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a b s t r a c t

In this paper, we investigate the problem of state estimation and detection in the context of timed
discrete-event systems. Specifically, we study the verification of detectability, a fundamental state es-
timation property for dynamic systems. Existing works on this topic mainly focus on untimed DESs. In
some applications, however, real-time information is critical for the purpose of system analysis. To this
end, in this paper, we investigate the verification of detectability for timed DESs modeled by partially-
observed timed automata. Three notions of detectability, strong detectability, weak detectability and
delayed detectability, are studied in a dense-time setting, which characterizes detectability by time
elapsing rather than event updating steps. We show that verifying strong detectability and delayed
detectability for partially-observed timed automata is decidable by providing verifiable necessary and
sufficient conditions. Furthermore, we show that weak detectability is undecidable in the timed setting
by reducing the language universality problem for timed automata to the verification problem of weak
detectability. Our results extend the detectability analysis of DESs from the untimed setting to a timed
setting.

© 2024 Elsevier Ltd. All rights reserved.
,

1. Introduction

Engineering cyber–physical systems (CPSs), such as flexible
anufacturing systems, intelligent transportation systems and
ower systems, are generally very complex and operate in open
nvironments. In practice, the user cannot directly obtain the
ull state information of the system due to observation uncer-
ainties or nondeterminism of the system dynamics. Therefore,
ne turns to take state estimation process to obtain precise state
nformation so that some subsequent tasks, which rely on state
nformation, can be performed. To this end, it is of our interest
o know whether or not the system has some desired properties,
hich is referred to as detectability, so that it has sufficient

nformation to distinguish state under imperfect information.
In this paper, we investigate the state estimation problem in

he framework of discrete-event systems (DESs) which are widely
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used in modeling the high-level logical dynamics in CPSs (Cassan-
dras & Lafortune, 2021). In the context of DESs, state estimation
problem was initiated by Caines, Greiner, and Wang (1988) and
Ramadge (1986), where the concepts of observability was pro-
posed and the observer structure was constructed to check if one
can determine the state of the system uniquely by observations.
Later in the work of Shu, Lin, and Ying (2007), detectability
was systematically investigated for DESs, where four different
types of detectability as well as their verification algorithms
were provided. To further characterize different state estimation
requirements, several variations of detectability have also been
proposed in the literature, including, e.g., delayed detectabil-
ity (Shu & Lin, 2012), K -detectability (Hadjicostis & Seatzu, 2016),
I-detectability (Shu & Lin, 2013b), D-detectability (Balun & Ma-
sopust, 2021) and trajectory detectability in Yin, Li, and Wang
(2018). The enforcement of detectability, accomplished by su-
pervisory control, has been investigated in Shu and Lin (2013a).
Recently, detectability verification has been extended to more
complex DESs models, including, e.g., labeled Petri nets (Lan,
Tong., & Seatzu, 2021; Masopust & Yin, 2019; Zhang & Giua, 2018,
2020), probabilistic automata (Keroglou & Hadjicostis, 2015, 2017)
unambiguous weighted automata (Lai, Lahaye, & Giua, 2020) and
hybrid systems (Lin, Wang, Yin, Polis, & Chen, 2022). The reader
is referred to the comprehensive textbook (Hadjicostis, 2020) for
more details on this topic.

The above mentioned works only consider DESs without real-
time information. In practice, many real-world engineering

https://doi.org/10.1016/j.automatica.2024.111644
https://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2024.111644&domain=pdf
mailto:wjd_dollar@sjtu.edu.cn
mailto:kuize.zhang@surrey.ac.uk
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
https://doi.org/10.1016/j.automatica.2024.111644


W. Dong, K. Zhang, S. Li et al. Automatica 164 (2024) 111644

s
d
o
e
i
w
a
a
i
c

f
T

s
i
G
&
p
a
c
m
e
a
f
r
e
o
o
s
L
e
b
t
a
f
s
b
r

t
(
v
t

s

i
a

c
t
W
∆

x

c
w
a
o
c

ystems have time constraints when generating events and ad-
itional time information is also readily available for the purpose
f state estimation. Thus, it is necessary to model and analyze
xecutions of the system with time constraints. Such a real-time
ssue can be captured by timed automata proposed in the seminal
ork of Alur and Dill (1994). In the context of detectability
nalysis, if one can ‘‘measure’’ the time execution, e.g., by having
global clock, then additional information can be obtained to

mprove the capability of estimating the system. However, this
ritical time information is ignored in the purely untimed setting.
In this paper, we study the detectability verification problems

or timed DESs modeled by partially-observed timed automata.
he main contributions of this work are as follows.

• First, we introduce the notions of strong detectability, weak
detectability and delayed detectability for timed automata.
Different from the existing notions in the untimed set-
ting (Shu & Lin, 2012; Shu et al., 2007), where the number
of observable events is used to count the observation delays,
here we directly utilize the real time information to describe
detectability, which provides a more natural and realistic
measure for delays.
• Second, we present effective algorithms for checking strong

detectability and delayed detectability for timed automata,
respectively. Our approach is to first construct a verification
structure based on the original system. Then for each prop-
erty, we reduce the detectability verification problem to a
state search problem in the region graph of the constructed
verification structure.
• Third, we show that the verification of weak detectability

is undecidable in the timed setting. This result is quite
different from the untimed setting (Masopust, 2018; Shu
et al., 2007; Zhang, 2017), where weak detectability for fi-
nite state automata models is shown to be PSPACE-complete
and hence can be verified in exponential time.

We note that state estimation for timed DESs modeled by
pecial subclasses of partially-observed timed automata has been
nvestigated recently by many researchers (Basile & Ferrara, 2021;
ao, Lefebvre, Seatzu, Li, & Giua, 2020; Li, Lefebvre, Hadjicostis,
Li, 2022). For example, Gao et al. (2020) discussed how to

erform state estimation for timed automata using λ-observers
nd, in Li et al. (2022), Li et al. proposed observer construction for
onstant-time labeled automata (CTLA) to investigate state esti-
ation problem of CTLA. However, both Gao et al. (2020) and Li
t al. (2022) do not consider the detectability verification problem
s we investigate in this work. Also, our technical approach is dif-
erent from Gao et al. (2020) and Li et al. (2022), since we do not
equire the subset construction for observer. Furthermore, Gao
t al. (2020) and Li et al. (2022) considers timed automata with
nly single clock reset at each event transition. Therefore, both of
ur system model and observation model are more general and
ubsume the models in Gao et al. (2020) and Li et al. (2022). In Lai,
ahaye, and Giua (2019) and Lai, Lahaye, and Komenda (2022), Lai
t al. investigated the observer construction for timed systems
y interpreting time into weights and using max-plus automata
o model timed systems. In Basile, Cabasino, and Seatzu (2015)
nd Ma, Li, and Giua (2019), authors investigated state estimation
or timed Petri nets. In Lin et al. (2022), detectability of hybrid
ystems was investigated, where hybrid systems were modeled
y hybrid machines and they did not consider the influence of
eal-time constraints.

In the context of property verification of timed systems, effec-
ive algorithms have been proposed for checking
co)diagnosability (Cassez, 2012; Tripakis, 2002). More recently,
erification for opacity has also been investigated for timed sys-
ems (Ammar, El Touati, Yeddes, & Mullins, 2021; Wang, Zhan,
2

& An, 2018; Zhang, 2021). However, these notions are incom-
parable to detectability, which has been argued in the untimed
setting (Shu et al., 2007). Particularly, for general timed automata
that we consider in this work, it has been shown by Cassez (2009)
that verification of opacity is undecidable. However, our result
reveals that several versions of detectability are still decidable for
general timed automata. To the best of our knowledge, detectabil-
ity for timed automata has not been systematically investigated
in the literature.

The outline of this paper is as follows. In Section 2, we provide
basic background on timed DESs modeled by partially-observed
timed automata. In Section 3, three typical detectability notions,
strong detectability, weak detectability and delayed detectability,
are introduced for partially-observed timed automata. Verifica-
tion algorithm for strong detectability is provided in Section 4.
In Section 5, we establish the undecidability result for weak
detectability. Section 6 shows how to verify delayed detectabil-
ity for partially-observed timed automata. Finally, we conclude
the paper in Section 7. A preliminary version of some results
in this paper are presented in Dong, Yin, Zhang, and Li (2022)
without proofs. In this work, we provide complete proofs with
more detailed examples. Furthermore, Dong et al. (2022) only
studied strong detectability and weak detectability, while the
present work further extends the results to the case of delayed
detectability.

2. Preliminaries

2.1. System model

Let R≥0 be the set of non-negative real numbers and N be the
et of natural numbers. A clock is a variable whose codomain is
R≥0 and we denote by X a finite set of clocks. A valuation on X
s a function v : X → R≥0 that assigns to each clock x ∈ X
real value v(x) ∈ R≥0. We denote by VX the set of all clock

valuations on X . Given a valuation v ∈ VX and a subset Y ⊆ X of
locks, we denote by v[Y←0] the valuation that sets all clocks in Y
o zero, i.e., v[Y←0](x) = 0 if x ∈ Y and v[Y←0] = v(x) otherwise.
e denote by 0X the valuation in which all clocks are zero. For
∈ R≥0, we define the valuation function v + ∆ by: for every
∈ X , (v +∆)(x) = v(x)+∆.
An atomic constraint is of form x ∼ c , where x ∈ X is a clock,
∈ N is a constant and ∼∈ {≤, <,≥, >,=}. Given a valuation v,
e say v satisfies the atomic constraint x ∼ c if v(x) ∼ c . Then
clock constraint or a guard is a conjunction of a finite number
f atomic constraints and we denote by C(X ) the set of all clock
onstraints (guards) over X . For any clock constraint g ∈ C(X )
and valuation v ∈ VX , we denote that v satisfies g by v |H g .

In this paper, we consider timed systems modeled by partially-
observed timed automata (Alur & Dill, 1994; Henzinger, Nicollin,
Sifakis, & Yovine, 1994). Formally, a timed automaton (TA) is a
six-tuple

A = (Q , q0, Σ,X , inv, E),

where

• Q is a finite set of discrete states;
• q0 ∈ Q is the initial discrete state;
• Σ is a finite alphabet;
• X is a finite set of clocks;
• inv : Q → C(X ) is an invariant function that assigns to each

state q a clock constraint inv(q) constraining the time region
the system is allowed to stay in q;
• E ⊆ Q × C(X ) × Σ × 2X

× Q is the set of transitions.
Specifically, each transition is of form e = (q, g, σ ,Y, q′),
where q ∈ Q and q′ ∈ Q are, respectively, the initial
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and final discrete states of the transition, σ ∈ Σ is the
corresponding event of the transition, g ∈ C(X ) is the guard
specifying the time when the transition can be enabled and
Y ⊆ X is the set of clocks that should be reset to zero after
this transition.

Given a timed automaton A, a timed state (or simply a state) is
a pair s = (q, v), where q ∈ Q is a discrete state and v ∈ VX is a
clock valuation such that v |H inv(q). We denote by S(A) = Q×VX
the set of all states in A. In particular, the initial state of A is
defined by (q0, 0X ). Given a state s = (q, v), its discrete state
component is denoted by dis(s) = q.

A finite (infinite) word over Σ is a finite (infinite) sequence
σ1 . . . σn(. . . ); we denote by Σ∗ and Σω , respectively, the set of fi-
nite words and the set of infinite words over Σ and define Σ+ =

Σ∗\{ε}, where ε denote the empty word. A timed word over Σ

is a word over R≥0 × (Σ ∪ {ε}), e.g., ρ = (∆0, σ0)(∆1, σ1) · · · ,
where (∆0, σ0) denotes that event σ0 occurs after the system has
been started after ∆0 time elapsing, and (∆i, σi), i ∈ {1, 2, . . .}
means that event σi occurs ∆i time elapsing after the previous
event σi−1. Note that (∆, ε) ∈ R≥0 × {ε} denotes that there is
only ∆ time elapsing but has no event occurrence. Thus, if there
is an event (∆′, σ ′) ∈ R≥0 × Σ after (∆, ε) in a timed word,
we combine them by summing up the time elapsing and erasing
event (∆, ε), i.e., (∆, ε)(∆′, σ ′) = (∆ + ∆′, σ ′); if there are two
events (∆, ε), (∆′, ε) in a row, it is equivalent to replacing them
by (∆ + ∆′, ε), i.e., (∆, ε)(∆′, ε) = (∆ + ∆′, ε). Given a timed
word ρ, we denote by |ρ| the length of ρ, which is the number of
events (∆, σ ) ∈ R≥0 ×Σ appearing in ρ. We denote by TW∗(Σ)
and TWω(Σ), respectively, the set of all finite timed words and
the set of all infinite timed words over Σ; we use TW(Σ) =
TW∗(Σ) ∪ TWω(Σ) to denote all timed words. For any timed
word ρ = (∆0, σ0)(∆1, σ1) . . . , we define time(ρ) =

∑
|ρ|

i=0 ∆i
as the total time elapsing in ρ and define utw(ρ) = σ0σ1 . . . as
its untimed word. Given a timed word ρ ∈ TW(Σ), we define
Pre(ρ) = {ρ ′ ∈ TW∗(Σ) : ∃ρ ′′ ∈ TW(Σ) s.t. ρ ′ρ ′′ = ρ∧time(ρ ′) <

∞} as the set of all finite prefixes of timed word ρ.
In timed automata, there are two types of transitions: delay

state transitions and discrete state transitions. Formally, for any
states s = (q, v), s′ = (q′, v′) ∈ S(A), time delay ∆ ∈ R≥0 and
event σ ∈ Σ ,

• a delay state transition (q, v)
(∆,ε)
−−→ (q, v + ∆) is defined if

v +∆ |H inv(q);
• a discrete state transition (q, v)

(0,σ )
−−→ (q′, v′) is defined if

there is a transition (q, g, σ ,Y, q′) ∈ E such that v |H g ,
v′ = v[Y←0] and v′ |H inv(q′).

Intuitively, a delay state transition represents the dwell time in
a discrete state for ∆ time elapsing, while a discrete transition
corresponds to a switch between two discrete states caused by
occurrence of event σ . For simplicity, we write s

(∆,σ )
−−−→ s′ if there

exists a state s′′ such that s
(∆,ε)
−−→ s′′ and s′′

(0,σ )
−−→ s′.

A run of time automaton A starting at state s ∈ S(A) is a
sequence

π = s0(∆0, σ0)s1(∆1, σ1)s2(∆2, σ2)s3 · · · , (1)

where s0 = s, for any i ≥ 0, si ∈ S(A), (∆i, σi) ∈ R≥0 × (Σ ∪ {ε})
and si

(∆i,σi)
−−−→ si+1 holds. For any run π , we denote by ρπ =

(∆0, σ0)(∆1, σ1)(∆2, σ2) · · · its corresponding timed word and by
sπ = s0s1s2 · · · its corresponding state sequence, which is also
referred to as a path. A run π is said to be infinite if its |ρπ | is
infinite; otherwise π is finite. We denote by Runω(A) and Run∗(A),
respectively, the set of infinite runs and finite runs in A starting
at (q , 0 ). The set of all runs in A is Run(A) = Runω(A)∪Run∗(A).
0 X

3

For any finite path s = s0s1 · · · sn, we denote by last(s) the
last state in the path. The set of timed words generated by A
is TW(A) = {ρπ : π ∈ Run(A)}; TWω(A) and TW∗(A) denote,
respectively, the sets of infinite and finite timed words generated
by A. The untimed language of A is utw(TW(A)) = {utw(ρ) : ρ ∈
TW(A)}. The set of runs induced by a timed word ρ ∈ TW(A)
is Run(ρ) = {π ∈ Run(A) : ρπ = ρ}. With a slight abuse of
notation, we define the set of last states induced by ρ is last(ρ) =
{(q, v) ∈ S(A) : ∃π ∈ Run(ρ) s.t. (q, v) = last(sπ )}. For the sake of
simplicity, we denote by lastd(·) = dis(last(·)) the discrete states
of last(·), where ‘‘·’’ can be a finite path or a finite timed word.

Given a TA A, an infinite run π ∈ Runω(A) is said to be non-
zeno if time(ρπ ) = ∞; otherwise, it is zeno. A zeno run describes
the phenomenon that infinite events are enabled in a finite time.
A state s = (q, v) ∈ S(A) is said to be a timelock if all infinite runs
starting from s are zeno. For the sake of simplicity, we assume
that the TA is timelock-free (Tripakis, 2002) in the sense that
there is no timelock state reachable. This assumption holds for
most of the engineering systems as a timelock state will prevent
time progressing, which is not realistic in real-world systems.
Furthermore, we will discuss how to relax this assumption later
in Remark 3.

2.2. Region automata

For later technical developments, here we briefly review the
region automata (Alur & Dill, 1994), which are widely used as
finite abstractions of timed automata for the purpose of verifi-
cation. The reader is referred to Alur and Dill (1994) and Baier
and Katoen (2008) for more details.

Given a timed automaton A = (Q , q0, Σ,X , inv, E), each
region of A is an equivalence class of time valuations; we denote
the set of regions of A by R and use [v]R to denote the unique
region to which valuation v belongs. The region automaton of A is
4-tuple

G(A) = (Q R, qR0, ΣR, ER),

here Q R
= Q × R is the set of states, qR0 = (q0, [0X ]R) is the

nitial state, ΣR
= Σ∪{τ } is set of events and ER

: Q R
×ΣR

→ 2Q R

s the non-deterministic transition function defined by: for any
q, r), (q′, r ′) ∈ Q R, σ ∈ ΣR, we have (q′, r ′) ∈ ER((q, r), σ ) if
i) σ ∈ Σ and there is a transition (q, g, σ ,Y, q′) ∈ E such
hat v |H g and v[Y←0] ∈ r ′ for any v ∈ r; or (ii) σ =

, q = q′ and r ′ is a time successor region of r , which is
btained by time elapsing. Details about region abstraction and
ow transition function ER is defined can be found in Alur and
ill (1994) and Baier and Katoen (2008). Function ER is extended
o Q R

× (ΣR)∗ in the usual way. The language generated by
G(A) is L(RG(A)) = {ρ ∈ (ΣR)∗ ∪ (ΣR)ω : ER(qR0, ρ)!}, where !
eans ‘‘is defined’’. A run in RG(A) is a finite (or infinite) sequence
= qR1σ1qR2σ2 · · · qRn(· · · ), where qRi ∈ Q R, σi ∈ ΣR and qRi+1 ∈

R(qRi , σi), i = 1, 2, . . . , n(, . . . ). In order to more clearly represent
ransitions in a run π = qR1σ1qR2σ2 · · · qRn(· · · ) of region automaton,
e write it as π = qR1

σ1
−→ qR2

σ2
−→ · · · qRn(· · · ). A run can also be

xtended by events string that is π = qR1
ρ1
−→ qR2

ρ2
−→ · · · qRn(· · · )

here ρi ∈ (ΣR)∗, qRi+1 ∈ ER(qRi , ρi) and i = 1, 2, . . . , n(. . . ).
Intuitively, event τ represents the time elapsing by abstracting

he precise time. Although the region automaton abstracts the
ime information away from the original timed automaton, their
ntimed languages are equivalent. Formally, let utwR(RG(A)) be
he untimed language of RG(A) by erasing all events τ of each
tring in L(RG(A)). Then, we have the following relation between
and RG(A) (Alur & Dill, 1994):

tw(TW(A)) = utwR(RG(A)). (2)
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ased on the relation in Eq. (2), the region automata preserves
eachability of discrete state in the original system A, that is,
here exists a timed word ρ leading to a discrete state q ∈ Q ,
.e., q ∈ lastd(ρ), if and only if there is a word ρR and a state
q, r) ∈ Q R in RG(A) such that (q, r) ∈ ER(qR0, ρ

R).

3. Detectability for partially-observed timed automata

In the state estimation problem, we assume that not all events
in Σ can be observed. To this end, we assume the event set is
partitioned into two disjoint sets

Σ = Σo ∪Σuo,

where Σo is the set of observable events and Σuo is the set of
nobservable events. Furthermore, in the timed setting, we as-
ume that time information can also be measured by, e.g., having
global timer. Therefore, we define the natural projection for

imed word

: TW∗(Σ)→ TW∗(Σo)

such that, for any timed word ρ = (∆0, σ0) . . . (∆n, σn) ∈
TW∗(Σ), the projection removes events in Σuo and keeps the time
lapsing until the next observable event. Formally, P is defined
ecursively by:

• for (∆, σ ) ∈ R≥0 × (Σ ∪ {ε}), we have

P((∆, σ )) =
{
(∆, σ ) if σ ∈ Σo

(∆, ε) otherwise

• for any (∆, σ0)(∆1, σ1)ρ ∈ TW∗(Σ), we have

((∆0, σ0)(∆1, σ1)ρ) =
{
(∆0, σ0)P((∆1, σ1)ρ) if σ0 ∈ Σo

P((∆0 +∆1, σ1)ρ) otherwise

or example, if Σo = {a, b} and Σuo = {u}, then for timed word
= (1, a)(2, u)(3, b), its natural projection is P(ρ) = (1, a)(5, b).
ote that, for any timed word ρ ∈ TW∗(Σ), we have time(ρ) =
ime(P(ρ)). For simplicity, we also extend natural projection to
: 2TW∗(Σ)

→ 2TW∗(Σo) in the usual manner.
Given a timed automaton A and suppose that a projected

imed word t ∈ P(TW∗(A)) is observed. Then the current-state
stimate is defined as the set of discrete states the system can
ossibly reach after observing t , i.e.,

each(t) =
{
q ∈ Q :

∃ρ ∈ TW∗(A) s.t.
P(ρ) = t ∧ lastd(ρ) = q

}
.

fter observing timed word t , we may further observe timed
ord t ′. Then, we can update the state estimate Reach(t) for
bservation t by the information from t ′. The delay state estimate
f the system at instant time(t) upon the occurrence of tt ′ ∈
(TW∗(A)) is defined as

eachd(t, t ′) ={
q ∈ Q :

∃ρ1ρ2 ∈ TW∗(A) s.t. P(ρ1) = t∧
P(ρ2) = t ′ ∧ lastd(ρ1) = q

}
.

n the seminal work of Shu et al. (2007), strong detectability
nd weak detectability were proposed to capture different state
stimation requirements. In particular, strong detectability is the
tronger one requiring that the precise state of the system can
lways be determined after a finite number of observations, while
eak detectability requires that the precise state can be de-
ermined for some observations. In some applications, we are
nterested in detecting the previous state with some information
elays rather than the current state. To consider this delay state
4

estimation problem, Shu and Lin proposed the notion of (k1, k2)-
etectability (delayed detectability) in Shu and Lin (2012). Specif-
cally, (k1, k2)-detectability (delayed detectability) requires that
fter obtaining k1 observations, system state can always be de-
ermined with the assistance of another k2 observation delays.
owever, the above original definitions by Shu and Lin are pro-
osed for untimed finite-state automata without utilizing time
nformation. Here, we extend these notions to the timed setting
s follows.

efinition 1. Let A = (Q , q0, Σ,X , inv, E) be a timed DESs with
bservable events Σo ⊆ Σ . We say system A is

• strongly detectable if we can always determine the current
and subsequent states of the system unambiguously after
some finite time elapse, i.e.,

(∃∆ ∈ R≥0)(∀π ∈ Run(A) : time(ρπ ) = ∞)
(∀ρ ′ ∈ Pre(ρπ ))[time(ρ ′) ≥ ∆⇒ |Reach(P(ρ ′))| = 1].

• weakly detectable if we can determine the current and sub-
sequent states of the system unambiguously for some timed
words after some finite time elapse, i.e.,

(∃∆ ∈ R≥0)(∃π ∈ Run(A) : time(ρπ ) = ∞)
(∀ρ ′ ∈ Pre(ρπ ))[time(ρ ′) ≥ ∆⇒ |Reach(P(ρ ′))| = 1].

efinition 2. Let A = (Q , q0, Σ,X , inv, E) be a timed system
ith observable events Σo ⊆ Σ . We say system A is (k1, k2)-
etectable if after k1+k2 time elapsing, we can determine the state
f the system unambiguously k2 time delays ago for all timed
ords, i.e.,

∀ρ ∈ TW(A))(∀ρ ′ρ ′′ ∈ Pre(ρ))[time(ρ ′) ≥ k1
∧ time(ρ ′′) ≥ k2 ⇒ |Reachd(P(ρ ′), P(ρ ′′))| = 1].

emark 1. Here, we assume that parameters k1 and k2 in delayed
etectability for timed systems are integers. This assumption does
ot reduce the generality when k1 and k2 are rational num-
ers. For example, let m be the least common denominator of
1 and k2. Then we can construct a new timed automaton A′
y multiplying each clock constraint c in timed automaton A
y m. Then we know that utw(TW(A)) = utw(TW(A′)). There-
ore, verifying (k1, k2)-detectability for system A is equivalent to
erifying(k1 m, k2 m)-detectability for system A′. However, if k1
nd k2 are irrational numbers, then our approach does not apply
irectly; one may need to approximate the irrational numbers as
ational numbers first.

We illustrate the definitions of detectability by the following
xamples.

xample 1. Let us consider partially-observed timed automata
1 shown in Fig. 1(a), where the alphabet is Σ = {a, b, c, d, e}
ith Σo = {a, d, e}; the set of clock is X = {x}; and invariant
f each discrete state is the conjunction of all elements in the
et next to the discrete state and is omitted if it is true. Note
hat in the untimed setting, this system is not (either strongly
r weakly) detectable because time information is not utilized.
his is because along the only possible observation adeee · · · , we
an never distinguish between states 5 and 6. However, with the
ssistance of time information, this system is strongly detectable
hence, also weakly detectable). Specifically, by the timed setting
hown in Fig. 1(a), we argue that we can always determine the
urrent state after three time units. To see this, first we note that
he invariant of discrete state 1 is x ≤ 1, which means that the
ystem should depart from state 1 to 2 within one time unit. Since
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Fig. 1. Three timed DESs A1, A2 and A3 in (a), (b) and (c) respectively. We use
to denote the true guard, which means that there is no time constraint and

t allows arbitrary time elapses. The invariant of a discrete state is conjunction
f all elements in the set next to the discrete state and we omit the invariant
f it is true.

ransition 2→ 3 has guard x > 1 but transition 2→ 4 can occur
or any 0 ≤ x ≤ 1, we know that the systemmay be either at state
2 or state 4 after observing the first event a. Therefore, we cannot
istinguish states 2 and 4 within one time unit after observing
he first event awithout any further observation. Since transitions
along 2→ 3→ 5 require more than one but no more than two
time units, while transitions along 2 → 4 → 6 is feasible only
within one time unit, there are three possibilities:

• If we observe event d within one time unit after observing
a, then we know for sure that the system is at state 6;
• If we observe event d between one to two time units after

observing a, then we know for sure that the system is at
state 5;
• If we observe nothing within two time units after observing

a, then we know for sure that the system will stay at 2
forever because the invariant of state 3 is x ≤ 2.
5

For each of the above three cases, after observing event a, it
takes at most two time units to determine system state uniquely.
Consider the largest time delay to reach state 2, i.e., one time unit,
we can accurately detect the system state after three time units
(or any time delays larger than two time units) in total. Thus, A1
is strongly detectable.

Example 2. Let us consider timed system A2 shown in Fig. 1(b)
with Σo = {a, d, e, f }. For this system, there exists a run such
that we cannot distinguish states 2 and 4 after any finite time of
observations even by utilizing the time information. For example,
for any ∆ ∈ N, there is a run

π = 1(1, a)[2(0.5, c)4(0.5, f )]∆ ∈ Run(A2)

such that time(ρπ ) ≥ ∆ and Reach(P(ρπ )) = {2, 4}. Thus,
the system A2 is not strongly detectable. However, we can find
another run

π ′ = 1(1, a)2(1.5, b)3(0.2, d)[5(1, e)]ω

such that for any ρ ∈ Pre(ρπ ′ ) satisfying time(ρ) ≥ (∆0 +

2.7) where ∆0 > 0, we can uniquely determine the state,
i.e., Reach(P(ρ)) = {5}. Thus, system A2 is only weakly detectable.

Example 3. Let us consider timed system A3 shown in Fig. 1(c)
with Σo = {a, d, c}. For this system, let us consider the following
two runs

π1 = 1(1, u)2(0.4, a)4(1.1, b)5(3, c),
π2 = 1(0.7, u)2(0.7, a)4(1.1, b)5(3, c),

and we have ρ ′1 = (1, ε) ∈ Pre(ρπ1 ), ρ
′′

1 = (0, u)(0.4, a)
(1.1, b)(3, c), ρ ′2 = (0.7, u)(0.3, ε) ∈ Pre(ρπ2 ) and ρ ′′2 = (0.4, a)
(1.1, b)(3, c) such that P(ρ ′1) = P(ρ ′2) = (1, ε), P(ρ ′′1 ) = P(ρ ′′2 ) =
(0.4, a)(1.1, b)(3, c), time(ρ ′1) = time(ρ ′2) ≥ 1 and time(ρ ′′1 ) =
time(ρ ′′2 ) ≥ 2. Clearly, both states 1 and 2 can be reached after
observing (1, ε) and from these two states, observable timed
word (0.4, a)(1.1, b)(3, c) can be generated. Thus, system A3 is not
(1, 2)-detectable.

However, system A3 is (2, 1)-detectable, since for any timed
word ρ ∈ TW(A) and every prefix ρ ′ρ ′′ ∈ Pre(ρ) such that
time(ρ ′) ≥ 2 and time(ρ ′′) ≥ 1, we have |Reachd(P(ρ ′), P(ρ ′′))| =
1. For example, let us consider run

π3 = 1(1, u)2(0.9, a)4(1.1, b)5(3, c),

and prefixes ρ ′π3
= (1, u)(0.9, a)(0.1, ε) and ρ ′′π3

= (1, b)(3, c).
States that can be reached after observing timed word P(ρ ′π3

) =
(1.9, a)(0.1, ε) are 3 and 4. From state 3, event b is able to occur
within one time unit, while from state 4, event b can only occur
after one time unit. We have Reachd(P(ρ ′π3

), P(ρ ′′π3
)) = {4}. Thus,

although we observe the same event label, we can still use time
information to distinguish state 3 and 4.

4. Verification of strong detectability

In this section, we investigate the verification of strong de-
tectability. First, we construct a verification system that captures
all pairs of runs with the same observation (both projected events
and time elapsing). Then a necessary and sufficient condition
for strong detectability is derived based on the region graph of
the verification system, which yields the decidability of strong
detectability.
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.1. Construction of the verification system

According to Definition 1, a system is not strongly detectable
f for any arbitrarily long time elapsing, there exists a pair of
wo runs such that they have the same observation but result
n different discrete states. Motivated by this observation, we
onstruct a verification system that captures all pairs of runs with
the same (timed) observation and can distinguish if a timed word
has finite or infinite time elapsing. Given a timed automaton
A = (Q , q0, Σ,X , inv, E), the verification system of A is a new
timed automaton

V (A) = (QV , qV0, ΣV ,XV , invV , EV ),

where

• QV = Q × Q is the set of discrete states;
• qV0 = (q0, q0) is the initial discrete state;
• ΣV = Σ∪{λ} is a finite set of events, where λ /∈ Σ is a new

event;
• XV = X ∪ X̂ ∪ {xv} is a finite set of clocks, where X̂ = {x̂ :

x ∈ X } is a copy of the original clock set X and xv is a new
clock;
• invV : QV → C(XV ) is the invariant function defined by: for

any (q1, q2) ∈ QV , invV (q1, q2) = inv(q1) ∧ înv(q2) ∧ xv ≤ 1,
where înv(q) simply replaces each x ∈ X in inv(q) by x̂ ∈ X̂ ;
• EV ⊆ QV ×ΣV × C(XV )× 2XV ×QV is the transition relation

defined by: for any (q1, q2) ∈ QV ,

- if σ ∈ Σo, then

(q1, σ , g1,Y1, q′1), (q2, σ , g2,Y2, q′2) ∈ E

⇒((q1, q2), σ , g1 ∧ ĝ2,Y1 ∪ Ŷ2, (q′1, q
′

2)) ∈ EV (3)

- if σ ∈ Σuo, then

(q1, σ , g1,Y1, q′1) ∈ E ⇒
((q1, q2), σ , g1,Y1, (q′1, q2)) ∈ EV ,

(q2, σ , g2,Y2, q′2) ∈ E ⇒

((q1, q2), σ , ĝ2, Ŷ2, (q1, q′2)) ∈ EV (4)

- if σ = λ, then

((q1, q2), σ , xv = 1, {xv}, (q1, q2)) ∈ EV , (5)

where ĝ2 and Ŷ2 are the copies of g2 and Y2, respectively, to
new clock set X̂ .

Intuitively, in the verification system V (A), each discrete state
is a pair of discrete states of the original system A. Since each
discrete state in V (A) corresponds to two discrete states in A, the
clock set is the union of the original two clock sets, where we use
a copy X̂ to distinguish them from X . The invariant for each state
is the conjunction of invariants of its two components in the state.
In addition, we add a new event λ and a new clock xv to measure
the time elapsing explicitly. Specifically, we assign an additional
invariant xv ≤ 1 to each discrete state, which means that clock
xv cannot be greater than 1 for each discrete state. The transition
rule for event λ is specified by Eq. (5), which says that event λ
can only occur whenever clock xv equals to 1. Therefore, event λ
will occur whenever one time unit elapses, which is used as an
auxiliary time measurement in later verification algorithms. Also,
for any state (q1, q2) ∈ QV , if σ ∈ Σo, then σ must be enabled
simultaneously at q1 and q2 to ensure observational equivalence.
On the other hand, if σ ∈ Σuo, then event σ can be enabled either
at q1 or q2 while the other component remains unchanged.

Therefore, the construction of V (A) guarantees that it (only)
tracks all pairs of runs in V having the same observation. For-
mally, we have following properties (Tripakis, 2002):
6

• For any finite run π in V (A),

π =[(q0, q′0), v0](∆0, σ0)[(q1, q′1), v1](∆1, σ1)
· · ·[(qn, q′n), vn]

there exist two runs π1, π2 ∈ Run(A) such that lastd(sπ1 ) =
qn, lastd(sπ2 ) = q′n and P(ρπ ) = P(ρπ1 ) = P(ρπ2 );
• For any pair of finite runs π1, π2 in A with the same obser-

vation, there exists a finite run π in V (A) having the same
observation and the discrete part of the last state of π is
(dis(last(sπ1 )), dis(last(sπ2 ))), i.e.,

(∀π1, π2 ∈ Run(A) : P(ρπ1 ) = P(ρπ2 ))
(∃π ∈ Run(V (A)))

[
(P(ρπ ) = P(ρπ1 ) = P(ρπ2 )

∧ lastd(sπ ) = (lastd(sπ1 ), lastd(sπ2 )))
]
.

4.2. Verifying strong detectability

Recall that strong detectability requires that we can determine
the current and subsequent state uniquely after finite time for
all runs. To this end, we call a discrete state (q1, q2) ∈ QV an
ambiguous state if q1 ̸= q2 and we denote by AM = {(q1, q2) ∈
QV : q1 ̸= q2} the set of all ambiguous states. By the properties of
the verification systems, an ambiguous state is reached if there
are two observationally equivalent runs in V reaching different
discrete states. Furthermore, when an ambiguous state is reached,
we cannot distinguish which state the system is actually in by the
observation. Therefore, to test strong detectability, it suffices to
test whether or not an ambiguous state in V (A) can be reached
by runs with arbitrarily large time elapsing. However, this cannot
be tested directly based on V (A) because it has infinite reachable
states in general. Our approach is to consider the region automa-
ton of V (A) denoted by V R(A) = (Q R, qR0, ΣR, ER). Similarly, we
define the set of ambiguous states in V R(A) as AMR

= {(q, r) ∈
Q R
: q ∈ AM}.
The following theorem shows that the region automaton V R(A)

abstracts sufficient information of V (A) for verifying strong de-
tectability.

Theorem 1. System A is not strongly detectable with respect to Σo,
if and only if, in the region automaton V R(A) of V (A), there exists a
run

π = qR0
σ1
−→ qR1

σ2
−→ · · ·

σi
−→ qRi · · ·

σj
−→ qRj · · ·

σn
−→ qRn

where i < j such that

(i) qRn ∈ AMR; and
(ii) qRi = qRj ; and
(iii) ∃i < k ≤ j : σk = λ.

Proof. (⇐) Assume there exists a run π ′ in V R(A) satisfying condi-
tions (i)–(iii). For any ∆ ∈ R≥0, we use ⌈∆⌉ to denote the smallest
integer greater than ∆. Thus, we have ⌈∆⌉ ≥ ∆. Based on con-
dition (ii), we can obtain a word ρR

= σ1σ2 · · · σi−1(σi · · · σj)⌈∆⌉
σj+1 · · · σn by repeating transitions from qRi to qRj in π ′ for ⌈∆⌉
times. By condition (iii), the number of event λ in ρR is at least
⌈∆⌉. Because the last state of π ′ is included in AMR, we have
ER(qR0, ρ

R) ∩ AMR
̸= ∅. By Eq. (2), there exists a run π in V (A)

such that ρπ has at least ⌈∆⌉ number of event λ and the last state
of π is ambiguous, i.e., time(ρπ ) ≥ ⌈∆⌉ and lastd(sπ ) ∈ AM . By
he first property of the verification system, there are two runs
1, π2 ∈ Run(A) such that lastd(sπ1 ) ̸= lastd(sπ2 ) and P(ρπ1 ) =
(ρπ2 ). We cannot determine the state by observation P(ρπ1 ),
.e., |Reach(P(ρπ1 ))| ̸= 1. Therefore, A is not strongly detectable.

(⇒) Assume A is not strongly detectable. That is, for any ∆ ∈

, there are two runs π , π ∈ Run(A) such that P(ρ ) =
≥0 1 2 π1
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Fig. 2. In the above figures, double circles denote ambiguous states. We omit transition (xv = 1, λ, {xv}) at each discrete state. The invariant of a discrete state is
onjunction of all elements in the set next to the discrete state, e.g., {x1 ≤ 2, x2 ≤ 1, xv ≤ 1} represents x1 ≤ 2 ∧ x2 ≤ 1 ∧ xv ≤ 1, and we omit the invariant if it is
true. For each guard, the abbreviation of true is denoted by ⊤. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
P(ρπ2 ), lastd(sπ1 ) ̸= lastd(sπ2 ) and time(ρπ1 ) = time(ρπ1 ) ≥ ∆.
According to the second property of verification system, there
exists a run π in V (A) such that lastd(sπ ) ∈ AM and P(ρπ ) =
P(ρπ1 ) = P(ρπ2 ). As a result of time(ρπ ) ≥ ∆, ρπ has at least
⌈∆⌉ number of event λ. Then, we obtain the region automaton
V R(A) = (Q R, qR0, ΣR, ER). By Eq. (2), there is a run π ′ in V R(A)
whose last state is in AMR and π ′ has at least ⌈∆⌉ number of
event λ. Let ∆ > |Q R

|. Because V R(A) is finite, run π ′ must firstly
go through a run qRi

σi+1
−−→ · · ·

σj
−→ qRj in V R(A) which forms a loop,

i.e., qRi = qRj , and has at least one λ in it, i.e., ∃i < k ≤ j : σk = λ.

Namely, there exists a run qR0
σ1
−→ qR1

σ2
−→ · · ·

σi
−→ qRi · · ·

σj
−→ qRj · · ·

σn
−→

qRn in V R(A) satisfying conditions (i)–(iii). □

Intuitively, run π = qR0
σ1
−→ qR1

σ2
−→ · · ·

σi
−→ qRi · · ·

σj
−→ qRj · · ·

σn
−→ qRn

in Theorem 1 is equivalent to the existence of a reachable cycle
π ′ from the initial state, i.e., the part π ′ = qRi · · ·

σj
−→ qRj , in which

there exists at least one event λ and we can reach an ambiguous
state from the cycle, i.e., from state qRi to state qRn. Then cycle π ′

and event λ in it can be extended to any time elapsing, and the
reachability from qRj to an ambiguous state qRn prevents us from
determining states unambiguously. Therefore, that system A is
not strongly detectable means that we can find a run satisfying
conditions (i)–(iii) in Theorem 1.

Remark 2. Let us discuss the complexity of checking strong
detectability for a timed system A = (Q , q0, Σ,X , inv, E). For
any clock x ∈ X , we use cx to denote the maximum integer
c such that x ∼ c ∈ C(X ) is a subformula appearing in A,
where ∼∈ {≤, <,≥, >,=}. The verification system V (A) has at
most |Q |2 states and |Q |2(|Q |2 − 1) transitions, where |Q | is the
number of states in A. Since its clocks consist of two copies of
the original clocks and a new clock, the number of clocks in V (A)
is |XV | = 2|X | + 1, where |X | is the clock number of A. By Alur
and Dill (1994), the number of regions is bounded by |XV |! ·2|XV | ·∏

x∈XV
(2cx+2). Thus, there are at most (|Q |2·(|Q |2−1)·|XV |!·2|XV |·∏

x∈XV
(2cx + 2)) states in V R(A) and we can construct the region

automaton V R(A) within time O(|Q |4 ·|XV |!·2|XV | ·
∏

x∈XV
(2cx+2)).

According to Theorem 1, verifying strong detectability requires to
7

find all cycles that contain event λ in V R(A) and then, to check
reachability from these cycles to ambiguous states. Both of above
steps can be done in time polynomial in the number of states in
V R(A). Therefore, the whole complexity mainly relies on the size
of the region automaton V R(A).

Remark 3. Recall that, in Section 2.1, we have assumed that
the TA is timelock-free. In fact, with some slight modification,
Theorem 1 can still apply when this assumption does not hold.
Specifically, suppose that TA A contains a timelock state. Then it
is not strongly detectable, if and only if, in the region automaton
V R(A) of V (A), there exists a run

π =qR0
σ1
−→ qR1

σ2
−→ · · ·

σi
−→ qRi · · ·

σj
−→ qRj · · ·

σn
−→ qRn

σn+1
−−→ · · ·

σm
−→ qRm

σm+1
−−→ · · ·

σm′
−→ qRm′

such that, in addition to the satisfactions of conditions (i)–(iii) in
Theorem 1, we further require that qRm = qRm′ and there exists
m < k′ ≤ m′ such that σk′ = λ. Intuitively, the new requirements
say that the region automaton V R(A) can reach a cycle π ′′ =

qRm
σm+1
−−→ · · ·

σm′
−→ qRm′ in which there is at least one event λ from

state qRn. Since cycle π ′′ can be extended to any time elapsing by
repeating it, it excludes runs that terminate at timelock states.

Example 4. Let us consider timed system A1 shown in Fig. 1(a)
with observable event set Σo = {a, d, e}. We obtain the ver-
ification system V (A1) by the aforementioned steps, which is
depicted in Fig. 2(a) and for simplicity, we omit the transition
(xv = 1, λ, {xv}) at each discrete state. One can compute the
region automaton V R(A1) for V (A1), in which there does not exist
a run satisfying the conditions in Theorem 1. Thus, A1 is strongly
detectable.

Example 5. However, system A2 shown in Fig. 1(b), where Σo =

{a, d, e, f }, is not strongly detectable. To see this, first, we obtain
the verification system V (A2) shown in Fig. 2(b), and based on
which we construct the region automaton V R(A ) of V (A ). Part
2 2
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Fig. 3. Part of the region automaton V R(A2). The cycle highlighted in red
ontains event λ and an ambiguous state ((4, 2), {x1 = x2 = 1, xv = 0}). (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

f the region automaton V R(A2) is shown in Fig. 3. Here, we can
ind the following run

=((1, 1), {x1 = x2 = xv = 0})
a
−→

((2, 2), {x1 = x2 = xv = 0})
τ
−→

((2, 2), {0 < x1 = x2 = xv < 1})
τ
−→

((2, 2), {x1 = x2 = xv = 1})
λ
−→

((2, 2), {x1 = x2 = 1, xv = 0})
c
−→

((4, 2), {x1 = x2 = 1, xv = 0})
c
−→

((4, 4), {x1 = x2 = 1, xv = 0})
f
−→

((2, 2), {x1 = x2 = xv = 0})
c
−→

((4, 2), {x1 = x2 = xv = 0}),

such that qR7 = ((4, 2), {x1 = x2 = xv = 0}) ∈ AMR. Furthermore,
run π contains a cycle part as highlighted in Fig. 3, where qR1 =
qR6 = ((2, 2), {x1 = x2 = xv = 0}) and σ4 = λ. Thus, run
π satisfies all conditions in Theorem 1, which means that A2
is not strongly detectable. In fact, the cycle found in the above
run π corresponds to a cycle in the verification structure V (A2)
as highlighted by red color in Fig. 2(b). Based on the cycle, we
can actually extract a timed word ρ = (0, a)[(1, c)(0, f )]n with
time elapsing time(ρ) = n where n is an arbitrary integer in
N. Because event c is unobservable, we can never distinguish
between system states 2 and 4.

Remark 4. The basic idea of the verification system V (A) is
motivated by the construction for the verification of diagnos-
ability in untimed DESs (Jiang, Huang, Chandra, & Kumar, 2001;
Yoo & Lafortune, 2002) and timed DESs (Cassandras & Lafortune,
2021; Tripakis, 2002), where it is termed as the twin-plant or
the verifier. Our construction of the verification system itself is
also similar to the parallel composition of timed automata with
guards in Cassandras and Lafortune (2021) and Tripakis (2002).
In particular, the new auxiliary event λ and self-loops can also be
added to each state after constructing the parallel composition
system. However, the necessary and sufficient condition derived

is quite different. In particular, in diagnosability analysis, one
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needs to test whether or not the time is divergent after some
faulty events. This condition can be formulated as the Büchi
emptiness condition based on the verification system directly.
However, in the context of strong detectability, there is no faulty
indicator from which one needs to count the time. Instead, here
we need to test if an ambiguous state can be reached following an
arbitrarily long prefix. This condition cannot be captured directly
by standard Büchi condition in the verification system, which
motivates the use of region automata to test the conditions.

Remark 5. In fact, the verification condition for strong de-
tectability in Theorem 1 can be captured by a computation tree
logic (CTL) model checking problem (Emerson & Clarke, 1982)
over the region automaton of the verification system. Specifically,
starting from an arbitrary state, both the existence of a path to
an ambiguous state and the existence of a cycle containing λ can
be captured by CTL formulae. Then one just needs to check the
reachability of such state with the above two properties, which
again can be captured by CTL formula. Therefore, our condition
in Theorem 1 can be implemented by existing tools as follows.
First build the region automaton of the verification system. Then,
perform a CTL model checking for the above described formula
over the region automaton.

5. Undecidability of weak detectability

In this section, we investigate the verification of weak de-
tectability for timed systems. Unfortunately, we prove that weak
detectability is undecidable by reducing the universality problem,
which is known to be undecidable for timed automata, to the
verification of weak detectability.

Given a timed automaton A, the universality problem asks
whether or not all strings in TW(Σ) can be generated by A,
i.e., decide whether or not we have

TW(A) = TW(Σ).

In Alur and Dill (1994), Alur and Dill showed that the universality
problem is undecidable for timed automata. We will use this
result to show the undecidability of weak detectability for TA.

Given a TA A = (Q , q0, Σ,X , inv, E), we construct a new TA

G = (QG, qini, ΣG,X , invG, EG),

where

• QG = Q ∪̇{qini, qB}, where qint and qB are two new discrete
states;
• qini ∈ QG is the initial discrete state;
• ΣG = Σ∪̇{σo}, where σo /∈ Σ is a new event;
• X is the clock set the same as A;
• invG is the same as inv for states in Q and for states qini and

qB, invariants are defined by: invG(qini) is x ≤ 1, where x ∈ X
is an arbitrary clock in system A, and invG(qB) is true;
• EG is the set of transitions defined by

EG = E ∪ {(qB, σ , true,X , qB) : σ ∈ Σ}∪

{(qini, σo, x = 1,X , q0), (qini, σo, x = 1,X , qB)} (6)

The construction of G is conceptually illustrated in Fig. 4. Intu-
itively, G starts from a new initial state qini and
non-deterministically goes to either the initial state of the original
system A, i.e., q0, or a new state qB, via the same event σo. Here,
we use a new auxiliary event σo /∈ Σ as the initial prefix that
matches the initial conditions of strings in A and strings in TW(Σ).
Specifically, we assign invariant x ≤ 1 to the initial state qini,
where clock x is an arbitrary clock in X . Thus, G can only stay
at state qini for at most 1 time unit. As described in Eq. (6), there

are only two transitions from qini, i.e., (qini, σo, x = 1,X , q0) and
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Fig. 4. Illustration of the construction of G. Edge (⊤, Σ,X ) attached to qB
epresents the set of all edges in {(⊤, σ ,X ) : σ ∈ Σ}.

qini, σo, x = 1,X , qB), which have guard x = 1 and reset all clocks
n X . As a result, only (1, σo) can occur from initial state qini and
he valuation of all clocks are the same after the occurrence of
o. Then, from state q0, G will follow exactly the same dynamic

of A. On the other hand, from state qB, all events in Σ can occur
freely, which actually corresponds to a TA satisfying universality
requirement.

Now, we make the following observations from the construc-
tion of the new system G. First, we note that, starting from state
qB, all timed words ρ ∈ TW(Σ) can be generated. Therefore,
for any timed word (1, σo)ρ, it may end up with discrete state
qB. Similarly, if A is universal, then timed word (1, σo)ρ may
also end up with a state in Q . By assuming that all events in G
re observable, then upon the occurrence of (1, σo)ρ, we cannot
istinguish between state qB from some state in Q . On the other
and, if A is not universal, then there exists a timed word (1, σo)ρ
uch that ρ is not feasible from q0 but is feasible from qB. Since we
ssume all events are observable, we can determine for sure that
he system is at qB upon the occurrence of (1, σo)ρ. Furthermore,
e know the state forever since qB only has self-loops, which
eans that G is weakly detectable. The above observations lead

o the following main theorem.

heorem 2. Weak detectability is undecidable for timed automata.

roof. It suffices to show that the universality problem for
A, which is undecidable, can be reduced to an instance of the
eak detectability verification problem for TA. Specifically, given
timed automaton A = (Q , q0, Σ,X , inv, E) for which we want

o decide whether or not TW(A) = TW(Σ), we construct TA G by
teps aforementioned. Next, we show that TW(A) = TW(Σ) iff G
s not weakly detectable with respect to ΣG.

Suppose that G is weak detectable. Then we know that there
xists a time elapsing ∆ ∈ R≥0 and an infinite run π ∈ Runω(G)
uch that

∀ρ ∈ Pre(ρπ ) : time(ρ) ≥ ∆)[|Reach(P(ρ))| = 1].

ince we assume all events in G are observable, we have
each(P(ρ)) = lastd(ρ). Therefore, there exists ρ = (1, σo)ρ ′ ∈
W(G) such that |lastd((1, σo)ρ ′)| = 1 for some continuation
′. Since qB ∈ lastd((1, σo)ρ ′) and qB /∈ Q , we know that
astd((1, σo)ρ ′) ∩ Q = ∅. This means that ρ ′ /∈ TW(A), i.e., A is
ot universal.
Similarly, if A is not universal, we can find ρ /∈ TW(A).

his means lastd((1, σo)ρ) = {qB}. Furthermore, once the system
eaches qB, it stays forever. Therefore, for any event σ ∈ Σ , we
ave lastd((1, σo)ρ(1, σ )n) = {qB}. Therefore, there exists a time
lapsing ∆ = 1 and an infinite run π = qini(1, σo)[qB(1, σ )]ω ∈
unω(G) such that

∀ρ ∈ Pre(ρπ ) : time(ρ) ≥ ∆)[|Reach(P(ρ))| = |lastd(ρ)| = 1].

his completes the proof. □
 B
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. Verifying delayed detectability

Note that strong detectability and weak detectability are both
oncerned with the current-state estimate of the system. Delayed
etectability, however, is concerned with the delay state esti-
ate. In this section, we show that delayed detectability can also
e effectively verified based on the verification system proposed
n Section 4.1.

Compared with strong detectability, delayed detectability re-
uires that even if we cannot distinguish two current states after
1 time elapsing, this disambiguation should be resolved after

another k2 elapsing from the current instant. This implies that
on-existence of two observational equivalent strings with k2
lapsing from these two indistinguishable states. This observa-
ion leads to the following necessary and sufficient condition
haracterizing delayed detectability.

heorem 3. A timed system A is not (k1, k2)-detectable with respect
o Σo, if and only if, in the region automaton V R(A) of the verification
ystem V (A), there exists a run

= qR0
ρR
0
−→ · · ·

ρR
k1−1
−−−→ qRk1

ρR
k1
−→ · · ·

ρR
k1+k2−1
−−−−−→ qRk1+k2 ,

here ∀0 ≤ i ≤ k1 + k2 : qRi ∈ QR ∧ ρR
i ∈ (ΣR)∗ such that

(i) ∀0 ≤ i ≤ k1 + k2 − 1 : λ ∈ ρR
i ; and

(ii) qRk1 ∈ AMR.

roof. (⇒) Assume that timed system A is not (k1, k2)-detectable.
ccording to Definition 2, we know that the following equation
olds

∃ρ ∈ TW(A))(∃ρ ′ρ ′′ ∈ Pre(ρ))[time(ρ ′) ≥ k1
∧ time(ρ ′′) ≥ k2 ∧ |Reach(P(ρ ′), P(ρ ′′))| ̸= 1]. (7)

hus, there is a run π1 such that word ρπ1 has a prefix ρ ′ρ ′′ satis-
ying time(ρ ′) ≥ k1, time(ρ ′′) ≥ k2 and |Reach(P(ρ ′), P(ρ ′′))| ̸= 1.
orresponding to ρ ′ρ ′′, we can extract the run π ′1π

′′

1 from π1 such
hat ρπ ′1

= ρ ′ and ρπ ′′1
= ρ ′′. By |Reach(P(ρ ′), P(ρ ′′))| ̸= 1,

here exists another run π ′2π
′′

2 such that P(ρπ ′2
) = P(ρ ′), P(ρπ ′′2

) =

(ρ ′′) and lastd(ρπ ′2
) ̸= lastd(ρπ ′1

). Thus, by the second property
f the verification system, there is a run π ′Vπ ′′V ∈ Run(V (A))
uch that P(ρπ ′V

) = P(ρ ′), P(ρπ ′′V
) = P(ρ ′′) and lastd(sπ ′V ) =

lastd(sπ ′1 ), lastd(sπ ′2 )). Because time(ρπ ′V
) = time(ρ ′) ≥ k1 and

ime(ρπ ′′V
) = time(ρ ′′) ≥ k2, event λ occurs for at least k1 times

n ρπ ′V
and for at least k2 times in ρπ ′′V

. In the region automaton

R(A), by Eq. (2), there exists a run π = qR0
ρR
0
−→ · · ·

ρR
k1−1
−−−→

R
k1

ρR
k1
−→ · · ·

ρR
k1+k2−1
−−−−−→ qRk1+k2 such that each ρR

i , where i ∈
0, . . . , k1+k2−1}, contains at least one event λ and the k1th state
R
k1
= ((q1, q2), r) satisfies q1 = lastd(sπ ′1 ) and q2 = lastd(sπ ′2 ). That

s, there exists a run satisfying conditions (i) and (ii).
(⇐) Assume that there is a run π satisfying conditions (i)

nd (ii) in region automaton V R(A). Based on condition (i), we
now that the number of event λ in word ρ ′R = ρR

0 . . . ρR
k1

is
t least k1 and in word ρ ′′R = ρR

k1
. . . ρR

k1+k2−1
is at least k2. By

q. (2), there exists a run π ′Vπ ′′V in V (A) such that utw(ρπ ′V
) =

twR(ρ ′R), utw(ρπ ′′V
) = utwR(ρ ′′R ). By the construction of region au-

omata, the discrete component of last state of sπ ′V is ambiguous,
π ′V

has at least k1 number of λ events and ρπ ′′V
has at least k2 λ

vents, i.e. lastd(sπ ′V ) ∈ AM, time(ρπ ′V
) ≥ k1 and time(ρπ ′′V

) ≥ k2.

y the first property of the verification system, there exist two
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Fig. 5. Verification system V (A3) of timed system A3 . We omit transition (xv =

, λ, {xv}) at each discrete state. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

uns π ′1π
′′

1 , π ′2π
′′

2 ∈ Run(A) such that (i) for two runs π ′1 and
′

2, P(ρπ ′1
) = P(ρπ ′2

) = P(ρπ ′V
), time(ρπ ′1

) = time(ρπ ′2
) ≥ k1

nd lastd(sπ ′1 ) ̸= lastd(sπ ′2 ); (ii) for two runs π ′′1 and π ′′2 , we have

P(ρπ ′′1
) = P(ρπ ′′2

) = P(ρπ ′′V
) and time(ρπ ′′1

) = time(ρπ ′′2
) ≥ k2.

Thus, for the timed word ρπ ′1
ρπ ′′1

, when k1 time units elapse,
we cannot determine the discrete state even considering k2 time
units delayed information, because |Reach(P(ρπ ′1

), P(ρπ ′′1
))| ̸= 1.

Thus, the system is not (k1, k2)-detectable. □

Intuitively, run π = qR0
ρR
0
−→ · · ·

ρR
k1−1
−−−→ qRk1

ρR
k1
−→ · · ·

ρR
k1+k2−1
−−−−−→

qRk1+k2 in Theorem 3 reveals the existence of an ambiguous state
qRk1 which can be reached after at least k1 number of λ event
and from which the run can still execute event λ for at least
k2 times. Ambiguous state qRk1 means that we cannot determine
the current state after k1 time elapsing. Furthermore, the part

qRk1
ρR
k1
−→ · · ·

ρR
k1+k2−1
−−−−−→ qRk1+k2 means that from two different

discrete components in qk1 , there still exist two observation-
equivalent executions having more than k2 time elapsing, that
is, we cannot distinguish the ambiguous discrete components
in qRk1 even with another k2 time units’ information. Therefore.
the existence of a run satisfying conditions (i)–(ii) in Theorem 3
means that the system is not (k1, k2)-detectable.

emark 6. Let us discuss the complexity of checking (k1, k2)-
etectability for a timed system A = (Q , q0, Σ,X , inv, E). Similar

in Remark 2, for any clock x ∈ X , we use cx to denote the maxi-
mum integer c such that x ∼ c ∈ C(X ) is a subformula appearing
in A. As mentioned in Remark 2, the complexity of V R(A) is O(|Q |4·
|XV |! · 2|XV | ·

∏
x∈XV

(2cx + 2)). To check (k1, k2)-detectability for
system A by Theorem 3, we construct V R(A) = (Q R, qR0, ΣR, ER)
and compute the state set list Q0, . . . ,Qk1 , . . . ,Qk1+k2 where Q0 =

{qR0},Qk1 ⊆ AMR and for i ∈ {0, . . . , k1+ k2−1}, Qi+1 = {q ∈ Q R
:

(∃q′ ∈ Qi)(∃ρ ∈ (ΣR)+\(ΣR
\{λ})+)[q ∈ ER(q′, ρ)]}. If set Qk1+k2

is empty, then system A is (k1, k2)-detectable; otherwise it is not
(k1, k2)-detectable. The calculation cost of Qi+1 from Qi is at most
the size of V R(A) and we need to repeat this procedure for k1+k2
times. Thus, verifying (k1, k2)-detectability can also be solved in
polynomial-time in the number of states in V R(A).

Example 6. Consider system A3 shown in Fig. 1(c), where Σo =

{a, d, c}. We claim that system A is not (1, 2)-detectable. To see
this, we first obtain the verification system V (A ) shown in Fig. 5.
3
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Fig. 6. Part of the region automaton V R(A3).

hen, we construct the region automaton V R(A3) of V (A3). Part of
he region automaton V R(A3) is shown in Fig. 6, where we can
ind a run

1 =((1, 1), {x1 = x2 = xv = 0})
ττλu
−−→

((2, 1), {x1 = xv = 0, x2 = 1})
uτaττλ
−−−−→

((4, 4), {0 < x1 = x2 < 1, xv = 0})
ττλ
−−→

((4, 4), {1 < x1 = x2 < 2, xv = 0}),

such that qR1 = ((2, 1), {x1 = xv = 0, x2 = 1}) ∈ AMR. Further-
more, for ρ0, ρ1 and ρ2, each of them contains an event λ. That is,
run π1 satisfies all conditions in Theorem 3 and we can conclude
that A3 is not (1, 2)-detectable. In fact, run π1 corresponds to
the execution in the verification structure V (A2) as highlighted
by red color in Fig. 5. We can extract a timed word ρ =

(1, u)(0.5, a)(1.5, ε) such that Reach((1, u), (0.5, a)(1.5, ε)) =
{1, 2}, time((1, u)) = 1 and time((0.5, a)(1.5, ε)) = 2. That is,
we cannot determine the current state after one time elapsing
event with the assistance of two time units delayed information.

However, since there does not exist a run π = qR0
ρR
0
−→ qR1

ρR
1
−→

qR2
ρR
2
−→ qR3 such that qR2 ∈ AMR and each ρR

i , i ∈ {0, 1, 2} contains at
least event λ, system A3 is (2, 1)-detectable. For example, consider
the run

π2 =((1, 1), {x1 = x2 = xv = 0})
ττλu
−−→

((2, 1), {x1 = xv = 0, x2 = 1})
τaττλ
−−−→

((4, 3), {0 < x1 = x2 < 1, xv = 0}).

Although state qR2 = ((4, 3), {0 < x1 = x2 < 1, xv = 0}) is
ambiguous, there is no path from qR2 that contains event λ.

Finally, we illustrate our approach by a more complex timed
automaton with two clocks and loop structures.
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Fig. 7. An example for timed automaton with 2 clocks.

Example 7. Let us consider timed automaton A4 shown in
Fig. 7(a), which has two clocks, i.e., X = {x, y}, and observable
events Σ = {a, b, c}. We verify both strong detectability and
o
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delayed detectability for A4. First, we construct its verification
system V (A4) as depicted in Fig. 7(b). Then, based on the veri-
fication system V (A4), we compute the region automaton V R(A4),
which is partially shown in Fig. 7(c). Particularly, we can find the
following run

π1 =((1, 1), {x1 = x2 = y1 = y2 = xv = 0})
ττλτ
−−→

((1, 1), {x1 > 1, x2 > 1, y1 > 1, y2 > 1, 0 < xv < 1})
τλτ
−−→

((1, 1), {x1 > 1, x2 > 1, y1 > 1, y2 > 1, 0 < xv < 1})
τλau
−−→ ((3, 2), {x1 = x2 = y1 = y2 = xv = 0}),

such that qR12 = ((3, 2), {x1 = x2 = y1 = y2 = xv = 0}) ∈ AMR

and there exists a cycle as highlighted in Fig. 7(c), where qR5 =
qR10 = ((1, 1), {x1 > 1, x2 > 1, y1 > 1, y2 > 1, 0 < xv < 1}) and
σ6 = λ. Thus, run π1 satisfies the condition in Theorem 1, which
means that A4 is not strong detectable. On the other hand, for any
k1, k2 ∈ N we can find another run

π2 = ((1, 1), {x1 = x2 = y1 = y2 = xv = 0})
ττλτ (τλτ )k1 τλau
−−−−−−−−−→

((3, 2), {x1 = x2 = y1 = y2 = xv = 0})
τbτλτ (aτbτλτττ )k2
−−−−−−−−−−→

((4, 4), {x1 > 1, x2 > 1, y1 > 1, y2 > 1, 0 < xv < 1})

such that state ((3, 2), {x1 = x2 = y1 = y2 = xv = 0}) ∈ AMR.
Therefore, run π2 also satisfies the condition in Theorem 3, which
means that system A4 is not (k1, k2)-detectable for any k1, k2 ∈ N.

7. Conclusion

In this paper, we investigated the verification of detectability
for timed discrete-event systems in the dense-time framework.
We extended three types of classical detectability: strong de-
tectability, weak detectability and delayed detectability to the
timed setting. Specifically, to verify strong detectability, we con-
structed the verification system based on the original system,
and then provided a necessary and sufficient condition for strong
detectability based on region automaton of the verification sys-
tem. Furthermore, we showed that weak detectability is unde-
cidable in the timed setting by reducing the universality problem
for timed automata to the weak detectability verification prob-
lem. Based on the verification system constructed for strong
detectability, we also provided a necessary and sufficient condi-
tion to verify delayed detectability. In the future, we would like
to investigate enforcement of detectability in the timed setting.
Also, we are interested in investigating detectability verification
for discrete-time linear or nonlinear dynamical systems with
continuous state spaces.
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