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Abstract— In this paper, we investigate the reactive control
synthesis problem for discrete-time dynamic systems under
signal temporal logic (STL) specifications. Our focus is on
addressing this problem within the model predictive control
(MPC) framework, which involves iteratively solving optimiza-
tion problems at each time instant. Traditional MPC controllers
for STL tasks necessitate sampling the system state at every time
instant. To mitigate sensing costs and conserve communication
bandwidth during sensor measurement transmission, we intro-
duce a novel concept termed self-triggered MPC for STL tasks.
Our proposed approach aims to reduce the overall sampling
rate of the system, resulting in considerable energy savings.
We provide case studies to demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Autonomous systems have become one of the key in-
gredients in our society, with applications ranging from
warehouses, healthcare facilities, to manufacturing plants.
Particularly, by equipping with smart sensing modules and
flexible manipulation capabilities, these systems can navigate
intricate environments and perform complex tasks. Decision-
making and task planning are central challenges in the
development of autonomous systems, as they play a crucial
role in ensuring the efficiency, safety, and adaptability of
these systems in various domains.

Recently, there has been a growing interest in applying
formal methods to decision-making in autonomous systems,
especially for high-level tasks; see, e.g., recent surveys
and references therein [1]–[3]. Particularly, Signal Temporal
Logic (STL) is one such formalism that offers a compre-
hensive yet user-friendly approach for specifying spatio-
temporal requirements over real-valued signals. It was ini-
tially developed in [4] as a robust formalism that extends
temporal logic over Boolean domain into the continuous
domain. Recently, STL has been successfully applied to the
analysis and control of many engineering systems including,
e.g., mobile robots [5]–[8], intelligent transportation systems
[9], [10] and smart buildings [11].

In the context of control synthesis for STL tasks, sev-
eral effective methodologies have been developed, which
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can generally be categorized into control barrier function
(CBF)-based approach [12]–[14], learning-based approach
[15]–[19], and optimization-based approach [20]–[24]. The
optimization-based approach, in particular, encodes the sat-
isfaction of STL as Mixed Integer Linear Programming
(MILP) constraints, providing a sound and complete solution
to the control synthesis problem. This approach allows for the
integration of the optimization-based framework within the
receding horizon control framework. In this framework, the
optimization problem for the open-loop trajectory is solved
iteratively at each time instant, and only the first control
input is applied. This integration essentially leads to model
predictive control (MPC) for STL tasks, which provides
a reactive control policy capable of dealing with dynamic
environments [20], [25]–[29].

It is worth noting that in the aforementioned works on
MPC for STL tasks, there is a requirement to recompute the
open-loop optimization problem at each time instant using a
new state measurement as feedback information. However,
this approach can be computationally costly and energy inef-
ficient. Specifically, maintaining constant state measurement
requires deploying sensors continuously, leading to high
energy or bandwidth consumption. In many cases, frequent
re-computation of the plan may be unnecessary. This strategy
can significantly save both energy consumption in sensing
and computational resources.

In this paper, we address the STL control synthesis
problem using model predictive control. However, unlike
existing approaches that necessitate state information acqui-
sition for each time instant, we propose a more efficient
approach known as self-triggered model predictive control.
This approach automatically determines the next time instant
for state sampling and re-computation of the optimization
problem. The contributions of this paper can be outlined as
follows. First, we present the framework of self-triggered
model predictive control for signal temporal logic specifi-
cations. Then we show that our algorithm can ensure the
robustness and can find the largest time interval to the
next observation-prediction operation within the predefined
bound. Finally, a case study of drone control is presented to
demonstrate the efficiency of the proposed framework.

We would like to emphasize that the concept of self-
triggered control has been extensively explored in the litera-
ture for various purposes. For instance, self-triggered control
protocols have been proposed for the stabilization of linear or
nonlinear systems; see, for example, [30], [31]. In the context
of model predictive control, self-triggered mechanisms have
also been investigated to reduce computational burden [32]–
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[34]. However, to our knowledge, the application of self-
triggered mechanisms for control synthesis of STL specifi-
cations has not yet been implemented, and this constitutes
the main contribution of our work.

II. PRELIMINARY

A. System Model

We consider a discrete-time dynamic system of form

xt+1 = f(xt, ut) + wt, (1)

where xt ∈ X ⊆ Rn, ut ∈ U ⊆ Rm, wt ∈ W ⊂ Rn are
the system state, control input and external input or distur-
bance at time instant t, respectively. The system dynamic is
described by a function f : X × U ×W → X . We assume
that the disturbances are unknown but are confined within a
specified compact set W . Additionally, we assume Lipschitz
continuity of the dynamic function f with respect to the state
variable x. That is, for any x, x′∈X and u∈U , there exists a
positive constant L such that |f(x′, u)−f(x, u)| ≤ L|x′−x|.

Suppose that the system is in state xt ∈ X at in-
stant t ∈ Z≥0. Then given a sequence of control inputs
ut:T−1 = utut+1 · · ·uT−1 ∈ UT−t and a sequence of
disturbances wt:T−1 = wtwt+1 · · ·wT−1 ∈ WT−t, the
solution trajectory of the system is a sequence of states
ξf (xt,ut:T−1,wt:T−1) = xt+1 · · ·xT ∈ X T−t such that
xi+1 = f(xi, ui) + wi,∀i = t, · · · , T − 1. The solution of
nominal system is denoted by ξf (xt,uk:T−1) by assuming
that there is no disturbance.

B. Signal Temporal Logic

The formal specifications of the system are described by
STL formulae with bounded-time with the following syntax

Φ ::= ⊤ | πµ | ¬Φ | Φ1 ∧ Φ2 | Φ1U[a,b]Φ2,

where ⊤ represents the true predicate, and πµ is a predicate
whose truth value is determined by the sign of its underlying
predicate function µ : Rn → R, i.e., it holds true if µ(xt) ≥
0; otherwise, it is false. Notations ¬ and ∧ denote the
standard Boolean operators “negation” and “conjunction”,
respectively, which induce “disjunction” and “implication”.
Additionally, U[a,b] represents the temporal operator “until”,
where a, b ∈ R.

STL formulae are evaluated on state sequences. Given a
sequence x, we use notation (x, t) |= Φ to denote the satis-
faction for STL formulae Φ at time instant t. In particular,
we have (x, t) |= πµ if and only if µ(xt) ≥ 0, and (x, t) |=
Φ1U[a,b]Φ2 if and only if there exists t′ ∈ [t + a, t + b]
such that (x, t′) |= Φ2 and for all t′′ ∈ [t, t′], we have
(x, t′′) |= Φ1. Furthermore, we can also introduce temporal
operators “eventually” and “always” by F[a,b]ψ := ⊤U[a,b]ψ
and G[a,b] := ¬F[a,b]¬ψ, respectively.

Apart from the Boolean satisfaction, an STL formula
can also be quantitatively evaluated based on the robust
semantics. Formally, for any STL formula Φ, state sequence
x and time instant k, we denote by ρΦx,k the space-robustness
function the same as [35].

In this paper, we consider the following restricted but
expressive enough fragment of STL formulae:

φ ::= ⊤ | πµ | ¬φ | φ1 ∧ φ2, (2a)

Φ ::= F[a,b]φ | G[a,b]φ | φ1U[a,b]φ
2 | Φ1 ∧ Φ2, (2b)

where φ1, φ2 are formulae of class φ, and Φ1,Φ2 are
formulae of class Φ. Specifically, we only allow the temporal
operators to be applied once for Boolean formula and nested
temporal operators are not allowed.

We express the satisfaction region of predicate πµ as
Hµ = {x∈X | µ(x) ≥ 0}. Then we have H¬φ = X \ Hφ

and Hφ1∧φ2 = Hφ1 ∩ Hφ2 . Also, we introduce a new
temporal operator U′ defined by (x, t) |= Φ1U

′
[a,b]Φ2 iff

∃t′∈ [t+ a, t+ b] such that (x, t′) |= Φ2 and ∀t′′∈ [t+ a, t′]
(x, t′′) |= Φ1. Compared with U, U′ only required that Φ1

holds from instant a before Φ2 holds.
Note that we can express the standard “until” by

Φ1U[a,b]Φ2 = (Φ1U
′
[a,b]Φ2) ∧ (G[0,a]Φ1). Furthermore,

we can also express “eventually” by F[a,b]φ by ⊤U[a,b]φ.
Hereafter, we will only consider two operators G and U′.

C. Fragment of Signal Temporal Logic and Remaining Sets

Formula Φ in the form of Equation (2) can be written as

Φ =

N∧
i=1

Φ
[ai,bi]
i , (3)

where N denotes the total number of sub-formulae and each
Φi is either (i) G[ai,bi]x ∈ Hi or (ii) x ∈ H1

iU
′
[ai,bi]

x ∈
H2

i . Each sub-formula Φ
[ai,bi]
i is effective within time inter-

val [ai, bi]. We denote by I = {1, · · · , N} the index set of
all sub-formulae and by Oi ∈{G,U′} the unique temporal
operator in Φi. Also, we denote by It = {i∈I | ai ≤ t ≤ bi}
the index set of sub-formulae that are effective at instant
t. Similarly, we denote by I<t = {i ∈ I | bi < t} and
I>t = {i∈I | t < ai} the index sets of sub-formulae that
are effective strictly before and after instant t respectively.
We introduce the definition of the remaining set.

Definition 1 (Remaining Sets): Let I ⊆ I be a set of
indices representing those sub-formulae that have not yet
been satisfied. We say I is a remaining set at instant t if
it satisfies the following conditions: (i) I<t ∩ I = ∅; and
(ii) I>t ⊆ I; and (iii) {i∈It | [Oi = G] ∨ [Oi = U′ ∧ t =
ai]} ⊆ I . Furthermore, we denote by It the set of all possible
remaining sets at instant t.

Definition 2 (I-Remaining Robust Feasible Sets):
Given a remaining set I at instant t, we call formula
Φ̂I

t =
∧

i∈I∩It
Φ

[t,bi]
i ∧

∧
i∈I∩I>t

Φ
[ai,bi]
i the I-remaining

formula representing the entire task remained, where Φ
[t,bi]
i

is obtained from Φ
[ai,bi]
i by replacing the starting instant of

temporal operator from ai to t.
We define XI

t as the set of states from which the subse-
quent sub-tasks Φ̂I

t are feasible at instant t in the sense that
no matter what the disturbance sequence is, there exists at
least one control input sequence such that all the subsequent
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STL sub-tasks can be satisfied. Formally, we we have

XI
t =

{
xt∈X

∣∣∣∣∃ut:TΦ91∈UTΦ9t,∀wt:TΦ91∈WTΦ9t,

s.t. xtξf (xt,ut:TΦ91,wt:TΦ91) |= Φ̂I
t

}
.

D. Augmented and Belief States

The system information can be more precisely described
by a tuple (xt, It), which is referred to as the augmented
state at instant t, where xt is the current state and It is
the remaining index set at instant t. Note that, within each
augmented state (xt, It), the advancement of the task It does
not incorporate the influence of the current state xt; instead,
it will counted by the subsequent time instant.

A belief state is a set of augmented states. We denote
by B := 2X×I the set of all possible belief states. Given
a belief state b, each augmented state (xt, It) in it is an
explanation of the possible current status of the system.
Therefore, a belief state essentially captures all possible
explanations based on the partial information.

III. SELF-TRIGGERED MPC ALGORITHM

Our objective is to synthesize a feedback control strategy
such that the sequence generated by the closed-loop system
satisfies the desired STL formula Φ under all possible dis-
turbances. Furthermore, we want to minimize control effort
while maximizing the control performance. Formally, given
state xt at instant t and input sequence ut:TΦ−1, we consider
a generic cost function J : X × UTΦ−t → R.

Our approach for solving the STL control synthesis prob-
lem follows a self-triggered framework of model predictive
control. Specifically, a self-triggered MPC controller works
recursively as follows:
• At a trigger instant ts determined in the previous round,

we observe the current system state and solve a finite-
horizon optimization problem to compute a finite open-
loop sequence of inputs uts:TΦ−1 such that the cost
function is minimized subject to the constraints on both
the system dynamic and the robustness.

• We employed a Trigger-time procedure (introduced in
section IV) to compute the trigger interval τ .

• During the interval τ , the controller will apply uts:ts+τ−1

out of uts:TΦ−1 to the system until ts + τ , at which the
above steps will be repeated.

In this paper, we obtain the open-loop control input
uts:TΦ−1 by enforcing the spatial robustness larger than a
positive number K. Basically, K is a response to the future
unknown disturbance. Larger K implies more robust control
input to some extent, which brings longer trigger interval τ .
However, this will decrease the performance of the solution
as the system tends to operate in a more open-loop fashion.
Furthermore, if K is selected to be too large, then the
optimization problem may have no solution. This is a trade-
off relationship. In other words, user-defined K captures how
robust the open-loop controller is and determines how often
the agent needs to turn on the sensors. We will show the
relation of K and τ by some examples in Section V. The
optimization problem at instant t is formulated as follows.

Algorithm 1: Self-Triggered MPC for STL
Input: STL formula Φ, dynamic system model of

form (1), cost function J and threshold K
Output: Control input ut at each instant t

1 ts ← 0; I ← I, b̂← {(x0, I)}
2 while ts < TΦ do
3 measure current state xts
4 b← refine(b̂, xts)
5 u∗

ts:TΦ−1 ← solve Problem 1 based on ts, xts , K
and Φ̂I

ts , where (xts , I) = b

6 τ, b̂← Trigger-Time(b, ts,u∗
ts:TΦ−1)

7 uts:ts+τ−1 ← u∗
ts:ts+τ−1; # apply to the system

8 ts ← ts + τ

Problem 1 (STL Optimization Problem): Given
system of form (1), a cost function J , current state
xt ∈ X at instant t, the remaining set I at instant t and
I-remaining formula Φ̂I

t at instant t, find an optimal input
sequence u∗

t:TΦ−1 that minimizes the cost function while
guarantees that the robustness of the predicted sequence
xtξf (xt,ut:TΦ−1) is no less than the threshold K. Formally,
we have the following optimization problem

minimize
ut:TΦ−1

J(xt,ut:TΦ−1)

subject to ρ
Φ̂I

t

xtξf (xt,ut:TΦ−1),0
≥ K

ut, ut+1, · · · , uTΦ−1 ∈ U .
Now we present the main algorithm for self-trigger MPC

in Algorithm 1. It works as follows. First, line 1 initializes
the system, where b̂ denotes the current belief state of the
system. Then at each trigger instant, which is determined
by the previous decision round, line 3 takes a new state
observation and line 4 uses this information to refine the
belief state (how the refinement is done will be specified in
the next section). Then based on the refined information of
the system (current state and remaining set), line 5 solves
Problem 1 to obtain control input u∗

ts:TΦ−1. Furthermore,
based on the computed control input, line 6 computes how
long it can be applied in an open-loop fashion, i.e., the trigger
interval τ and predicts the belief state b̂ by Trigger-Time
Procedure, which will also be specified in the next section.
Finally, in lines 7-8, we apply the control input uts:ts+τ−1

and wait until the next trigger instant ts + τ , so that the
algorithm can run recursively.

Remark 1: The open-loop control input ut:TΦ−1 in Prob-
lem 1 can be computed by any of the existing methods for
optimizations-based STL control synthesis; see, e.g., [12],
[21], [23], [26], [29], [36] and they are all compatible with
our self-triggered control framework.

IV. TRIGGER TIME PROCEDURE

The basic MPC approach of solving a finite-horizon opti-
mization at each sampling instant is computational and com-
municational expensive. However, the self-triggered mecha-
nism can adjust the triggered interval according to the change
of inputs. Leveraging our previous work in [37] for online
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monitoring, the triggered interval will be the maximum time
instant satisfying certain properties. In this section, we will
first introduce the update of belief state space where the
procedure is built upon. Then we will define the properties
the triggered interval should satisfy and then present the
whole procedure.

In accordance to the semantics of STL formulae, the index
set should be renewed upon a new state. For each time instant
t, the index update function, denoted as updatet : I ×X →
I, is define by: for any I ⊆ I, x ∈ X , we have

updatet(I, x)=

{
i∈I

∣∣∣∣ [i ∈ IUt ∧ x /∈ H1
i ∩H2

i ]
∨[i ∈ IGt ∧ t ̸= bi] ∨ [i /∈ It]

}
,

where, for each i∈IUt , we have Φi=x∈H1
iU[ai,bi]x∈H2

i .
Intuitively, updatet(I, x) can only change the the index

of sub-formulae that is effective at instant t by removing
the index for sub-formulae with temporal operator U that
have already been fulfilled and sub-formulae with expired
temporal operator G.

Given an augmented state (x, I) at instant t and input u,
we say (x′, I ′) is a successor augmented state of (x, I) from
instants t to t+ 1 if the following conditions are met:

• ∃w ∈ W such that x′ = f(x, u) + w; and
• I ′ = updatet(I, x).
We denote by succt(x, I, u) ∈ B the set of all successor

augmented states of (x, I) from instants t to t + 1 with
input u. In the interval between two trigger instants where no
observation is made, the belief states can only be predicted.

Definition 3 (Belief Predictions with Inputs): We de-
fine the (one-step) belief prediction function from instants
t to t + 1, denoted as predt+1

t : B→ B, by: for any b ∈ B,
u ∈ U , we have predt+1

t (b, u) = ∪
(x,I)∈b

succt(x, I, u).

The multi-step belief prediction function is defined recur-
sively by: for any b∈B and k ≥ 1, we have

predt+k
t (b,ut:t+k−1) = predt+k

t+k−1(bt+k−1, ut+k−1).

bt+k−1 = predt+k−1
t+k−2(bt+k−2, ut+k−2)

· · ·
bt+1 = predt+1

t (b, ut).
Once observations are made at those triggered instants, the

belief states can be refined by the belief refinement function,
denoted as refine : B×X → B, which is defined by: for any
b ∈ B, x ∈ X , we have refine(b, x) = {(x′, I ′) ∈ b | x′ =
x} = b ∩ ({x}×I).

Intuitively, the belief refinement function confines a belief
state to a smaller set that aligns with the current observed
state and is time-independent.

Now let us discuss how the self-triggered MPC controller
determines the trigger interval τ . Given the current belief
state bt and input sequence ut:TΦ−1, it aims to select an
integer τ as the time interval before the next optimization and
observation. During the interval from t to t+ τ , no observa-
tion is made. Consequently, the controller can only predict
the belief state b̂t+τ = predt+τ

t (bt,ut:t+τ−1). Therefore,
the predicted belief state b̂t+τ should satisfy the following
two properties:

• Determinacy: For any two augmented states
(x, I), (x, I ′) ∈ b̂t+τ with the same state component,
we have updatet(I, x) = updatet(I

′, x).
• Safety: For any augmented state (x, I) ∈ b̂t+τ , we have
x∈XI

t .
We require the above two properties for the following

reasons. First, we need to know how far a task has progressed
at time t+ τ . This means we have to figure out if each sub-
formula is satisfied exactly. Essentially, we should precisely
update the remaining set I upon observing xt+τ , which is
the meaning of determinacy. Second, we want to be sure that
the task can still be completed for the next optimization. We
noticed in the earlier discussion that having x ∈ XI

t means
the task could still be finished later. Therefore, we also need
to ensure safety. With these considerations, we can define
the Self-Triggered MPC Problem.

Problem 2 (Self-Triggered MPC Problem): Given sys-
tem in the form of Equation (1), an STL formula Φ,
augmented state (xt, It), upper bound of trigger interval
Tmax and input sequence ut:TΦ−1, maximize trigger interval
τ ∈ {1, . . . , Tmax} under the premise of guaranteeing
Determinacy and Safety, and compute the belief state b̂ at
instant t+ τ .

Now let us discuss how to solve Problem 2. As previously
indicated, the belief state b̂ at time t + τ must satisfy both
Safety and Determinacy. It is important to note that while
it is strictly required for b̂ to satisfy Safety for all instants
between t and t+ τ , it is only necessary for it to fulfill the
requirement of Determinacy at time t + τ . This is because
our primary concern lies in determining the system’s status
at instant t+ τ . Therefore, we denote predt+k

t (bt,ut:t+k−1)
as b̂t+k. Then the largest trigger interval τ can be select is

τ = max{k ≤ Tmax : b̂t+k satisfies safety and determinacy}.
(5)

With the above discussion, we formally introduce the
trigger time computation method in Trigger-Time Procedure
(Procedure 1). In the Trigger-Time Procedure, line 1 ini-
tializes the procedure. Lines 2-9 calculate trigger interval
τ based on Equation (5). Specifically, lines 3-4 predict the
belief state b̂. Line 5 and line 6 check safety and determinacy,
respectively, and we update τ only when the above two
properties are both satisfied. Note that, if safety is violated,
then we return τ and b̂ immediately.

Theorem 1: Given system in the form of Equation (1)
and STL formula Φ, when applying Algorithm 1 and Trigger-
Time procedure, if the optimization problem (4) is feasible
at each ts, then after applying the control input, that is the
concatenation of all input sequences uts:ts+τ−1 in line 7 of
Algorithm 1, we have x0:TΦ |= Φ.

V. CASE STUDIES

In this section, we demonstrate our approach by a case
study. Specifically, the general self-triggered MPC algo-
rithm (1) is conducted in Python 3, and we solve the
STL Optimization Problem (1) by Pyscipopt. The Trigger-
Time Procedure is conducted in Julia with the help of

2550

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 22,2024 at 13:42:40 UTC from IEEE Xplore.  Restrictions apply. 



Procedure 1: Trigger Time
Input: STL formula Φ, dynamic system model in the

form of Equation (1), initial instant ts, upper
bound Tmax, original input sequence
u∗
ts:TΦ−1, and augmented state b

Output: Trigger interval τ and belief state b̂

1 k ← 1; τ ← 0; b̂← b
2 while k < Tmax do
3 b̂← predts+k

ts+k−1(b̂,u
∗
ts+k−1)

4 if b̂ satisfies safety then
5 if b̂ satisfies determinacy then
6 τ ← k

7 else
8 return τ, b̂

9 k ← k + 1

(a) Trajectory when threshold
K=0.001.

(b) Trajectory when threshold
K=0.3.

Fig. 1: Simulation results.

existing package JuliaReach. The communication between
the Python and Julia languages is facilitated by the Pyju-
lia library. All simulations were performed on a com-
puter with an Intel Core i5-12500H CPU and 16 GB of
RAM. All codes are available at https://github.com/
JunyueHuang/ST_MPC-for-STL

We consider a drone for the purpose of gathering air data
at various altitudes. Therefore, we consider its altitude state
z and velocity vz , i.e., x = [z, vz]

⊤ ∈ X = [0, 100]×[−5, 5].
The discrete-time dynamic of the drone is

xt+1 = Axt +But + wt,

where A =

[
1 0.5
0 1

]
, B =

[
0.5
1

]
and U ⊆ [−2.5, 2.5],W ⊆

[−0.05, 0.05]. The drone will start at initial state [6, 0], and
its objective is as follows. First, within time interval [0, 8], the
drone needs to maintain its altitude between [5, 15] and the
altitude within the range [12, 14]. Then, within time interval
[12, 20], the drone should maintain its altitude between
[13, 23] until it arrives at z ∈ [11, 15] at some instant. We set
the time horizon T = 20, and the overall mission of the drone
is captured by the following STL formula: ψ = F[0,8]z ∈
[12, 14]∧G[0,8]z ∈ [5, 15]∧ z ∈ [15, 25]U[13,23]z ∈ [11, 15].

Also, we consider the following the cost function to
minimize the control efforts: J(uts:TΦ−1) =

∑TΦ−1
i=ts

||ui||2.
In Fig. 1(a), we show two possible trajectories generated

by our algorithm, where dots represent the trigger instants

TABLE I: Avg. Trigger intervals with different thresholds.
Tmax = 5 Tmax = 10

Threshold K 0.3 0.15 0.05 0.001 0.3 0.05 0.03 0.001

Avg. Trigger Interval τ̄ 5.0 4.08 3.67 3.31 6.67 5.58 5.16 4.83

and their corresponding states. Here each colored zones
matches predicates in the STL formula. Using regions in the
figure, the STL formula can be rewritten as ψ = F[0,8]A1∧
G[0,8]A2 ∧A3 1U[13,23]A3 2

Here, we start by selecting a small value K = 0.001 and
set Tmax = 5 as the the upper bound of trigger interval τ .
Note that due to the presence of disturbances, the trajectories
for different instances executing the same control policy may
vary. For example, in trajectory 1, during the 4th trigger
instant, the controller realizes that region A3 2 has not been
reached yet. Consequently, it needs to trigger more frequently
in the subsequent instants to ensure that A3 2 can be visited.
However, in trajectory 2, during the 4th trigger instant, the
controller observes that it has already reached region A3 2.
As a result, it only needs to trigger every Tmax time units
in the remaining stage.

In order to examine the impact of the threshold value K on
the performance of the solution, we increase K from 0.001 to
0.3. We illustrate a trajectory generated under the synthesized
MPC controller in Fig. 1(b). It is worth mentioning that this
MPC controller consistently triggers every Tmax time units.
This behavior arises because we chose a considerably large
value for K, resulting in a highly robust plant at each trigger
instant. Consequently, even when operating in an open-loop
manner, the system can maintain the fulfillment of the task
requirements.

However, as we mentioned, a large value of K can poten-
tially lead to a decrease in overall performance. To analyze
this effect more thoroughly, we increment K from 0 to
0.5 gradually. Additionally, we consider two different values
for Tmax. For each fixed combination of K and Tmax, we
execute the synthesized MPC controller 20 times to account
for the influence of disturbances. Subsequently, we calculate
the average trigger intervals and the average cost, which are
presented in Table I and illustrated in Fig. 2, respectively.
As depicted in the figure, when K is relatively large, an
incremental increase in K imposes stricter constraints in the
optimization problem. This can lead to a deterioration in
optimality and subsequently an increase in cost. Conversely,
when K is relatively small, a high cost is also observed. This
is attributed to excessively small values of K compromising
robustness, resembling situations similar to trajectory 2 in
Fig. 1(a), which can result in significant costs.

VI. CONCLUSION

In this paper, we introduced a novel self-triggered model
predictive control framework for control synthesis of signal
temporal logic specifications. Instead of acquiring informa-
tion and performing optimization at each time instant, our
approach can automatically determine the next trigger instant
on demand. We provided a systematic approach for determin-
ing the trigger time such that the STL specification can be
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Fig. 2: Relationship between average cost and threshold K
when Tmax = 5.

enforced while minimizing the observation or computation-
related burden. It is important to note that, in this paper, we
do not explicitly address the issue of recursive feasibility in
the MPC iteration. Generally, the STL optimization problem
could become unsolvable after a few iterations. We plan to
investigate this feasibility issue in our future work.
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[20] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in IEEE Conference on Decision and
Control, pp. 81–87, 2014.

[21] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion plan-
ning from signal temporal logic specifications,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.

[22] V. Kurtz and H. Lin, “A more scalable mixed-integer encoding
for metric temporal logic,” IEEE Control Systems Letters, vol. 6,
pp. 1718–1723, 2021.

[23] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[24] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, pp. 115–140, 2019.

[25] S. S. Farahani, V. Raman, and R. M. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.
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