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Abstract— In this paper, we consider the multi-agent path
planning problem for high-level tasks with finite horizons. In
many situations, there is the need to count how many times a
sub-task is satisfied in order to achieve the overall task. How-
ever, existing temporal logic languages, such as linear temporal
logic, may not be efficient in describing such requirements. To
address this issue, we propose a new temporal logic language
called Counting Time Temporal Logic (CTTL) that extends
linear temporal logic by explicitly counting the number of times
that some tasks are satisfied. To solve the CTTL path planning
problem, we use integer linear programming to encode the
satisfaction of the task. We demonstrate that our approach is
both sound and complete. To validate our results, we present
numerical experiments to show the scalability of the proposed
approach. Furthermore, we provide a simulation case study of a
team of autonomous robots to illustrate the synthesis procedure.

I. INTRODUCTION

Multi-agent systems have found widespread applications
in various fields, including data gathering [1], manufacturing
systems [2] and autonomous warehouses [3], [4]. Tradition-
ally, algorithms for multi-agent coordination problems have
focused on synthesizing a trajectory for each agent to meet
low-level task requirements, such as obstacle avoidance or
target reaching [5], [6]. However, with the rapid development
of cyber-physical systems (CPS), many recent studies have
focused on developing algorithms to solve high-level com-
plex tasks in multi-agent systems. These studies often involve
formal methods, such as temporal logic, to specify task
requirements and ensure correct and efficient coordination
among agents [7]–[9].

The desired high-level requirements in multi-agent path
planning problem can be described using various temporal
logic languages. Linear temporal logic (LTL) is a widely used
formal language in robotics that provides a natural frame-
work to specify desired properties. Many works in multi-
agent path planning have utilized LTL as the specification
language. For instance, some researchers have focused on
finding an optimal infinite trajectory in prefix-suffix form that
satisfies an LTL formula [10]–[13]. Others have considered
planning problems for probabilistic satisfaction of LTL tasks
under transition uncertainties [13], [14]. Controller synthesis
problems for heterogeneous agents subject to graph temporal
logic specifications (GTL) have also been studied [15]. To
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count the number of robots achieving a task, robust trajectory
planning for multi-agent systems is studied under counting
temporal logic (cLTL) [11]. However, most of these works
focus on path planning problems in an infinite horizon, and
the algorithms often depend on specific structural properties
of the solutions, such as the prefix-suffix form of trajectories.

In real-world planning problems, infinite paths are usually
not practical due to limited energy or time constraints. As
a result, considerable attention has been paid in the robotics
research community on finite-horizon task planning prob-
lems. For instance, in [16], the authors proposed a mixed-
integer linear programming-based method to control swarm
robots to achieve specifications specified by spatial temporal
logic (SpaTeL). Additionally, in [17], a decentralized and
probabilistic algorithm is proposed to control agent teams
moving along graph nodes for finite-horizon planning for
GTL. In [18], the authors propose an approach to specify
tasks and synthesize optimal policies for Markov decision
processes under co-safe linear temporal logic (scLTL), which
needs to be satisfied within a finite horizon. Furthermore,
in [19], a general class of LTLf is proposed to describe a
specification for a finite trajectory, which interprets LTL over
finite traces. Based on this interpretation, [20] studies the
finite planning problem when the labeling function assigns
a set of sets of atomic propositions to each state with the
specification being described by LTLf formulae.

In this paper, we propose a new temporal logic called
Counting Time Temporal Logic (CTTL) to address the
challenge of efficiently handling tasks that require counting
how many times a sub-formula has been satisfied within a
finite horizon. CTTL introduces a new temporal operator
called “k-until”, which requires a sub-task to be satisfied
for more than k times before some condition holds. We then
investigate the multi-agent path planning problem using the
proposed CTTL. Our approach is to encode the dynamics of
the agents and CTTL specifications as integer constraints and
propose an integer linear programming (ILP)-based method
to solve the problem. Although the semantics of standard
LTL can also express such a requirement, our experimental
results demonstrate that using the proposed CTTL is much
more efficient for the purpose of path planning compared
with the standard LTL-based approaches.

II. COUNTING TIME TEMPORAL LOGIC PLANNING
PROBLEM

We first define the deterministic transition system (DTS)
to model the dynamics of the agents.
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Definition 1. A DTS T is a five-tuple T = (X,x0, E,Π, L),
where X is the set of all states, x0 is the initial state, E ⊆
X × X is the set of all edges, Π is the set of all atomic
propositions and L : X → 2Π is the labeling function.

A h-path in T with h ∈ Z+ is a finite sequence
ρ = x(1)x(2) · · ·x(h) ∈ X∗ such that x(1) = x0 and
⟨x(i), x(i + 1)⟩ ∈ E,∀i ∈ [h − 1]. We use Ph to denote
the set of all the h-paths in T . In this paper, we consider
an agent team R consisting of N ∈ Z+ agents operating
synchronously in an environment that in consistent of a set
of regions with connectivity constraints. The DTS and h-
path set associated with agent Rn, n ∈ [N ], is denoted
by Tn = (Xn, xn0 , E

n,Π, Ln) and Pnh respectively, which
means that we allow the agents have different dynamics
but with the identical atomic proposition set. Note that
this hypothesis is without lose of generality as we can
always define Π as the union of all Πn. Given N h-paths
ρnh ∈ Pnh with n ∈ [N ], one for each agent, we use
Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩ to denote the team sequence and use
Ph(i) = ⟨ρ1h(i), ρ2h(i), · · · , ρNh (i)⟩ to denote the i-th element
of Ph with i ∈ [h].

We introduce a variant of temporal logic called counting
time temporal logics (CTTL). CTTL is an extension of Linear
Temporal Logic (LTL) and is especially useful for specifying
and reasoning about the completion times of certain tasks
over finite sequences.

Definition 2. A CTTL formula ϕ over a given set of atomic
proposition Π is recursively defined as follows:

ϕ = ⊤ | π | ϕ1 ∧ ϕ2 | ¬ϕ | ⃝ ϕ | ϕ1Ukϕ2, (1)

where π ∈ Π is an atomic proposition, k ∈ Z+ is an index
and ϕ1 and ϕ2 are CTTL formulas.

The symbols ⊤ (true), ∧ (conjunction) and ¬ (negation)
above are standard Boolean operators, while ⃝ (next) and
Uk (k-until) are temporal operators. The above operators can
also induce additional operators such as ϕ1 ∨ϕ2 = ¬(¬ϕ1 ∧
¬ϕ2) (disjunction), ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 (implication),
♢kϕ = ⊤Ukϕ (k-eventually) and □kϕ = ¬♢k¬ϕ (k-always).

CTTL formulas are interpreted over finite sequence from
(2Π)∗, whose semantics over the team sequence are defined
as follows.

Definition 3. Given team sequence Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩,
the satisfaction of CTTL formula ϕ by Ph at instant t with
t ∈ [h], denoted by Ph(t) |= ϕ, is defined recursively as
follows:

• Ph(t) |= ⊤;
• Ph(t) |= π iff π ∈

⋃N
j=1 L(ρ

j
h(t));

• Ph(t) |= ϕ1 ∧ ϕ2 iff Ph(t) |= ϕ1 and Ph(t) |= ϕ2;
• Ph(t) |= ¬ϕ iff Ph(t) ̸|= ϕ;
• Ph(t) |= ⃝ϕ iff t ≤ h− 1 and Ph(t+ 1) |= ϕ;
• Ph(t) |= ϕ1Ukϕ2 iff t ≤ h − k + 1 and ∃t ≤ t1 <

· · · < tk ≤ h,Ph(ti) |= ϕ2,∀i ∈ [k] and ∀t ≤ t′ <
tk,Ph(t′) |= ϕ1.

If Ph(1) |= ϕ, then we say that Ph satisfies ϕ, written

as Ph |= ϕ. Certainly, we can also define the satisfaction
of ϕ by any concrete agent Rn at t according to the above
semantics by defining N = 1, where we write ρnh(t) |= ϕ
for short. Notice that the above semantics for operators ⃝
and Uk are not defined in the full horizon [h], but a subset.
As it is impossible for the team to satisfy the corresponding
formula at other instants. Moreover, note that unlike in LTL
on infinite sequence, here ¬ ⃝ ¬ϕ ̸≡ ⃝ϕ [21]. And when
k = 1, the semantics for all the above three operators are just
the same as the “until”, “eventually” and “always” operators
in LTL.

Overall, we address the problem of multi-agent trajectory
planning in finite sequences under CTTL, which is formally
defined as follows:

Problem 1. Given N agents operating synchronously with
dynamics Tn = (Xn, xn0 , E

n,Π, Ln) with n ∈ [N ], a finite
time domain h ∈ Z+ and a CTTL formula ϕ in forms
of (1), synthesize a team sequence Ph = ⟨ρ1h, ρ2h, · · · , ρNh ⟩
satisfying ϕ, i.e., Ph |= ϕ.

III. SYNTHESIS PROCEDURE

We propose an integer linear programming (ILP) based
method in this section, which is inspired by the concept of
bounded LTL model checking [22]. Our approach involves
encoding the dynamics of the agent team and the CTTL
specifications as a set of ILP constraints.

A. Encoding for the Dynamics of R
Given the DTS Tn = (Xn, xn0 , E

n,Π, Ln) describing the
dynamics of Rn, we first define the transition matrix of Tn as
An ∈ {0, 1}|Xn|×|Xn|, where the (i, j)-th element An(i, j)
of An is defined by

An(i, j) =

{
1, if (xni , x

n
j ) ∈ En,

0, otherwise.

Then, we introduce h binary vectors vn(t) =
[vn1 (t), v

n
2 (t), · · · , vn|Xn|(t)]

′ ∈ {0, 1}|Xn|,∀t ∈ [h], to
represent the t-th state of Rn as follows: ∀i ∈ [|Xn|], we
have

vni (t) =

{
1, if Rn is at xni at instant t,

0, otherwise.

Finally, based on the above transition matrix An and the
binary vectors vn(t), the dynamics of Rn can be captured
as follows: ∀t ∈ [h],{

vn(t+ 1) ≤ (An)′vn(t),

(1n)′vn(t) = 1, vn1 (1) = 1,
(2)

where 1n is the |Xn| dimensional vector with all elements
being 1. Therefore, the first constraint ensures the develop-
ment of the trajectory of Rn must comply with the dynamics;
the second one ensures that Rn can only appear at a state at
any time, while the third one requires that Rn must respect
the initial condition.
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B. Encoding for the CTTL Specifications

Next, we show how to encode the CTTL formula in a
recursive way.

For any atomic proposition π, we first introduce the
following N × h binary variables znπ (t) with n ∈ [N ] and
t ∈ [h] to encode the satisfaction of π by the Rn at instant
t, such that

znπ (t) =

{
1, if ρnh(t) |= π,

0, otherwise.

Then, for any CTTL formula ϕ, we define the following h
binary variables yϕ(t) with t ∈ [h] to encode the satisfaction
of ϕ by R at instant t, such that

yϕ(t) =

{
1, if Ph(t) |= ϕ,

0, otherwise.

Therefore, the satisfaction of ϕ by R can be described by
yϕ(1) = 1.

1) Atomic Proposition π for Rn: For every Rn, we
introduce a binary vector πn = [πn1 , π

n
2 , · · · , πn|Xn|]

′, where
∀i ∈ [|Xn|], we have

πni =

{
1, if π ∈ Ln(xni ),

0, otherwise,

which means that πn encodes the satisfaction of π at Xn.
Then, we give the following equations to describe the satis-
faction of π by Rn at t ∈ [h]:{

(πn)′vn(t) ≥ znπ (t),

(πn)′vn(t) < znπ (t) + 1.
(3)

Note that when Rn is in a state with π at t, the left side of the
second equation is 1, which makes znπ (t) being 1. Otherwise,
the left side of the first equation is 0, making znπ (t) being 0.

2) Atomic Proposition π for R: For R, we give the
following equations to describe the satisfaction of π at
t ∈ [h]:  yπ(t) ≥ ziπ(t),∀i ∈ [N ],

yπ(t) ≤
∑N
i=1 z

i
π(t).

(4)

Note that if any one of the agent Rn satisfies π at t, then
the right side of the first equation is 1, which makes yπ(t)
being 1. Otherwise, the right side of the second equation is
0, making yπ(t) being 0.

Actually, the above equations define the satisfaction of
π by R by the disjunction operation such that yπ(t) =∨N
i=1 z

i
π(t) as defined below.

3) Disjunction ∨: For R with ϕ =
∨I
i=1 ϕi, the following

equations are given to describe the satisfaction of ϕ at t ∈ [h]: yϕ(t) ≥ yϕi
(t),∀i ∈ [I],

yϕ(t) ≤
∑I
i=1 yϕi

(t).
(5)

4) Conjunction ∧: For R with ϕ =
∧I
i=1 ϕi, the follow-

ing equations are given to describe the satisfaction of ϕ at
t ∈ [h]:  yϕ(t) ≤ yϕi

(t),∀i ∈ [I],

yϕ(t) ≥ 1− I +
∑I
i=1 yϕi

(t).
(6)

5) Negation ¬: For R with ψ = ¬ϕ, the following
equation is given to describe the satisfaction of ψ at t ∈ [h]:

yψ(t) = 1− yϕ(t). (7)

6) Next ⃝: For R with ψ = ⃝ϕ, the following equation
is given to describe the satisfaction of ψ:{

yψ(t) = yϕ(t+ 1),∀t ∈ [h− 1],

yψ(h) = 0.
(8)

Note that the above encoding equations from (5) to (8) for
the Boolean and temporal operators are consistent with the
encodings in [11], [22]. However, we still present them here
for the purpose of completeness.

Next, we give the encoding method for the “k-until” op-
erator. For the convenience of narration, when ϕ =

∨I
i=1 ϕi,

we just write yϕ(t) =
∨I
i=1 yϕi

(t) instead of the equations
in (5) and treat the “conjunction” operator as well.

7) k-Until Uk: For R with ϕ = ϕ1Ukϕ2, if k = 1, then
the following equations are given to describe the satisfaction
of ϕ: yϕ(t) = yϕ2(t) ∨

(
yϕ1(t) ∧ yϕ(t+ 1)

)
,∀t ∈ [h− 1],

yϕ(h) = yϕ2
(h).

(9)

If k > 1, we define ϕk = ϕ = ϕ1Ukϕ2, then the following
equations are given to describe the satisfaction of ϕ:

yϕk (t) = yϕ1(t) ∧

((
yϕk−1(t+ 1) ∧ yϕ2(t)

)
∨ yϕk (t+ 1)

)
,

∀t ∈ [h− k],

yϕk (h− k + 1) = yϕ1(h− k + 1) ∧
(
yϕk−1(h− k + 2)∧

yϕ2(h− k + 1)
)
.

yϕk (t′) = 0, ∀t′ ∈ [h] \ [h− k + 1].
(10)

Notice that when k = 1, the encoding (9) for U1 is the same
as the “U” operator in LTL [22]. When k > 1, we further
define k−1 auxiliary formulae from ϕk−1 to ϕ1. If R satisfies
ϕk at t ∈ [h − k], then the first equation requires that R
must satisfy ϕ1 at t and further satisfy one of the following
conditions: 1) satisfying ϕ2 at t and continuing to satisfy
only ϕk−1 at the next instant; 2) no additional constraints at
t, but still needing to satisfy ϕk at the next instant. Another
point to keep in mind is that the Uk operator is only defined
for instants within [h− k+1] according to Definition 3 and
the first equation is only suited for encoding the satisfaction
of ϕk at t ≤ h − k. When t = h − k + 1, the second
condition above is not allowed as there is no chance for R
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to further satisfy ϕk at the next instant h − k + 2. Finally,
as it is impossible for R to satisfy ϕk at other time instants
t′ ∈ [h] \ [h − k + 1], we define yϕk(t′) = 0. Therefore,
by the above recursive equations, yϕk(t) = 1 if and only if
there exists at least k instants t̂ between t and h such that
yϕ2

(k̂) = 1 and before the k-th instant tk that yϕ2
(tk) = 1,

yϕ1
(tk) has always been 1, which means that there exists at

least k instants k̂ in [h] \ [t − 1] such that R satisfies ϕ2
and before the last instant, R always satisfies ϕ1. Therefore,
the above equations (10) are correct and consistent with the
semantics of CTTL.

C. Problem Reformulation as an ILP Problem

Given a CTTL formula ϕ, we use {v, z, y}ϕ and ILP(ϕ)
to denote the sets of all the binary variables and all the con-
straint equations from (2) to (10) created during the encoding
process respectively. Based on {v, z, y}ϕ and ILP(ϕ), we
now reformulate Problem 1 as the following ILP problem:

Find : {v, z, y}ϕ
Subject to : ILP(ϕ), and yϕ(1) = 1.

(11)

Next, we show that the solutions found by (11) is sound
and complete by the following theorem.

Theorem 1. Given h ∈ Z+ and a CTTL formula, there exists
a solution for Problem 1 if and only if there is a solution for
the ILP problem (11).

Therefore, if (11) has a solution, then the solution for
Problem 1 can be synthesized as follows: ∀n ∈ [N ], t ∈
[h], [vni (t) = 1] ⇒ [ρnh(t) = xni ].

Remark 1. It is important to notice that, mathematically
speaking, the proposed CTTL is no more expressive than
the standard LTL. In other words, we can also express the
counting time requirement by LTL formulae. Specifically, for
CTTL formula ϕ = (ϕ1Ukϕ2), we construct an LTL formula
ϕ′ as follows:

ϕ′ = ⟨(ϕ1U(ϕ1 ∧ ϕ2 ∧⃝⟩k−1 + ⟨(ϕ1Uϕ2)⟩+ ⟨)⟩2k−2,

where ⟨∗⟩k−1 represents writing ∗ for k−1 times and A+B
represents writing B after A. For example, for ϕ = ϕ1U2ϕ2,
we can write its equivalent LTL expression by

ϕ′ = (ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1Uϕ2))).

Also for ϕ = ϕ1U3ϕ2, we can write its equivalent LTL

ϕ′ = (ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1U(ϕ1 ∧ ϕ2 ∧⃝(ϕ1Uϕ2))))).

Therefore, any trajectory synthesis problem for CTTL for-
mula can be reduced to an equivalent problem for LTL
formula. However, this reduction process results in a formula
that is linearly larger in size than the original CTTL formula.
In the following section, we will also provide numerical re-
sults that demonstrate the advantages of our CTTL language
over the equivalent LTL formula.

Table 1: Statistics for different number of agents.

N 10 20 50

variable 11362 22500 55674

constraint 13840 27458 67592

time (sec) 4.64 9.03 22.73

Table 2: Statistics for different size of systems.

|Xn| 50 100 200

variable 11362 21362 41362

constraint 13840 23840 43840

time (sec) 4.64 18.69 79.76

IV. EXPERIMENT RESULTS

In this section, we provide a set of experiments to illustrate
our results. All simulations are implemented by Python
3.7 and robot simulation platform V-REP 4.2.0 on a
PC with 64 cores with 3.30 GHz processors and 64 GB of
RAM using PYTHON-MIP [23] to setup the ILP problem and
GUROBI [24] as the underlying ILP solver. The simulation
video is also available1.

A. Numerical Experiments

First, we demonstrate the scalability of our encoding
method by varying several parameters, such as the size
of DTS, the number of agents and the length of planning
horizon. We also illustrate the efficiency of the CTTL by
comparing it with the LTL on reasoning about missions de-
scribing completion times of some tasks. In each experiment,
the DTSs Tn are generated from Erdös-Rényi graphs with
edge probability being 0.75 and the number of every atomic
proposition is set to ⌊ |Xn|

20 ⌋ with their locations being chosen
randomly from Xn. For each set of parameters, we repeated
the experiment for 20 times and recorded the average value
of all experimental data.

We start by investigating the effect of the number of agents
N on running time. We set |Xn| = 50 for all n ∈ [N ] with
h = 20. Consider the following task:

ϕ = (¬bU N
5 a) ∧ (¬cU N

5 b) ∧ ♢
N
5 c ∧□

N
5 ¬d, (12)

which requires to visit a, b and c for at least N
5 times each

in order and visit d at most N
5 − 1 times. We increase N

from 10 to 50 and the statistics are displayed in Table 1. As
shown in the table, all the three parameters increase linearly
with the increase of N .

Then, we investigate the effect of system size |Xn|. We
still use the above task, but set N = 10 and h = 20. The
statistics are shown in Table 2. We can see that both the
number of variables and constraints still increase linearly
with the increase of |Xn|. However, the solving time is
significantly affected by the system size, which seems to
exhibit polynomial growth as |Xn| increases.

1https://github.com/Lv-Peng/CTTL
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Table 3: Statistics for different length of planning horizon.

h 20 50 100

variable 22500 58944 126884

constraint 27458 76742 180482

time (sec) 9.03 24.18 59.79

Table 4: Statistics on comparative experiments between
CTTL and LTL by changing k.

k 10 25 40 50

CTTL

variable 62104 72004 80104 84504

constraint 85904 115604 139904 153104

time (sec) 42.78 53.33 77.25 80.88

LTL

variable 71356 95296 119236 135196

constraint 110180 175880 241580 285380

time (sec) 43.13 81.92 173.48 217.22

Next, we further study the effect of the length of planning
horizon h on running time. In this experiment, we fix
|Xn| = 50 and N = 20 and increase h from 20 to 100.
Besides, note that just increasing the planning horizon might
result in trivial solutions, such that the agents choose to
stay in place for many steps in the trajectory. Therefore, we
also simultaneously increase the complexity of the CTTL
formula. Specifically, we increase h from 20 to 50 and
then to 100. Correspondingly, we simultaneously change all
the parameters in (12) from N

5 to N
2 and then to N

1 . The
statistics are displayed in Table 3. As expected, all the three
parameters increase linearly with the increase of h.

Finally, in order to demonstrate the efficiency of our CTTL
language, we further carry out two additional experiments
to compare the trends of the above parameters when the
specification is given in the form of CTTL formula versus
their equivalent LTL formula as mentioned in Remark 1.
Some parameters are given as follows: N = 10, |Xn| =
50,∀n ∈ [N ] and h = 100.

In the first experiment, consider the following CTTL task:

ϕ = ♢ka ∧ ♢kb ∧ ♢kc ∧ ♢kd.

We increase parameter k above from 10 to 50. For each
value, we construct the equivalent LTL task and use the
encoding method proposed in this paper to solve the two
problems. The statistics are recorded in Table 4.

From Table 4, we can see that regardless of the value of
k, the average value of each parameter solved based on en-
coding CTTL is always smaller than that based on encoding
LTL. As the complexity of the specification increases, the
difference between the execution times of the two languages
becomes more prominent. In other words, the rate at which
the parameters increase for CTTL is much lower than that
for LTL.

In order to further evaluate the scalability of both lan-
guages with respect to the complexity of the specification, we

Table 5: Statistics on comparative experiments between
CTTL and LTL by another way.

ϕ ϕ1 ϕ2 ϕ3 ϕ4

CTTL

variable 58701 67302 75903 84504

constraint 76601 102102 127603 153104

time (sec) 30.72 54.42 67.68 80.88

LTL

variable 71449 92698 113947 135196

constraint 109745 168290 226835 285380

time (sec) 45.83 96.73 134.95 217.22

conducted the second experiment using a different approach
to increase the complexity. We consider the following four
tasks: ϕ1 = ♢50a; ϕ2 = ♢50a ∧ ♢50b; ϕ3 = ♢50a ∧ ♢50b ∧
♢50c; ϕ4 = ♢50a ∧ ♢50b ∧ ♢50c ∧ ♢50d. We re-conduct the
above experiments and the statistics are recorded in Table
5. The data clearly demonstrate the advantages of using the
CTTL language once again.

These results are as expected since the equivalent LTL
formula is always combinatorially much longer than the
CTTL formula, as stated in Remark 1. Therefore, these
numerical results demonstrate the scalability of our encoding
method and the advantage of the CTTL language.

B. Simulation Experiments

Consider a factory as depicted in Fig 1(a) with 35 grid
regions and can be further clarified into two parts, inside
the building (the red regions) and outside the building (the
green and blue regions). For the convenience of narration, we
encode the above grids into 35 states {xi : i ∈ [35]} from
top to bottom and from left to right. There are twelve grids
of interest: x1 (living quarters), x6 (lake), x10 (workshop
1), x11 (finance office), x13 (lounge), x20 (canteen), x23
(warehouse), x24 (workshop 2), x25 (workshop 3), x26
(toilet), x30 (supermarket) and x35 (fire location).

There are two UGVs with G0 being initially placed at
x16 and G1 at x19, and two UAVs with A0 at x5 and A1

at x31, move in this factory. For safety reasons, G0 and
G1 are only allowed to move inside of the building, while
A0 and A1 can only inspect outside of the building to deal
with the emergencies. Moreover, to ensure efficient energy
usage and to prevent any potential collisions, each UAV is
confined to operate within a designated area, the green part
for A0, and the blue part for A1. Both UGVs are capable
of transporting parcels between these grids. Furthermore, the
UAVs have the added capability of addressing other incidents
in addition to parcel delivery, such as extinguishing fires
by fetching water. At any given moment, these four robots
can either choose to move from their current location to
an adjacent grid synchronously, or to remain in the same
place for one unit of time to unload a parcel or address a
fire within their designated regions. It is assumed that they
can immediately unload a parcel or extinguish an ignition
source upon arrival, and two UGVs cannot unload at the
same locations simultaneously due to the space constraints.

Now consider the following tasks: 1) due to insufficient
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(a) The topology of the factory with
two UGVs and two UAVs.

(b) Simulation trajectories for the
two UGVs.

Fig. 1: Scenes and trajectories for the simulation experiment.

parcels left, the UGVs must replenish before delivery by
proceeding to the warehouse; 2) base on the order and
urgency of transportation requests, the two UGVs should
first deliver three parcels to workshop 1, followed by three
parcels to workshop 3 and finally two parcels to workshop
2. Additionally, there are transportation requests for three
parcels from the toilet, two parcels from the finance office,
and two parcels from the lounge respectively; 3) two UGVs
should never enter canteen for food safety; 4) living quarters
purchase two parcels from supermarket and UAVs need to
transport them; 5) UAVs discover two ignition sources at fire
location. They need to first to fetch water from the lake and
then go to the fire location to put out the fire.

By the CTTL language, the above tasks can be formulated
as the following CTTL formula:

ϕ = (¬x10U1x13) ∧ (¬x25U3x10) ∧ (¬x24U3x25)

∧♢2x24 ∧ ♢2x11 ∧ ♢2x13 ∧ ♢3x26 ∧□1¬x20
∧(¬x1U1x30) ∧ ♢2x1 ∧ (¬x35U1x6) ∧ ♢2x35.

(13)

The planning problem is solved in 2.78 s. The simulation
trajectories for the two UGVs are shown in Figure 1(b).
Specifically, after replenishing parcels from x23, G0 first
delivers three parcels to x10, then three parcels to x25, then
two parcels to x24 and finally two parcels to x26. As for G1,
before G0 arriving x26, G1 has already delivered a parcel to
x26 and then it further delivers two parcels to x11 and x13
each. Moreover, for A0, it first proceeds to x6 to fetch water.
Then it goes to x35 twice to extinguish two ignition sources.
Finally, for A1, it picks up two parcels from the supermarket
and unloads them at x1 twice.

V. CONCLUSION

In this paper, we proposed a new temporal logic language
for specifying finite horizon tasks called the counting time
temporal logic (CTTL). Compared with the standard LTL
formulae in finite horizon, CTTL allows us to directly specify
the number of completions for some sub-formulae. We then
solved the multi-agent path planning problem for CTTL
specifications using integer linear programming techniques.
The efficiency of CTTL in describing such counting tasks
was demonstrated by experiment results. In the future, we
plan to investigate the robust planning problem, where some
agents may be subject to execution delays or even failures.
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