the bid �bk
, a game is naturally

induced with the Nash equilibrium defined as follows.
Definition 1: A biding vector �bk∗

is a Nash equilibrium, if
Ck

i (b
k∗
i , �bk∗

−i) ≤ Ck
i (b

k
i ,

�bk∗
−i) ∀bk

i ∈ R+ ∀i = 1, . . . , N, where
�bk∗
−i is an (N − 1)-dimensional vector by removing the ith

element from �bk∗
.

Immediate questions pertaining to the existence and unique-
ness of Nash equilibrium arise: the asymptote at αk

i due to the
queuing nature of the system induces the cost values to be
unbounded (and hence a noncompact domain), rendering the
standard game theory results not applicable here. A second
concern also arises here: how can an equilibrium be reached?
We will investigate these two issues in the next two sections
in order.

D. Best Response Dynamics

The best response function is not only a useful tool to char-
acterize the existence and uniqueness of Nash equilibrium but
also offers rationales for the dynamics to reach an equilibrium.

Definition 2: Given a bidding vector �bk ∈ R
N+, the best

response function gk
i for vehicle Vi is defined as

gk
i

(�bk
)

= arg min
bk

i ∈R+
Ck

i

(
bk

i ,
�bk
−i

)
. (19)

With the best-response function definition, the Nash equi-
librium �bk∗

can be stated as �gk(�bk∗
) = �bk∗

, that is, the
Nash equilibrium is a fixed point of �gk(·). Here, �gk(�bk∗

) =[
gk

1(
�bk∗

), gk
2(

�bk∗
), . . . , gk

N(�bk∗
)

]T
.

IV. EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM

In this section, we answer the question on the existence
and uniqueness of the induced game. Toward that end, we
first show several properties of the best response function �gk.

Lemma 2: The best response function �gk defined in
Definition 2 has the following properties.

1) The best response function is well-defined and
continuous.

2) For any �x, �y ∈ R
N+, �x ≥ �y ⇒ �gk(�x) ≥ �gk(�y).

3) For any β > 1, �gk(β�x) < β�gk(�x) ∀�x ∈ R
N+.

4) There exist �x, �y ∈ R
N+ with �x < �y such that �x ≤

�gk(�x), �y ≥ �gk(�y).

Here, �x ≥ �y represents the vector inequality, that is, xi ≥ yi

for all i = 1, . . . , N, and �x �= �y.
Proof: From (18), it follows that

∂Ck
i

∂bk
i

= ∂Bk∗
i

∂γ k
i

∂γ k
i

∂bk
i

+ εk
i

=
−
(∑mi

j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)2 · γ k ∑ �bk
−i(

bk
i +∑ �bk

−i

)2
+ εk

i (20)

where
∑ �bk

−i = ∑N
l=1 bk

l − bk
i . The second-order derivative is

thus

∂2Ck
i

∂2bk
i

= 2

(∑mi
j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)3 ·
(
γ k ∑ �bk

−i

)2

(
bk

i +∑ �bk
−i

)4

+ 2

(∑mi
j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)2 · γ k ∑ �bk
−i(

bk
i +∑ �bk

−i

)3
. (21)

Note that to keep the cost finite, the best response must have
γ k

i > αk
i . Therefore, we have (∂2Ck

i /∂
2bk

i ) > 0, meaning that

Ck
i (

�bk
) is a convex function with respect to bk

i . The convexity
of Ck

i therefore implies that the necessary and sufficient con-
dition for the minimizer is (∂Ck

i /∂bk
i )(b

k∗
i ) = 0. By defining

�Zk
(�bk

) : RN+ → R
N+ with the ith output as

Zk
i

(�bk
)

:=
(∑mi

j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)2 · γ k ∑ �bk
−i(

bk
i +∑ �bk

−i

)2
(22)

the optimality (∂Ck
i /∂bk

i ) = 0 is thus equivalent to

Zk
i (b

k∗
i , �bk

−i) = εk
i . Note that γ k

i (bk
i ,

�bk
−i) is increasing

in bk
i so (

∑mi
j=1

√
wk

i,jα
k
i,j)

2/(γ k
i − αk

i )
2 is decreasing in bk

i .

Also, γ k ∑ �bk
−i/(b

k
i +∑ �bk

−i)
2 is decreasing in bk

i . Therefore,

Zk
i (b

k
i ,

�bk
−i) is monotonically decreasing in bk

i with the follow-
ing two limits:

lim

bk
i →

(
αk

i ·∑ �bk−i

γ k−αk
i

)+ Zk
i

(
bk

i ,
�bk
−i

)
= +∞ (23)

lim
bk

i →+∞
Zk

i

(
bk

i ,
�bk
−i

)
= 0. (24)

This implies that there exists a unique bk∗
i that satisfies

Zk
i (b

k∗
i , �bk

−i) = εk
i . Note that Zk

i (b
k
i ,

�bk
−i) is smooth and contin-

uous so gk
i (b

k
i ,

�bk
−i) is also continuous. 1) is thus established.

In order to prove 2), we first show that ∀l �= i

∂Zk
i

∂bk
l

= −2

(∑mi
j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)3
· −γ kbk

i(
bk

i +∑ �bk
−i

)2
· γ k ∑ �bk

−i
(

bk
i +∑ �bk

−i

)2

+
(∑mi

j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)2
·
γ k
(

bk
i −∑ �bk

−i

)

(
bk

i +∑ �bk
−i

)3
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=
γ k
(∑mi

j=1

√
wk

i,jα
k
i,j

)2

(
γ k

i − αk
i

)3(
bk

i +∑ �bk
−i

)4

×
((

γ k − αk
i

)(
bk

i

)2 + γ k
∑ �bk

−ib
k
i + αk

i

(∑ �bk
−i

)2
)

> 0 (25)

which means that Zk
i (b

k
i ,

�bk
−i) is monotonically increasing in

bk
l ∀l �= i.

Let y∗
i = gk

i (�y), x∗
i = gk

i (�x). Then for each i, we have

Zk
i

(
y∗

i , �y−i

) = εk
i . (26)

From �x ≥ �y and the monotonicity (25), we have
Zk

i (y
∗
i , �x−i) ≥ εk

i .

Since Zk
i (x

∗
i , �x−i) = εk

i and Zk
i (

�bk
) is monotonically decreas-

ing in bk
i , we must have x∗

i ≥ y∗
i . Therefore, 2) is established.

For 3), let x∗
i = gk

i (�x) and x̄∗
i = gk

i (β�x). We then need to
prove x̄∗

i < βx∗
i ∀β > 1. Using the optimality condition, we

have

Zk
i

(
x∗

i , �x−i
) = εk

i (27)

and

Zk
i

(
x̄∗

i , β�x−i
) = εk

i . (28)

By virtue of contradiction, we assume that ∃β > 1, such that
x̄∗

i ≥ βx∗
i . It then follows from the monotonic decrease of

Zk
i (·, �x−i) that

Zk
i

(
βx∗

i , β�x−i
) ≥ εk

i . (29)

On the other hand, from (22) and the fact that γ k
i (�bk

) =
γ k

i (β�bk
) due to the proportional sharing scheme in (5), it

follows that:

Zk
i

(
βx∗

i , β�x−i
) = 1

β
Zk

i

(
x∗

i , �x−i
)

< Zk
i

(
x∗

i , �x−i
) = εk

i (30)

for all β > 1. It is clear that (30) contradicts (29). 3) is thus
established.

We now prove 4). It is straightforward from (22) that

Zk
i

(
β · �bk

)
= 1

β
· Zk

i

(�bk
)

∀β > 0.

Then for a fixed �bk ∈ R
N+, we can find two constants: β− ∈ R+

small enough and β+ ∈ R+ large enough, such that

Zk
i

(
β− · �bk

)
> εk

i

Zk
i

(
β+ · �bk

)
< εk

i . (31)

Set �gk(β− · �bk
) = �bk−

and �gk(β+ · �bk
) = �bk+

, meaning that

Zk
i

(
bk−

i , β− · �bk
−i

)
= εk

i

Zk
i

(
bk+

i , β+ · �bk
−i

)
= εk

i . (32)

Given that Zk
i (b

k
i ,

�bk
−i) is monotonically decreasing in bk

i ,
combing (31) and (32) leads to

bk−
i ≥ β− · bk

i ∀i = 1, . . . , N

bk+
i ≤ β+ · bk

i ∀i = 1, . . . , N. (33)

Consequently, �gk(β− · �bk
) = �bk− ≥ β− · �bk

and �gk(β+ · �bk
) =

�bk+ ≤ β+ · �bk
. Setting �x = β− · �bk

and �y = β+ · �bk
concludes

the proof.
We are now ready to show the existence and uniqueness of

the Nash equilibrium of the induced game in Section III-C.
Theorem 1: The Nash equilibrium of the induced game in

Section III-C uniquely exists.
Proof: The existence of a Nash equilibrium follows from

Lemma 2 and the fixed point theorem developed in [37]. More
specifically, by Property 4) of Lemma 2, there exist �x, �y ∈ R

N+
with �x < �y such that �x ≤ �gk(�x) and �y ≥ �gk(�y). Consider the
sequence {(�gk)n(�x)}, where the function (�gk)n is recursively
defined

(
�gk
)0

(�x) = �x,
(
�gk
)n

(�x) = �gk
((

�gk
)n−1

(�x)

)
∀n ∈ N+.

Since the best-response function �gk is continuous and mono-
tonic (by Lemma 2) and �x ≤ �gk(�x), we have (�gk)n−1(�x) ≤
(�gk)n(�x) ∀n ∈ N+. Therefore, {(�gk)n(�x)}n∈N+ forms an
increasing chain. Moreover, �y > �x implies that (�gk)n(�y) ≥
(�gk)n(�x) and �y ≥ �gk(�y) implies that �y ≥ (�gk)n(�y) ∀n ∈ N+.
It then implies that �y ≥ (�gk)n(�x), leading to that the chain
{(�gk)n(�x)} is bounded; hence it has a supremum �x ∗

�x ∗ = sup
n∈N+

(
�gk
)n

(�x). (34)

Therefore, �x ∗ is a fixed point of �gk by [37, Th. 2], which
establishes the existence of Nash equilibrium.

We next show the uniqueness of Nash equilibrium by con-
tradiction. Suppose there exist two distinct Nash equilibria
�x, �y ∈ R

n+. Let i∗ = arg maxl (yl/xl) and β = (yi∗/xi∗).
Without loss of generality, we assume β > 1. Then we have
β�x ≥ �y and βxi∗ = yi∗ . Note from Property 3) in Lemma 2
and the definition of Nash equilibrium, we have

gk
i∗(β�x) < βgk

i∗(�x) = βxi∗ . (35)

On the other hand, from Property 2) in Lemma 2 and the fact
that β�x ≥ �y, we have

gk
i∗(β�x) ≥ gk

i∗(�y) = yi∗ . (36)

Combining (35) and (36) leads to yi∗ < βxi∗ , which contradicts
the fact that βxi∗ = yi∗ . Hence, �x = �y and the uniqueness of
Nash equilibrium is established.

With some derivations it can be shown that the best
response functions can be explicitly written as gk

i (
�bk

) =
(1/(γ k − αk

i ))(α
k
i

∑ �bk
−i +

√
(γ k

∑ �bk
−i)/ε

k
i (
∑mi

j=1

√
wk

i,jα
k
i,j)),

and then based on bk∗
i = gk

i (
�bk∗

), the best bid bk∗
i can be

expressed with �bk∗
−i. The analytic form of the best response

function can be used to show the existence of a Nash equilib-
rium. However, the proof method using the fixed point theory
can work with more general backlog function than the queue
formulation in our application, e.g., Bk

i,j in (3) is decreasing,
convex, and twice differentiable, with limx→αk

i,j
Bk

i,j = +∞ on

the interval (αk
i,j,+∞) [37].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on July 31,2023 at 09:00:48 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: RESOURCE PROVISION FOR CLOUD-ENABLED AUTOMOTIVE VEHICLES 1473

V. DYNAMICS OF REACHING THE EQUILIBRIUM

A. Asynchronized Best Response Dynamics: Convergence to
the Unique NE

The best-response function (19) suggests a natural update
scheme (i.e., synchronized best response update): at each
iteration, each vehicle submits the best bidding vector based on
other vehicles’ bid from the previous iteration. In a decentral-
ized update setting, it may not be easy to enforce a fixed time
step by which every vehicle updates simultaneously. Hence,
we consider a more practical and easily implementable scheme
(i.e., asynchronized best response update), where not every
vehicle is necessary updating its bid at each iteration. To
implement the update scheme, the cloud can distribute the
bid of all other vehicles to each vehicle. However, this is not
necessary. Note due to the proportional bidding scheme (5),
each vehicle Vi can infer the total bid of all other vehicles at
sever Sk, i.e.,

∑ �bk
−i, based on its bid bk

i and obtained resource
γ k

i from last iteration

∑ �bk
−i = γ k − γ k

i

γ k
i

bk
i . (37)

The vehicle can then adjust its bid using the best-response
function (19).

This update scheme has several desired features. First, no
communication is required to share the bidding information.
Each vehicle can infer the total bid from other vehicles and
then adapt its bid, making the scheme completely decentral-
ized. Second, this scheme is secure. The cloud receives bid
and allocate resources, with no capability of deducing the
relevant information about the vehicles, such as backlog func-
tion, number of tasks, and weights. Moreover, no vehicle will
be able to deduce such information from other vehicles since
no information is shared between the vehicles. This provides
an important basis for all vehicles to submit the true bidding
vectors. Last but not least, this update scheme will be guar-
anteed to converge to the equilibrium, which we will show
next. In the standpoint of the cloud, this bidding update is
simply a fixed-point iteration where the iterates are the sub-
mitted bidding vectors. This iteration process is summarized in
Algorithm 1. Note that in Algorithm 1, if U t = {1, 2, . . . , N}
at every iteration t, i.e., every vehicle updates its bid at each
iteration, then the asynchronized best response update scheme
changes to the synchronized one.

We next show the convergence of asynchronized iteration
in Algorithm 1, that is, as long as each vehicle updates its
bid infinitely often, the bid iterate will converge to the unique
Nash equilibrium. Toward that end, we introduce a proposition
that will be used for the proof.

Proposition 1: Under Algorithm 1, let each vehicle Vi

update its bid infinitely often, that is, |{t|i ∈ U t}| = +∞.
Then the tth bid iterate �bk

(t) converges to the unique Nash
equilibrium irrespective of the initial bidding vector �bk0

if the
following conditions hold.

1) There exists a sequence of nonempty subsets {G(t)} with
G(t+1) ⊂ G(t), t = 0, 1, 2, . . ., and is such that if {�x(t)}
is any sequence with �x(t) ∈ G(t), then {�x(t)} converges
pointwise to the unique Nash equilibrium.

Algorithm 1: Asynchronized Best Response Bidding
Iteration

1 Each vehicle Vi chooses an arbitrary initial bidding
vector �bi ∈ R

M+ ;
2 for iteration t = 0, 1, 2, . . . do
3 Let U t ⊂ {1, 2, . . . , N} be a possibly empty set of

updating vehicles at iteration t;
4 for i ∈ U t do
5 for k = 1, · · · , M do
6 Observe received resource γ k

i (t) from server
Sk at step t;

7 Compute the sum of the bid from all other
vehicles at server Sk as∑ �bk

−i(t) = γ k−γ k
i (t)

γ k
i (t)

bk
i (t);

8 Update the bid bk
i (t + 1) = gk

i (
�bk

(t));
9 end

10 end
11 end

2) Synchronous Convergence Condition: ∀(�gk)t(�bk0
) ∈

G(t), we have
(
�gk
)t+1(�bk0

)
∈ G(t + 1), t = 0, 1, 2, . . .

3) Box Condition: G(t) is a Cartesian product of the form

G(t) = G1(t) × · · · × GN(t), t = 0, 1, 2, . . .

where Gi(t) is a set of real-valued functions.
Proof: See [38, Proposition 2.6.1].
Theorem 2: For all k = 1, . . . , M, if each vehicle Vi updates

its bid infinitely often, that is, |{t|i ∈ U t}| = +∞, then
Algorithm 1 terminates with �bk

final being the unique Nash
equilibrium.

Proof: To prove Theorem 2, we now need to show that
there exits a sequence of nonempty subsets {G(t)} such that
conditions 1)–3) in Proposition 1 are satisfied.

By the proof of Property 4), Lemma 2, for any initial
bidding vector �bk0

, there exist β− > 0 small enough and
β+ > 0 large enough such that β−�bk0 ≤ �gk(β−�bk0

) and
β+�bk0 ≥ �gk(β+�bk0

) with

β−�bk0 ≤ �bk0 ≤ β+�bk0
. (38)

Therefore, by repeatedly applying �gk to the three sides of (38),
it follows from (34) in the proof of Theorem 1 that both
(�gk)t(β+�bk0

) and (�gk)t(β−�bk0
) converge as t → ∞ (setting

�x = β−�bk0
and �y = β+�bk0

). The corresponding limits are fixed
points of �gk and are therefore Nash equilibria. Furthermore, by
the uniqueness of Nash equilibrium established in Theorem 1,
the two equilibria must coincide and it then follows that
(�gk)t(�bk0

) also converges to the unique Nash equilibrium since
(�gk)t(β−�bk0

) ≤ (�gk)t(�bk0
) ≤ (�gk)t(β+�bk0

). Based on the above
analysis, the sequence of nonempty subsets {G(t)} can be
constructed as

G(t) =
{
�x
∣∣∣
(
�gk
)t(

β−�bk0
)

≤ �x ≤
(
�gk
)t(

β+�bk0
)}

(39)
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which guarantees conditions 1) and 2) in Proposition 1 are
satisfied.

In addition, from the definition of �gk(·), it can be
obtained that Gi(t) = {x|gk

i ((�gk)t−1(β−�bk0
)) ≤ x ≤

gk
i ((�gk)t−1(β+�bk0

))}, indicating condition 3) is satisfied.
Therefore, we can conclude that Algorithm 1 terminates with
�bk

final being the unique Nash equilibrium.
Denote te as the time for running steps 6–8 of Algorithm 1

(i.e., the time for updating the bid bk
i ) and Tfinal as the iteration

step when the Nash equilibrium is achieved. Then the main
factor for the complexity of Algorithm 1 is the number of total
iterations taken to update bk

i . Note that the exact number of
total iterations cannot be determined as U t is a random subset
of {1, 2, . . . , N} at each iteration t. Therefore, we consider the
maximum iteration number as the implementation complexity
(i.e., the worst-case complexity). From the view of the entire
algorithm, the maximum iteration number taken to update the
bid bk

i is TfinalMN, indicating that the maximum computation
time and worse-case complexity of Algorithm 1 are TfinalMNte
and O(TfinalMN), respectively.

The update mechanism in Algorithm 1 is myopic processes
where each vehicle optimizes its bid based on the bid from
the previous iteration. During the procedure to reach the Nash
equilibrium, some vehicles maybe cannot bid for enough
source to process the onboard applications. However, the
vehicle-level resource allocation takes the importance of dif-
ferent application into consideration, which guarantees that
more important task will have higher priority to get the
resources. To make sure most of the vehicles can bid for
enough source, we can specify a reasonable range of bid-
ding value or add soft margins in the optimization problems.
In fact, we note that as long as the update mechanism
converges to the unique Nash equilibrium and is computation-
ally feasible, the mechanism can be adopted. The long-term
cost of the vehicles only depends on the derived resources
from the bidding equilibrium, and the process by which the
equilibrium is reached can be viewed as a “transient” pro-
cess that has negligible impact on the vehicle’s long-term
utility.

B. Stochastic Stability of Best Response Updates Under
Random Environments

So far the existence and uniqueness of the Nash equilibrium
for the induced cloud resource game are treated with fixed task
arrival rates. In practice, the task arrival rates may vary as the
cloud applications may run different sets of features under dif-
ferent road or traffic conditions. For example, the cloud-aided
semi-active suspension application [5] needs to perform more
frequent control tasks on rough roads as compared to flat and
smooth roads. The objective of this section is to character-
ize the behavior of the best response dynamics we proposed
earlier under a stochastic environment.

Note when the task arrival rate varies at every time step,
the bidding vector will not converge to a fixed point, i.e., the
Nash equilibrium, as shown before. Therefore, we need a new
metric to quantify the stability of the proposed best response
dynamics (synchronized and asynchronized) proposed in the

TABLE I
SIMULATION PARAMETERS

preceding sections. Specifically, we exploit the TVD with the
following definition.

Definition 3 [39]: Let μ and η be two probability measures
over a finite set 
. The total variation distance between μ and
η (also called statistical distance) is the normalized l1-distance
between the two probability measures

‖μ − η‖tv := 1

2

∑

x∈


|μ(x) − η(x)|. (40)

Moreover, if X and Y are two random variables drawn from μ

and η, respectively, we will write ‖X−Y‖tv to denote ‖μ−η‖tv.
Let Pi(K) be the random bid the vehicle i submits at time

step K by following a best response dynamics (e.g., synchro-
nized or asynchronized). The stability metric (SM) of the best
response dynamics for vehicle i can be characterized by

SMi(K) = ‖Pi(K) − Pi(K + 1)‖tv, i = 1, . . . , N (41)

with a high enough K. Intuitively, this metric captures how
different the bid is distributed between step K and step K + 1.
We will perform comprehensive simulations to compute the
SM (41) in the next section.

VI. NUMERICAL EXAMPLES

In this section, we present numerical simulations to demon-
strate the developed resource allocation framework. We will
first consider the scenario with fixed task arrival rates and
verify the convergence results we proved earlier. We will then
perform simulations under a stochastic environment with ran-
dom task rates and demonstrate the bidding stability of the
proposed best response dynamics.

A. Bidding and Cost Convergence With Fixed Arrival Rates

We consider a network of three servers and a fleet of 100
vehicles with each vehicle running a random number of appli-
cations ranging from 5 to 15. For each task Ti,j, the arrival
rate λi,j is sampled from a uniform distribution between 0.01
and 1, and the routing matrix Pi,j is randomly generated. Based
on (2), the effective arrival rate αk

i,j (i.e., the minimum required
resources of task Ti,j at server Sk) can be obtained. The
weights wk

i,j that characterize the relative importance of dif-
ferent tasks are sampled from a uniform distribution between
0.8 and 1.5, while the weights εk

i that tradeoff the bid price
and backlog cost are sampled from a uniform distribution
between 5 and 10. The total resource of sever Sk is set as
twice of the summed minimum resources from all vehicles.
These parameters are summarized in Table I.
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(a) (b)

Fig. 4. Bidding evolution of synchronized update (left) and asynchronized
update (right).

The bidding trajectory and the backlog cost of each vehi-
cle under the synchronized update mechanism are shown in
Figs. 4(a) and 5(a), respectively. For the synchronized update
mechanism, every vehicle updates its bidding vector at each
iteration based on its bid and corresponding obtained resource
from the last iteration. From Figs. 4(a) and 5(a), it is clear
that both the bidding vectors and the backlog cost converge.
Moreover, under the MATLAB environment (i.e., MATLAB
2019b, Intel Core i7-10710U CPU@1.10 GHz), the synchro-
nized update mechanism takes 0.1455 s to reach the Nash
equilibrium.

The bidding evolution of the asynchronized update mech-
anism (Algorithm 1) and its corresponding backlog cost are
shown in Figs. 4(b) and 5(b), respectively. At each iteration,
a random subset of the vehicle fleet update their bidding vec-
tor based on the best-response function. The random subset
is illustrated in Fig. 6. It is clear that the bidding vectors and
backlog cost also converge to the same Nash equilibrium as in
the synchronized update. Note that the asynchronized update
mechanism does have a slower convergence, which is reason-
able since the synchronized approach updates the bid of all
vehicles at each step whereas the asynchronized approach only
updates a subset of the vehicles; less frequent update thus leads
to slower convergence. The asynchronized update mechanism
takes 0.1689 s to converge to the Nash equilibrium.

To better evaluate the performance of the Nash equilibrium
solution achieved by Algorithm 1, three alternative allocation
methods are chosen to conduct the comparison. Specifically,
Method 1 assumes that the vehicles mistrust the cloud and
no bidding mechanism is introduced to facilitate the resource
allocation. Under this circumstance, each server in the cloud

(a) (b)

Fig. 5. Backlog evolution of synchronized update (left) and asynchronized
update (right).

Fig. 6. Indices of vehicles that performed bid update at each time step.

evenly distributes its resources to subscribed vehicles, and then
each vehicle will optimally allocate its obtained resources to
onboard applications as discussed in Section III-B. To evalu-
ate the efficacy of the linear-proportional sharing scheme (5),
Method 2 utilizes the following nonlinear sharing scheme to
allocate the resource:

γ k
i =

{
γ k × ln

(
1+bk

i

)
∑N

l=1 ln
(
1+bk

l

) , if
∑N

l=1 bk
l > 0

0, otherwise
(42)

and the remaining is the same to the proposed method. The
logarithm function ln(1+bk

i ) in (42) is monotonically increas-
ing and grows very slowly for large bk

i , which can restrain the
impact of overlarge bids on the sharing model. For Method 3,
it is assumed that the cloud is trusted by all vehicles, and
each vehicle will submit all application-related information
to the cloud. Based on the detailed vehicular information,
the cloud adopts a centralized scheme to find the optimal
allocation resource by minimizing the total vehicle backlog
cost, i.e.,

∑N
i=1 Bi. This centralized scheme is essentially the

optimal strategy that we use to compare with our proposed
approach and evaluate the performance gap. The compari-
son results are presented in Table II. It can be seen that the
proposed approach is more effective in reducing the back-
log cost compared to Methods 1 and 2, indicating that the
proportional sharing bidding scheme is effective in making
proper resource allocations. Furthermore, the efficiency of the
Nash equilibrium solution is then evaluated by comparing the
equilibrium performance with the performance of centralized
optimal solution (Method 3). It can be found from Table II
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TABLE II
COMPARISON OF TOTAL BACKLOG COST

Fig. 7. Histogram of vehicle 1’s bid submitted to server 1 at steps 4, 5, 49,
50, 99, 100, 199, and 200 under i.i.d. task arrival rate with a bin size of 0.01.

that the backlog cost of the proposed Nash equilibrium solu-
tion is quite close to the one of centralized optimal approach
(i.e., Method 3). In the meantime, the proposed framework
is hierarchical and decentralized, which is more secure and
light-weight in communication.

B. Stochastic Stability Under Random Task Arrival Rates

In this section, we perform simulations and quantitatively
characterize the stochastic stability when the task arrival rates
vary randomly at each time step. We use the same set of the
simulation parameters as in Table I except we now use a fleet
of ten vehicles (N = 10) for the simplification of visualization
and the total resource of each server is set at 160 (γ k = 160) to
ensure the cloud can provide enough resource for task process-
ing. Instead of the arrival rate λi,j being held constant across
the entire time horizon, we consider random task arrival rate at
each time step with two stochastic modeling: 1) identically and
independent distributed (i.i.d.) and 2) Markov chains (MCs).
For the i.i.d. case, at each time step, we sample λi,j from a uni-
form distribution between 0.1 and 1, i.e., λi,j ∼ U(0.1, 1). For
the MC case, we have three Markov states for λi,j, and each
state corresponds to a value randomly sampled from a uni-
form distribution between 0.1 and 1. The transition matrices
of Markov states are also randomly generated using MATLAB
function mcmix(3).

We first simulate the bidding process under the i.i.d. case
using the synchronized best response dynamics over a horizon
of 200 steps for 2000 times. The histograms of the bid sub-
mitted to server 1 at steps 4, 5, 49, 50, 99, 100, 199, and 200
for vehicle 1 with a bin size of 0.1 are shown in Fig. 7. It can
be seen that the distributions at the initial two sequential steps

Fig. 8. Summary of TVD under different simulation setups.

are very different. While as the step increases, the distribu-
tions at two sequential steps become similar, which indicates
that the bid vector will converge to a stationary distribution.
With the histogram in Fig. 7, we normalize the counts and
translate it to the probability of falling into each of the bins.
We then apply (40) and (41) to compute the TVD between
the two distributions at step 199 and step 200. Furthermore,
we perform simulations for the case that the task arrival rates
are subject to MC. Similarly, we simulate the bidding process
under the MC formulation over a 200 step horizon for 2000
times, draw the histogram, and compute the TVD. In addition,
we follow the same stochastic environment setup and imple-
ment the asynchronized best response dynamics. A summary
of the TVD for the simulations is shown in Fig. 8. Specifically,
under four different simulation setups, each vehicle’s TVD
between the sequential distributions of step 199 and step 200
is presented. From Fig. 8, it is clear that the synchronized and
asynchronized best response dynamics have low TVD under
both i.i.d. and MC stochastic arriving rates, demonstrating
their robustness to the task arrival rate variations.

VII. CONCLUSION

In this article, we developed a hierarchical resource alloca-
tion model for cloud-aided automotive systems. At high level,
an auction-based proportional-sharing scheme is exploited for
cloud resource allocation, which is induced to a multiplayer
game. At low level, a constrained optimization problem is
solved to optimally allocate the obtained resource to onboard
applications. The induced multiplayer game is studied from the
perspective of Nash equilibrium, which facilitates the design
of an asynchronized bid update mechanism. Simulations were
presented to demonstrate the efficacy of proposed framework.
In particular, the convergence of the bids in the stochastic
setting indicates promise as a useful model, as the cloud set-
tings and vehicle applications are complex and time varying.
In the future, we will extend the current theoretical results to
more general stochastic environment. Furthermore, it would
also be interesting to consider more characteristics of cloud-
enabled vehicle applications (e.g., mobility, time-delay, and
energy constraints), when establishing the resource allocation
model and adopt learning-based approaches to simultaneously
learn the model parameters and perform resource assignment.
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