
Control Engineering Practice 143 (2024) 105782

0

Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Signal temporal logic synthesis under Model Predictive Control: A low
complexity approach
Tiange Yang, Yuanyuan Zou ∗, Shaoyuan Li, Xiang Yin, Tianyu Jia
Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China

A R T I C L E I N F O

Keywords:
Temporal logic
Model predictive control
Move blocking scheme

A B S T R A C T

In this paper, we focus on the challenging problem of model predictive control (MPC) for dynamics systems
with high-level tasks formulated as signal temporal logic (STL). The state-of-art for STL synthesis mainly suffers
from limited scalability with respect to the complexity of the task and the planning horizon, hindering the real-
time implementation of MPC. This work tackles this issue by STL formula reformulation and input blocking.
Specifically, simplifications are applied on disjunctive STL (sub)formulae recursively in the framework of
MPC to limit formula size. We show that the simplified STL can be reformulated into mixed integer linear
programming (MILP) constraints with a modifiable number of binary variables being required. The move
blocking scheme is then employed to further reduce problem complexity by fixing input variables to be
constant over several time intervals. In order to trade off the control performance and computational load,
a blocking structure design with on-line correction is proposed. The extension of the proposed STL-MPC
algorithm to uncertain systems is achieved through STL constraint tightening. Simulations and experiments
show the effectiveness of the proposed algorithm.
1. Introduction

In recent years, increasing attention has been paid to control syn-
thesis under complex temporal logic tasks, where strict time and logic
constraints are imposed on system behaviors (Liu, Trivedi, Yin, &
Zamani, 2022; Tian et al., 2023; Yu, Yin, Li, & Li, 2022). For example,
in a patrol mission, an agent must visit several goal regions in order
and within given time intervals, always avoid obstacles, and choose one
of the charging stations to charge the battery before entering the
terminal region. Temporal logic specifications, such as signal temporal
logic (STL) (Maler & Nickovic, 2004), have proven to be adept at
expressing these intricate system properties. STL was initially devel-
oped for monitoring the expected behavior of physical systems. As a
predicate-based logic, STL allows the descriptions of strict time and
logic properties on both continuous and hybrid systems. STL also offers
diverse quantitative semantics, referred to as robustness, to quantify
the extent to which a property is satisfied (or violated) with real
values. STL thus has been widely applied to several types of dynamical
systems to integrate complex high-level task descriptions with the low-
level dynamics, ranging from robotics, industrial systems, and traffic
networks (Buyukkocak, Aksaray, & Yazıcıoğlu, 2021; Liu, Wu, Dai, &
Lin, 2020; Patil, Hashimoto, & Kishida, 2022).

STL synthesis refers to finding a control policy such that the re-
sulting trajectory of the underlying system satisfies the STL formula

∗ Corresponding author.
E-mail address: yuanyzou@sjtu.edu.cn (Y. Zou).

while minimizing a given cost. One classical approach is to encode
the satisfaction of the specified STL formula into mixed integer linear
programming (MILP) constraints (Raman et al., 2014). This method
is both sound (any solution found by the method will satisfy the STL
formulae) and complete (if there exists a satisfying solution, the method
will find it). However, since the encoding introduces at least one
binary variable for each predicate at each time step, the resulting MILP
problem has exponential computational complexity with respect to the
formula horizon. Despite this complexity issue, the MILP-based method
has been widely used in temporal logic synthesis with moderate formu-
lae size and achieved good control performance (Farahani, Majumdar,
Prabhu, & Soudjani, 2018; Rodionova, Lindemann, Morari, & Pappas,
2022; Sahin, Nilsson, & Ozay, 2020). Efforts have been directed toward
reducing the size of MILP problems. A more efficient MILP encoding
for STL was designed in Kurtz and Lin (2022) with only a logarithmic
number of binary variables being required. In Sun, Chen, Mitra, and Fan
(2022), the complexity caused by nonlinear system behaviors was low-
ered by designing formula-satisfied piece-wise linear reference paths
and a corresponding tracking controller. These methods guarantee
soundness but still face scalability challenges with lengthy and intri-
cate STL formulae. To avoid MILP encoding entirely, novel techniques
including robustness-based optimizations (Haghighi, Mehdipour, Bar-
tocci, & Belta, 2019; Lindemann & Dimarogonas, 2019), reachability
967-0661/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.conengprac.2023.105782
Received 25 June 2023; Received in revised form 24 October 2023; Accepted 7 No
vember 2023

https://www.elsevier.com/locate/conengprac
http://www.elsevier.com/locate/conengprac
mailto:yuanyzou@sjtu.edu.cn
https://doi.org/10.1016/j.conengprac.2023.105782
https://doi.org/10.1016/j.conengprac.2023.105782
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2023.105782&domain=pdf


Control Engineering Practice 143 (2024) 105782T. Yang et al.

r
T
t
i
r

2

2

s

𝜙

w

t

t
G
t
𝐹
t
a
f

𝐺

𝐹

𝜙

w

t
o
a
r
d
𝜉
s
e

A
i
f

2

𝑥

w
t
d
c
𝑁
o
S
e

h
𝑁
1
t
W

P
c
e
s
c

s

analysis (Yu & Dimarogonas, 2021), control barrier functions (Linde-
mann & Dimarogonas, 2018) and learning-based approaches (Puranic,
Deshmukh, & Nikolaidis, 2021) were employed to derive satisfying
system runs with high computational efficiency. However, compared
with the MILP encoding, the above-mentioned methods usually lack
completeness due to the existence of approximations, so that a feasible
solution cannot be guaranteed even if one exists.

Model predictive control (MPC) is a powerful online optimization
technique (Bai, Li, & Zou, 2021; Garcia, Prett, & Morari, 1989; Huang,
Zheng, & Li, 2022; Xu, Suleman, & Shi, 2023). Due to the ability to cope
with strict constraints and complex environments, MPC is an appropri-
ate framework for STL synthesis, and the aforementioned MILP-based
and robustness-based approaches can be employed for online problem-
solving (Zhou, Yang, Zou, Li, & Fang, 2022; Zhou, Zou, Li, Li, & Fang,
2022). Owing to the existence of temporal and logical properties, the
control with STL formulae is historically dependent, that is, previous
choices of control actions can impose constraints on the rest of the
path. Therefore, STL-MPC is mainly implemented in a shrinking horizon
manner (Farahani et al., 2018) to realize historical trajectory tracking:
the optimization window is always the whole formula horizon and
would not shift with time, and the size of control inputs to be optimized
is reduced by one at each time step. However, the size of the required
optimization window would grow with the formula horizon and cause
significant scalability issues.

Motivated by the discussions above, this paper focuses on STL
synthesis via MILP and achieves efficient online computations in the
framework of shrinking horizon MPC. First, simplifications on STL
(sub)formulae are investigated to limit task size. We formally summa-
rize the rules for computing binary variables required for STL encoding,
which are then used to guide the formula simplification process. We
illustrate that the simplified STL can be reformulated as MILP con-
straints, necessitating a modifiable number of binary variables. The
input blocking technique (Shekhar & Manzie, 2015; Son, Oh, Kim, &
Lee, 2020), which can reduce the problem complexity by constraining
groups of adjacent-in-time input variables to have the same value, is
then introduced into STL-MPC to further enhance the computational
efficiency. Considering both the task completion and computational
costs, the blocking structure is initialized offline by solving a pre-
designed mixed integer programming (MIP). Slight block corrections
are executed during MPC implementation with feasibility guarantees.
The control performance of the whole low complexity STL-MPC algo-
rithm is formally analyzed, and the extension to uncertain systems is
achieved through STL constraint tightening.

This paper is organized as follows. In Section 2, we introduce
STL and formulate the STL-MPC problem. The formula simplification
method is proposed in Section 3 and the blocking scheme is further
investigated for STL synthesis in Section 4. Section 5 presents the whole
low complexity STL-MPC algorithm, analyzes the control performance,
and extends the results to uncertain systems. The proposed algorithm
is validated in Section 6 through simulations and experiments. We
conclude this paper in Section 7.

Notation: Throughout this paper, R𝑛 denotes the n-dimensional real
space. N denotes the set of non-negative integers. For a positive integer
𝑐, N≥𝑐 indicates the set of integers not less than 𝑐 and N≤𝑐 indicates
the set of non-negative integers not greater than 𝑐. The notation 𝟏𝑛
epresents an 𝑛 × 1 vector of ones. 𝐼𝑛 denotes the 𝑛 × 𝑛 identity matrix.
he bracket ⌈𝑎⌉ indicates the ceiling function of 𝑎 ∈ R. ⊗ represents
he Kronecker product. For a random variable 𝑋, we use E[𝑋] to denote
ts expectation. The cardinality of a set 𝛺 is denoted by |𝛺|. (𝑘 + 𝑖|𝑘)
epresents a prediction of a variable 𝑖 steps from time 𝑘.

. Preliminaries and problem formulation

.1. Signal temporal logic

The temporal logic tasks of systems can be captured by STL, whose
yntax is defined in a Backus–Naur form (Knuth, 1964) as

∶∶= 𝜇|¬𝜇|𝜙 ∧ 𝜑|𝜙 ∨ 𝜑|𝐺 𝜙|𝐹 𝜙|𝜙𝑈 𝜑, (1)
2

[𝑎,𝑏] [𝑎,𝑏] [𝑎,𝑏]
here 𝜙 and 𝜑 are all STL formulae; 𝜇 indicates an atomic predicate,
which is defined through a predicate function 𝛼 ∶ R𝑛 → R, i.e., 𝜇 is
rue if and only if 𝛼(𝑥) ≥ 0, 𝑥 ∈ R𝑛; ¬, ∧, and ∨ are Boolean operators

negation, conjunction, and disjunction, respectively; [𝑎, 𝑏] is a closed
ime interval with 𝑎, 𝑏 ∈ N and 𝑎 ≤ 𝑏; 𝐺, 𝐹 and 𝑈 are temporal operators
lobally, Finally, and Until, respectively. Specifically, 𝐺[𝑎,𝑏]𝜙 indicates

hat 𝜙 must always be true during the time interval [𝑎, 𝑏] in the future;
[𝑎,𝑏]𝜙 indicates that 𝜙 should become true at some time instants during
he time interval [𝑎, 𝑏] in the future; and 𝜙𝑈[𝑎,𝑏]𝜑 requires that 𝜙 must
lways be true until 𝜑 becomes true during time interval [𝑎, 𝑏] in the
uture. Based on the following facts,

[𝑎,𝑏]𝜙 =
⋀

𝑘′∈[𝑎,𝑏]
𝐹[𝑘′ ,𝑘′]𝜙, (2)

[𝑎,𝑏]𝜙 =
⋁

𝑘′∈[𝑎,𝑏]
𝐹[𝑘′ ,𝑘′]𝜙, (3)

𝑈[𝑎,𝑏]𝜑 =
⋁

𝑘′∈[𝑎,𝑏]
(𝐹[𝑘′ ,𝑘′]𝜑 ∧

⋀

𝑘′′∈[0,𝑘′]
𝐹[𝑘′′ ,𝑘′′]𝜙), (4)

e divide all STL formulae given by (1) into three categories as follows:
(i) Predicates: 𝜇, ¬𝜇;
(ii) Conjunctive formulae: ⋀𝑟

𝑖=1 𝜙𝑖, 𝐺[𝑎,𝑏]𝜙;
(iii) Disjunctive formulae: ⋁𝑟

𝑖=1 𝜙𝑖, 𝐹[𝑎,𝑏]𝜙, 𝜙𝑈[𝑎,𝑏]𝜑.
The length of an STL formula 𝜙, denoted by 𝑙𝑒𝑛(𝜙), is the number of

he least time steps in the future that is needed to verify the satisfaction
f 𝜙 at the current time, which can be recursively computed as in Belta
nd Sadraddini (2019). Denote 𝜉 = 𝑥(0)𝑥(1)… as a discrete-time system
un, which is a sequence of system state 𝑥. A run 𝜉 satisfies 𝜙 at time 𝑘,
enoted by (𝜉, 𝑘) ⊧ 𝜙, if sequence 𝑥(𝑘)𝑥(𝑘+1)… satisfies 𝜙. Accordingly,
satisfies 𝜙, denoted by 𝜉 ⊧ 𝜙, if (𝜉, 0) ⊧ 𝜙. Note that to verify the

atisfaction of 𝜙 with respect to 𝜉, the length of system run 𝜉 should be
qual to or larger than 𝑙𝑒𝑛(𝜙).

ssumption 1. We assume that the STL formulae 𝜑 are time-bounded,
.e., 𝑙𝑒𝑛(𝜑) < ∞, and the related predicate functions 𝛼 are all affine
unctions.

.2. Shrinking horizon MPC problem formulation

In this paper, we consider the following discrete-time linear system:

(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (5)

here 𝑥(𝑘) ∈ R𝑑𝑥 , 𝑢(𝑘) ∈ R𝑑𝑢 are the system state and control input at
ime instant 𝑘, respectively, and 𝐴 and 𝐵 are matrices of appropriate
imension. Denote 𝐮𝑁 (𝑘) = [𝑢T(𝑘|𝑘),… , 𝑢T(𝑁−1|𝑘)]T as a control vector
onsisting of the predicted control inputs from time step 𝑘 to time step
− 1. Given an initial state 𝑥(𝑘) and a control vector 𝐮𝑁 (𝑘), one can

btain a state sequence (𝜉, 𝑘) = 𝑥(𝑘)𝑥(𝑘 + 1|𝑘)… 𝑥(𝑁|𝑘) based on (5).
ince (𝜉, 𝑘) is determined by 𝑥(𝑘) and 𝐮𝑁 (𝑘), we rewrite it into a more
laborative way as 𝜉(𝑥(𝑘),𝐮𝑁 (𝑘)) with a slight abuse of notation.

Considering the historical dependence of STL synthesis, shrinking
orizon MPC framework is employed in this paper. For a fixed constant
∈ N≥1, define 𝐮𝐹𝑢𝑙𝑙

𝑁 (𝑘) = [𝑢T(0), 𝑢T(1),… , 𝑢T(𝑘− 1), 𝑢T(𝑘|𝑘),… , 𝑢T(𝑁 −
|𝑘)]T, where 𝑢(0),… , 𝑢(𝑘−1) are fixed as obtained control inputs up to
ime 𝑘−1, and the remaining 𝑢(𝑘|𝑘),… , 𝑢(𝑁−1|𝑘) are to be determined.

e then formulate the STL-MPC synthesis problem as follows.

roblem 1. Given system (5), STL task 𝜑, initial state 𝑥(0), and a
onstant 𝑁 ≥ len(𝜑), find the control input 𝑢(𝑘), which is the first
lement of the vector 𝐮𝑁 (𝑘), for the system at each time step 𝑘 by
olving the following optimization problem, where 𝐽 is a user-defined
ost function:

min
𝐮𝑁 (𝑘)

𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘)) (6)

. t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (6a)

𝜉(𝑥(0),𝐮𝐹𝑢𝑙𝑙(𝑘)) ⊧ 𝜑, (6b)
𝑁



Control Engineering Practice 143 (2024) 105782T. Yang et al.

[

i

𝜑

w
i
i

b
[
a
t
d
b
g
i
a
s

g

s
w
t
𝑚
t
1

Note that some input and state physical constraints can be consid-
ered as a special case of STL and incorporated into constraint (6b). For
example, an input constraint ‖𝑢(𝑘)‖∞ ≤ ℎ, ℎ ∈ R,∀𝑘 ∈ [0, 𝑁] can be
reformulated into an STL formula 𝐺[0,𝑁](ℎ − ‖𝑢‖∞ ≥ 0). As mentioned
earlier, many mature solvers exist for Problem 1, but most of them
suffer from limited scalability in terms of the complexity and the length
of 𝜑. Therefore, our primary goal is to realize more computationally
efficient online problem-solving even under long and complex STL
formulae.

3. STL simplification and reformulation

In this section, we present an STL simplification method to reduce
the complexity of online optimizations. To provide context, we begin
by briefly introducing a state-of-the-art MILP-encoding method for STL
as follows.

MILP encoding for STL (Kurtz & Lin, 2022): The satisfaction of STL
formulae can be encoded into MILP constraints. The main idea is that
for a formula 𝜙, a continuous variable 𝑞𝜙𝑘 ∈ [0, 1] is introduced such that
𝑞𝜙𝑘 = 1 if the satisfaction of 𝜙 is enforced and 𝑞𝜙𝑘 ∈ [0, 1) otherwise. To
achieve this, the continuous variables are related to a set of constraints,
which can be generated recursively as follows:

(i) MILP encoding for predicates: For a predicate 𝜇 = {𝛼(𝑘) ≥ 0},
continuous variable 𝑞𝜇𝑘 is introduced. The MILP constraints can be
designed as follows such that 𝑞𝜇𝑘 = 1 enforces the satisfaction of 𝜇 at
time 𝑘, where 𝐿 ∈ R is a sufficiently large positive number:

− 𝛼(𝑥(𝑘)) ≤ 𝐿(1 − 𝑞𝜇𝑘 ).

(ii) MILP encoding for conjunctive formulae: For 𝜙 =
⋀𝑟

𝑖=1 𝜙𝑖,
continuous indicators 𝑞𝜙𝑘 , 𝑞𝜙𝑖𝑘 , 𝑖 = 1,… , 𝑟 are employed, and the cor-
responding constraints are designed as

𝑞𝜙𝑘 ≤ 𝑞𝜙𝑖𝑘 ,∀𝑖 = 1,… , 𝑟. (7)

In this way, 𝑞𝜙𝑘 = 1 can enforce 𝑞𝜙𝑖𝑘 = 1, 𝑖 ∈ [1, 𝑟] and therefore enforces
the satisfaction of the corresponding sub-formula 𝜙𝑖. For Globally op-
eration 𝜑 = 𝐺[𝑎,𝑏]𝜙, the following linear constraints can be constructed
similarly based on (2), such that 𝑞𝜑𝑘 = 1 enforces the satisfaction of 𝜙
between future time steps 𝑘 + 𝑎 to 𝑘 + 𝑏:

𝑞𝜑𝑘 ≤ 𝑞𝜙𝑘+𝑘′ , ∀𝑘
′ = 𝑎,… , 𝑏. (8)

(iii) MILP encoding for disjunctive formulae: For 𝜙 =
⋁𝑟

𝑖=1 𝜙𝑖, the
continuous variables 𝑞𝜙𝑘 , 𝑞𝜙𝑖𝑘 , 𝑖 = 1,… , 𝑟 are employed, which subject to

1 − 𝑞𝜙𝑘 , 𝑞
𝜙1
𝑘 ,… , 𝑞𝜙𝑟𝑘 ] ∈ 𝑆𝑂𝑆1. (9)

Here 𝑆𝑂𝑆1 denotes vectors that contain exactly one nonzero element,
with that element being equal to 1. Consequently, if 𝑞𝜙𝑘 = 1, it
implies that at least one sub-formula 𝜙𝑖 within 𝜙 is enforced to be
satisfied. The detailed MILP encoding for (9) can be found in Vielma
and Nemhauser (2011), which requires ⌈log2(𝑟 + 1)⌉ binary variables.
Given the statements provided in (3) and (4), the encoding for Finally
and Until operations can be similarly constructed, and is omitted here
due to space considerations.

Applying the MILP encoding rules described above, we can encode
disjunctive formulae using a logarithmic number of binary variables,
while predicates and conjunctive formulae can be encoded without
binary variables. The number of binary variables required for the
encoding of 𝜑, denoted as 𝑁𝜑, is summarized in Table 1. An illustrative
example of MILP encoding is provided below.

Example 1. Consider STL formula 𝜑 = 𝜙1 ∧ 𝜙2 with 𝜙1 = 𝐹[1,15]𝜇1 and
𝜙2 = 𝐺[3,6]𝜇2. Given system run 𝜉, the MILP encoding for 𝜉 ⊧ 𝜑 can be
constructed as follows:

(i) First, the continuous variables 𝑞𝜑0 , 𝑞𝜙10 and 𝑞𝜙20 are employed to
ndicate the satisfaction of 𝜑, 𝜙1 and 𝜙2, respectively, and are subject
3

to constraints as in (7). s
Table 1
Number of required binary variables for the MILP encoding of STL formulae.

STL formula The number of required binary variables

𝜑 = 𝜇 𝑁𝜑 = 0

𝜑 = ¬𝜇 𝑁𝜑 = 0 +𝑁𝜇 = 0

𝜑 =
⋁𝑟

𝑖=1 𝜙𝑖 𝑁𝜑 = ⌈log2(𝑟 + 1)⌉ +
∑𝑟

𝑖=1 𝑁𝜙𝑖

𝜑 =
⋀𝑟

𝑖=1 𝜙𝑖 𝑁𝜑 =
∑𝑟

𝑖=1 𝑁𝜙𝑖

𝜑 = 𝐺[𝑎,𝑏]𝜙 𝑁𝜑 = (𝑏 − 𝑎 + 1)𝑁𝜙

𝜑 = 𝐹[𝑎,𝑏]𝜙 𝑁𝜑 = ⌈log2(𝑏 − 𝑎 + 2)⌉ + (𝑏 − 𝑎 + 1)𝑁𝜙

𝜑 = 𝜙1𝑈[𝑎,𝑏]𝜙2 𝑁𝜑 = ⌈log2(𝑏 − 𝑎 + 2)⌉ +
∑𝑘+𝑏

𝑘′=𝑘+𝑎[𝑁𝜙2
+ (𝑘′ − 𝑘)𝑁𝜙1

]

(ii) For 𝜙1, the continuous variables 𝑞𝜇1𝑘 , 𝑘 = 1,… , 15 are used to
indicate the satisfaction of 𝜇1 from time 1 to 15, and ⌈log2(15 + 1)⌉
binary variables are then employed to realize the SOS1 encoding for
Finally operation.

(iii) For 𝜙2, the continuous variables 𝑞𝜇2𝑘 , 𝑘 = 3,… , 6 are introduced
to indicate the satisfaction of 𝜇2 from time 3 to 6, and the Globally
operation is then encoded based on (8).

Based on the above encoding, if we set 𝑞𝜑0 = 1, the satisfaction of
is enforced with 𝜉. The number of binary variables involved in the

encoding can be calculated as 𝑁𝜑 = 𝑁𝜙1 +𝑁𝜙2 = ⌈log2(15 + 1)⌉+ 0 = 4.

To further limit the required number of binary variables for dis-
junctive formulae, we propose an STL simplification method outlined
below. We note that the simplification method described in this section
is non-exhaustive, i.e., there may be other approaches applicable to this
problem.

First, for an STL formula defined by (1), we determine the valid
time instants for all of its (sub)formulae on the global time scale.
Here, the valid time instants of a (sub)formula indicate the moments
in time when the (sub)formula should be satisfied, and the global
time scale refers to the real-world timeline, as opposed to the relative
time requirements [𝑎, 𝑏] defined in the STL syntax (1). To facilitate
the explanation, time instants on the global timeline are denoted by
𝑡 in the following discussion. Here is a straightforward example of
determining valid time instants for (sub)formulae. Consider the formula
(𝜉, 𝑡) ⊧ 𝐺[𝑎,𝑏]𝜇. With the following equivalences:

(𝜉, 𝑡) ⊧ 𝐺[𝑎,𝑏]𝜇 ⇔ 𝜉 ⊧ 𝐹[𝑡,𝑡](𝐺[𝑎,𝑏]𝜇) ⇔ 𝜉 ⊧
⋀

𝑡′∈[𝑡+𝑎,𝑡+𝑏]
𝐹[𝑡′ ,𝑡′]𝜇,

e can obtain that formula 𝐺[𝑎,𝑏]𝜇 should be satisfied at global time
nstant 𝑡, and its sub-formulae 𝜇 should be satisfied during global time
nterval [𝑡 + 𝑎, 𝑡 + 𝑏].

Considering the binary variable calculation rules provided in Ta-
le 1, our goal is to decrease the number of valid sub-formulae 𝜙𝑖, 𝑖 ∈
1, 𝑟] in ⋁𝑟

𝑖=1 𝜙𝑖 and reduce the length of valid time interval for 𝐹[𝑎,𝑏]𝜙
nd 𝜙1𝑈[𝑎,𝑏]𝜙2 during the shrinking horizon MPC implementation. To
his end, an ascending time set 𝑘 = {𝑡1, 𝑡2,…}, 𝑡𝑖 ∈ N, 𝑡𝑖 ∈ [𝑘,𝑁] is
esigned in global time scale at each optimization time step 𝑘. The
asic idea of the simplification is that, from the perspective of the
lobal time scale, only the fragments of disjunctive (sub)formulae that
ntersect with time set 𝑘 are valid. Given an STL formula 𝜑, a signal 𝜉,
nd the current time set 𝑘, the specific simplification procedure under
hrinking horizon MPC is summarized as follows.

(i) Obtain the valid time instants of all (sub)formulae of 𝜑 on the
lobal time scale.

(ii) For disjunctions ⋁𝑟
𝑖=1 𝜙𝑖 in 𝜑: Suppose that ⋁𝑟

𝑖=1 𝜙𝑖 should be
atisfied by signal 𝜉 at global time instant 𝑡, i.e., 𝜉 ⊧ 𝐹[𝑡,𝑡](

⋁𝑟
𝑖=1 𝜙𝑖) (here

e omit other sub-formulae that exist in 𝜑 to focus on the handling of
he disjunctions). If 𝑡 ∈ 𝑘, the number of valid sub-formulae remains
. If 𝑡 ∉ 𝑘, the valid sub-formulae are reduced to those satisfied at

ime 𝑘 − 1, denoted by 𝜙𝑖, 𝑖 ∈ ∨
𝑘 , where ∨

𝑘 = {𝑖 ∣ 𝜉(𝑥(0),𝐮𝐹𝑢𝑙𝑙∗
𝑁 (𝑘 −

)) ⊧ 𝐹[𝑡,𝑡]𝜙𝑖} ⊆ {1, 2,… , 𝑟} represents the collection of indicators for
ub-formulae satisfied based on the solution obtained at time 𝑘 − 1.



Control Engineering Practice 143 (2024) 105782T. Yang et al.
(iii) For Finally (sub)formulae 𝐹[𝑎,𝑏]𝜙 and Until (sub)formulae
𝜙1𝑈[𝑎,𝑏]𝜙2 in 𝜑: Suppose that Finally (sub)formula 𝐹[𝑎,𝑏]𝜙 should be
satisfied by signal 𝜉 at global time instant 𝑡, which can be expressed
as 𝜉 ⊧ 𝐹[𝑡,𝑡](𝐹[𝑎,𝑏]𝜙) or equivalently 𝜉 ⊧ 𝐹[𝑡+𝑎,𝑡+𝑏]𝜙 (here we omit other
sub-formulae that exist in 𝜑 to focus on the handling of the Finally
operations). If the interval [𝑡 + 𝑎, 𝑡 + 𝑏] does not intersect with 𝑘,
the valid time interval for the Finally formula is reduced to 𝑘−1 =
{𝑡 ∣ 𝜉(𝑥(0),𝐮𝐹𝑢𝑙𝑙∗

𝑁 (𝑘 − 1)) ⊧ 𝐹[𝑡,𝑡]𝜙} ⊆ {𝑡 + 𝑎, 𝑡 + 𝑎 + 1,… , 𝑡 + 𝑏}, which
corresponds to the set of global time instants where 𝜙 is satisfied based
on the solution at time 𝑘 − 1. If [𝑡 + 𝑎, 𝑡 + 𝑏] intersects with 𝑘, the set
of valid time instants is updated to  𝐹

𝑘 = ([𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘) ∪ 𝑘−1.
Similarly, the simplification for the Until formula 𝜙1𝑈[𝑎,𝑏]𝜙2 can be
performed, with 𝑘−1 = {𝑡 ∣ 𝜉(𝑥(0),𝐮𝐹𝑢𝑙𝑙∗

𝑁 (𝑘 − 1)) ⊧ 𝜙1𝑈[𝑡,𝑡]𝜙2} and
 𝑈
𝑘 = ([𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘) ∪𝑘−1.

Based on the above statements, the simplified form of 𝜑 under the
time set 𝑘, denoted by 𝑅𝑘[𝜑], is summarized as follows.

Definition 1 (Simplified STL Formulae).

𝑅𝑘[𝐹[𝑡,𝑡]𝜇] = 𝐹[𝑡,𝑡]𝜇 = 𝛼(𝑥(𝑡)) ≥ 0

𝑅𝑘[𝐹[𝑡,𝑡](¬𝜇)] = 𝐹[𝑡,𝑡](¬𝜇) = −𝛼(𝑥(𝑡)) ≥ 0

𝑅𝑘[𝐹[𝑡,𝑡](
⋀

𝑖∈[1,𝑟]
𝜙𝑖)] =

⋀

𝑖∈[1,𝑟]
𝑅𝑘[𝐹[𝑡,𝑡]𝜙𝑖]

𝑅𝑘[𝐹[𝑡,𝑡](
⋁

𝑖∈[1,𝑟]
𝜙𝑖)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⋁

𝑖∈∨
𝑘

𝑅𝑘[𝐹[𝑡,𝑡]𝜙𝑖], if 𝑡 ∉ 𝑘

⋁

𝑖∈[1,𝑟]
𝑅𝑘[𝐹[𝑡,𝑡]𝜙𝑖], if 𝑡 ∈ 𝑘

𝑅𝑘[𝐹[𝑡,𝑡](𝐺[𝑎,𝑏]𝜙)] =
𝑡+𝑏
⋀

𝑡′=𝑡+𝑎
𝑅𝑘[𝐹[𝑡′ ,𝑡′]𝜙]

𝑅𝑘[𝐹[𝑡,𝑡](𝐹[𝑎,𝑏]𝜙)] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⋁

𝑡′∈𝑘−1

𝑅𝑘[𝐹[𝑡′ ,𝑡′]𝜙], if [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 = ∅

⋁

𝑡′∈ 𝐹
𝑘

𝑅𝑘[𝐹[𝑡′ ,𝑡′]𝜙], if [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 ≠ ∅

𝑅𝑘[𝐹[𝑡,𝑡](𝜙1𝑈[𝑎,𝑏]𝜙2)] =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

⋀

𝑡′∈𝑘−1

(𝑅𝑘[𝐹[𝑡′ ,𝑡′]𝜙2] ∧
𝑡′
⋀

𝑡′′=𝑡
𝑅𝑘[𝐹[𝑡′′ ,𝑡′′]𝜙1]),

if [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 = ∅

⋁

𝑡′∈ 𝑈
𝑘

(𝑅𝑘[𝐹[𝑡′ ,𝑡′]𝜙2] ∧
𝑡′
⋀

𝑡′′=𝑡
𝑅𝑘[𝐹[𝑡′′ ,𝑡′′]𝜙1]),

if [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 ≠ ∅.

The simplifications presented above transform the original formula
𝜑 into a new formula 𝑅𝑘[𝜑]. It is evident that the language of 𝑅𝑘[𝜑] is
a subset of the language of 𝜑. In other words, for a given system run 𝜉,
we have:

𝜉 ⊧ 𝑅𝑘[𝜑] ⇒ 𝜉 ⊧ 𝜑.

After obtaining a simplified formula 𝑅𝑘[𝜑], we can encode its satisfac-
tion into MILP constraints. The number of required binary variables for
the encoding of 𝑅𝑘[𝜑], denoted by 𝑁̄𝑘

𝜑, can be calculated based on the
rules given in Table 1, and is summarized recursively as in Table 2.
It can be deduced that, the MILP encoding for the simplified formula
𝑅𝑘[𝜑] requires 𝑂(log2(|𝑘| + 1)) binary variables at each time step 𝑘.
In contrast, without formula simplification, the encoding results in
𝑂(log2(𝑁−𝑘+1)) binary variables. Since |𝑘| is a customizable constant,
our method offers computational speed advantages, particularly when
task length 𝑁 is large.

Remark 1. The design of time set 𝑘 affects the similarity between
simplified tasks and the original tasks, thereby exerting a considerable
impact on control optimality. Some heuristic methods for the design
of  are provided in the following. One approach involves situating
4

𝑘

Table 2
Number of required binary variables for the MILP encoding of simplified STL
formulae under shrinking horizon MPC.

STL formula The Number of required binary variables for 𝑅𝑘[𝜑]

𝜑 = 𝐹[𝑡,𝑡]𝜇 𝑁̄𝑘
𝜑 = 0

𝜑 = 𝐹[𝑡,𝑡](¬𝜇) 𝑁̄𝑘
𝜑 = 0

𝜑 = 𝐹[𝑡,𝑡](
⋁𝑟

𝑖=1 𝜙𝑖) 𝑁̄𝑘
𝜑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⌈log2(𝑟 + 1)⌉ +
∑

𝑖∈[1,𝑟]
𝑁̄𝑘

𝐹[𝑡,𝑡]𝜙𝑖
, 𝑡 ∈ 𝑘

⌈log2(|∨
𝑘 | + 1)⌉ +

∑

𝑖∈∨
𝑘

𝑁̄𝑘
𝐹[𝑡,𝑡]𝜙𝑖

, 𝑡 ∉ 𝑘

𝜑 = 𝐹[𝑡,𝑡](
⋀𝑟

𝑖=1 𝜙𝑖) 𝑁̄𝑘
𝜑 =

𝑟
∑

𝑖=1
𝑁̄𝑘

𝐹[𝑡,𝑡]𝜙𝑖

𝜑 = 𝐹[𝑡,𝑡](𝐺[𝑎,𝑏]𝜙) 𝑁̄𝑘
𝜑 =

𝑡+𝑏
∑

𝑡′=𝑡+𝑎
𝑁̄𝑘

𝐹[𝑡′ ,𝑡′ ]𝜙

𝜑 = 𝐹[𝑡,𝑡](𝐹[𝑎,𝑏]𝜙) 𝑁̄𝑘
𝜑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⌈log2(|𝑘−1| + 1)⌉ +
∑

𝑡′∈𝑘−1

𝑁̄𝑘
𝐹[𝑡′ ,𝑡′ ]𝜙

, [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 = ∅

⌈log2(| 𝐹
𝑘 | + 1)⌉ +

∑

𝑡′∈ 𝐹
𝑘

𝑁̄𝑘
𝐹[𝑡′ ,𝑡′ ]𝜙

, [𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 ≠ ∅

𝜑 = 𝐹[𝑡,𝑡](𝜙1𝑈[𝑎,𝑏]𝜙2) 𝑁̄𝑘
𝜑 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⌈log2(|𝑘−1| + 1)⌉ +
∑

𝑡′∈𝑘−1

(
∑

𝑡′′∈[𝑡,𝑡′ ]
𝑁̄𝑘

𝐹[𝑡′′ ,𝑡′′ ]𝜙1
+ 𝑁̄𝑘

𝐹[𝑡′ ,𝑡′ ]𝜙2
),

[𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 = ∅

⌈log2(| 𝑈
𝑘 | + 1)⌉ +

∑

𝑡′∈ 𝑈
𝑘

(
∑

𝑡′′∈[𝑡,𝑡′ ]
𝑁̄𝑘

𝐹[𝑡′′ ,𝑡′′ ]𝜙1
+ 𝑁̄𝑘

𝐹[𝑡′ ,𝑡′ ]𝜙2
),

[𝑡 + 𝑎, 𝑡 + 𝑏] ∩ 𝑘 ≠ ∅

𝑘 at the initial horizon of the optimization to maintain fine-grained
control actions at the outset, as stated in Section 6.1. Alternatively,
one can consider placing and adjusting 𝑘 during active periods of
disjunctive (sub)formulae to enhance control flexibility. Additionally,
when there is a high demand for computing speed, removing all binary
variables from the optimization problem is preferable. In such cases,
𝑘 can be chosen as an empty set at each time step 𝑘, enabling
the reduction of MILP constraints to linear constraints on continuous
variables. Theoretical support for the design of time set 𝑘 is a nontrival
research subject in ongoing and future work.

4. Shrinking horizon move blocked MPC for STL synthesis

To further enhance computational efficiency, we incorporate the
move blocking scheme into the STL-MPC synthesis in this section. To
make the paper more self-contained, we first give a brief introduction
of move blocking mechanism in the following.

4.1. Move blocking scheme

Move blocking is a kind of input parameterization that obtain lower
complexity optimization problem formulations by keeping the inputs
constant over a specified number of consecutive time steps, referred
to as blocks. A schematic illustration of input blocking is shown in
Fig. 1. The structure of the blocking is defined by a block matrix 𝑆.
An admissible blocking matrix is one that allows the representation

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏1
𝑏2

⋱
𝑏𝑀𝑆

⎤

⎥

⎥

⎥

⎥

⎦𝑁×𝑀𝑆

=
𝑀𝑆
⨁

𝑞=1
𝑏𝑞 ,

where 𝑀𝑆 ∈ N≥1 represents the number of blocks in 𝑆, which is also
referred to as the degrees of freedom, indicating the number of free
inputs; 𝑏𝑞 = 𝟏𝑙(𝑆,𝑞), 𝑞 ∈ [1,𝑀𝑆 ] denotes a block vector with 𝑙(𝑆, 𝑞) ∈ N≥1
indicating the length of the 𝑞th block in 𝑆. If a block has only one
element, i.e., 𝑙(𝑆, 𝑞) = 1, it is considered to have no blockage. Denote

blocking position set of 𝑆 as {𝑠1, 𝑠2,… , 𝑠𝑀𝑆

}, where 𝑠𝑞 ∈ N≤𝑁 , 𝑞 ∈



Control Engineering Practice 143 (2024) 105782T. Yang et al.

p

[
v

=

I
v
𝑢
r

t
u

𝜙

T
b
a
a
s
B
s

t
b
b

d
h
i
c
t
S

D

𝐹

w
i
S
𝑘


5
s

f
c
a
i

5

m
d

s

Fig. 1. A schematic illustration of move blocking: 𝑁 = 10,𝑀𝑆 = 6, and the block
osition set is {1, 2, 4, 5, 8, 9}.

1,𝑀𝑆 ] indicates the position where the 𝑞th block begins. The input
ariables can then be blocked with the blocking matrix by

[𝑢T(0), 𝑢T(1),… , 𝑢T(𝑁 − 1)]T

(𝑆 ⊗ 𝐼𝑑𝑢 )[𝑢̄
T(0), 𝑢̄T(1),… , 𝑢̄T(𝑀𝑆 − 1)]T.

(10)

n this way, an optimization problem subject to (10) can solve for 𝑀𝑆
ariables 𝑢̄(0), 𝑢̄(1),… , 𝑢̄(𝑀𝑆 − 1) instead of 𝑁 original input variables
(0), 𝑢(1), … , 𝑢(𝑁 − 1). Let (𝑁,𝑀𝑆 ) denote a set-valued map, which
eturns all the admissible blocking matrices that subdivide 𝑁 elements

into 𝑀𝑆 blocks. A relaxation of a blocking matrix 𝑆 is a blocking matrix
in which blocks can be amalgamated to 𝑆. The set of all the relaxations
of 𝑆 is denoted by

(𝑆) = {𝑆′ ∈ R𝑁×𝑀𝑆′ ∣ ∃𝑄 ∈ (𝑀𝑆′ ,𝑀𝑆 ) ∶ 𝑆 = 𝑆′𝑄,𝑀𝑆′ ≥ 𝑀𝑆}.

The identity blocking matrix (i.e. no blockage) is a relaxation of any ad-
missible blocking matrix, and each blocking matrix is also a relaxation
of itself.

4.2. Input blocking for STL synthesis

When incorporating the blocking scheme into temporal logic con-
trol, limiting the degrees of freedom of control inputs can have an
impact on system control performance. Consider the following example.

Example 2. In this scenario, we have a single integrator agent with
two states representing the agent’s position and two control inputs for
movement along two directions. The agent is required to visit G1 within
ime step 1 to 2, visit G2 before time step 12, and always stay away from
nsafe areas Obs. The STL task can then be formulated as

= 𝐹[1,2](𝑥 ∈ G1) ∧ 𝐹[0,12](𝑥 ∈ G2) ∧ 𝐺[0,12](𝑥 ∉ Obs). (11)

he trajectories of the agent with full degrees of freedom (no input
locking) and with 3 degrees of freedom (blocking position set {1, 2, 7})
re shown in Fig. 2. One can see that under the blocking scheme, the
gent needs to follow a longer path and exert more control efforts to
atisfy the given STL task compared to the full degree of freedom case.
esides, since there are strict time and logic constraints in STL tasks, the
election of the number of blocks and their positions are also crucial.

Motivated by the discussions in Example 2, the following optimiza-
ion problem, denoted as 𝑃0, is formulated to determine an initial
locking matrix 𝑆0. This matrix aims to balance the computational
urden, a specified cost function 𝐽 , and ensure STL formula satisfaction:

min
𝐮𝑁 (0)

𝐽 (𝑥(0),𝐮𝑁 (0)) + 𝜆𝐽𝑏(𝐮𝑁 (0)), (12)

s. t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (12a)

𝜉(𝑥(0),𝐮𝑁 (0)) ⊧ 𝜑, (12b)

where 𝜆 denotes a weighting scalar and 𝐽𝑏(𝐮𝑁 (0)) =
∑𝑁−2

𝑡=0 |sign(
∑𝑑𝑢

𝑖=1 |𝑢𝑖(𝑡 + 1) − 𝑢𝑖(𝑡)|)| indicates blocking cost. Here 𝑢𝑖
denotes the 𝑖th component of 𝑢, and 𝐽𝑏 is minimized to decrease the
number of changes in input variables. By performing MILP encoding
on the STL constraint (12b), 𝑃0 can be transformed into an MIP
problem. Solving 𝑃0 yields an initial optimal input vector 𝐮∗𝑁 (0) =
[𝑢∗T(0), 𝑢∗T(1),… , 𝑢∗T(𝑁 − 1)]T, and the initial blocking matrix 𝑆 can
5

0

Fig. 2. Workspace under STL task (11). The figure displays agent trajectories using
the full degree of freedom input variables (dotted line) and the 3 degrees of freedom
input variables (solid line). Both trajectories meet the requirements of task (11), but
they differ in terms of control efforts.

be derived from the structure of 𝐮∗𝑁 (0). Specifically, adjacent decision
variables in time that share the same value are constrained to create
a block. This allows us to deduce the positions of these blocks and
construct 𝑆0 accordingly. Note that as extra binary variables are intro-
uced to model the blocking costs 𝐽𝑏(𝐮𝑁 (0)), solving 𝑃0 may result in a
igh computational burden. It is acceptable for the initialization since
t can be carried out offline. For the subsequent online optimizations,
andidate block matrices are provided, as outlined in Definition 2, and
he feasibility of these candidate block matrices is further analyzed in
ection 5.2.

efinition 2 (Candidate Block Matrix). Define the block shifting func-
tion 𝐹 (𝑆), 𝑆 ∈ (𝑁,𝑀𝑆 ) as

(𝑆) =

⎧

⎪

⎨

⎪

⎩

[0(𝑁−1)×1 𝐼𝑁−1]𝑆, 𝑙(𝑆, 1) > 1

[0(𝑁−1)×1 𝐼𝑁−1]𝑆

[

01×(𝑀𝑆−1)

𝐼𝑀𝑆−1

]

, 𝑙(𝑆, 1) = 1

hich essentially removes the first row of 𝑆 and also the first column
f 𝑙(𝑆, 1) = 1 to ensure admissibility of the resulting blocking matrix.
uppose that the blocking matrix used at time 𝑘 is 𝑆𝑘. Then, at time
+ 1, the candidate block matrices are those belonging to the set
(𝐹 (𝑆𝑘)).

. Low complexity model predictive control algorithm for STL
ynthesis

In this section, we summarize the proposed STL-MPC algorithm and
urther analyze its feasibility. We also show that through the use of STL
onstraint tightening, the algorithm is applicable to uncertain systems,
nd the STL task completion in the presence of bounded disturbances
s guaranteed.

.1. The proposed algorithm

Building upon the analysis presented in Sections 3 and 4, we for-
ulate the move blocked shrinking horizon MPC problem at time 𝑘,
enoted by 𝑃𝑘, as follows:

min
𝐮̄𝑀𝑆𝑘

(0)
𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘)) (13)

. t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (13a)

𝜉(𝑥(0),𝐮𝐹𝑢𝑙𝑙
𝑁 (𝑘)) ⊧ 𝑅𝑘[𝜑], (13b)

𝐮𝑁 (𝑘) = (𝑆𝑘 ⊗ 𝐼𝑑𝑢 )𝐮̄𝑀𝑆𝑘
(0), (13c)



Control Engineering Practice 143 (2024) 105782T. Yang et al.

r

o
c
p
a

T
a
o

P
m
(
f
e
e
(

t
b
𝑘
(

v
𝑁
d
𝛯
t
[
…
t
b
𝑘

P
G
i
o
u

s

w
t
e

f
t
s
a
s

𝑧

w
𝐴
a
a
𝑧
𝑧
t
𝑥
t
𝑒

𝑒

W
n

L
B

where 𝐮̄𝑀𝑆𝑘
(0) = [𝑢̄T(0), 𝑢̄T(1),… , 𝑢̄T(𝑀𝑆𝑘

− 1)]T indicates the reduced
input vector from 𝐮𝑁 (𝑘), and 𝑆𝑘 ∈ (𝐹 (𝑆𝑘−1)) denotes the block matrix
employed at time 𝑘. The overall low complexity STL-MPC algorithm is
summarized as in Algorithm 1.
Algorithm 1: Low Complexity Model Predictive Control Algo-
ithm for STL Synthesis
Input: System dynamics (5), initial state 𝑥(0), STL task 𝜑, and the

global map of the environment.
1 Initialization: Solve 𝑃0 to obtain 𝑆0 and 𝐮∗𝑁 (0);
2 while 𝑘 ≤ 𝑁 − 1 do
3 Decide 𝑘 and construct 𝑅𝑘[𝜑] based on Definition 1;
4 Update (𝐹 (𝑆𝑘−1)) and choose 𝑆𝑘 ∈ (𝐹 (𝑆𝑘−1));
5 Solve 𝑃𝑘 and apply 𝑢∗(𝑘);
6 𝑘 ← 𝑘 + 1;
7 end
Output: Optimal solutions 𝑢∗(0),… , 𝑢∗(𝑁 − 1).

5.2. Performance analysis

Given that the satisfaction of 𝑅𝑘[𝜑] implies the satisfaction of the
riginal formula 𝜑, we have that any solution to 𝑃𝑘, 𝑘 = 0,… , 𝑁 − 1
an guarantee the satisfaction of 𝜑, which implies the soundness of the
roposed algorithm. The feasibility of the algorithm is further analyzed
s follows.

heorem 1. If there exists a feasible solution for problem 𝑃0 at time 𝑘 = 0
nd the system is controlled according to Algorithm 1, then all subsequent
ptimization problems 𝑃𝑘 are feasible for 𝑘 > 0.

roof. Suppose that the initial solution 𝐮∗𝑁 (0) and the initial block
atrix 𝑆0 are obtained at time 𝑘 = 0. The feasibility of STL constraint

13b) and block constraint (13c) at time 𝑘 = 1 is analyzed in the
ollowing. For STL constraints, the simplified STL formula 𝑅1[𝜑] is
mployed in problem 𝑃1, while the non-simplified STL formula 𝜑 is
mployed in problem 𝑃0. According to Definition 1, only disjunctive
sub)formulae, including ⋁𝑟

𝑖=1 𝜙𝑖, 𝐹[𝑎,𝑏]𝜙, and 𝜙1𝑈[𝑎,𝑏]𝜙2, are simplified.
For (sub)formulae ⋁𝑟

𝑖=1 𝜙𝑖, the valid formulae are chosen as ⋁𝑟
𝑖=1 𝜙𝑖 or

⋁

𝑖∈∨𝑘
𝜙𝑖, both of them include the sub-formulae satisfied by 𝐮∗𝑁 (0) at

ime 𝑘 = 0. For 𝐹[𝑎,𝑏]𝜙, the valid time interval is chosen as 𝑘−1 or  𝐹
𝑘 ,

oth of them consist of the time instants that 𝜙 are satisfied at time
= 0 (The case for Until (sub)formulae is similar). In other words, the

sub)formulae that are satisfied by 𝐮∗𝑁 (0) at time 𝑘 = 0 are all involved
in the simplified one 𝑅1[𝜙] at time 𝑘 = 1. Consequently, the control
vector

𝐮̃𝑁 (1) = [𝑢∗T(1|0),… , 𝑢∗T(𝑁 − 1|0)]T,

which is constructed by removing the first element in 𝐮∗𝑁 (0), directly
satisfies (13b) at time 𝑘 = 1. We proceed to assess the feasibility of
the block constraint (13c). At time 𝑘 = 1, according to Definition 2,
𝐹 (𝑆0) eliminates the first row of 𝑆0, indicating that the control input
𝑢∗(0) has been executed at time 𝑘 = 1. Moreover, the block relaxation
(𝐹 (𝑆0)) essentially relaxes the blocking requirements compared with
𝐹 (𝑆0). Thus, the form of the control vector 𝐮̃𝑁 (1) fits all the block
structures in (𝐹 (𝑆0)), implying that constraint (13c) in problem 𝑃1
is satisfied with 𝐮̃𝑁 (1) for any 𝑆1 ∈ (𝐹 (𝑆0)). From the above, 𝐮̃𝑁 (1)
satisfies constraints (13b) and (13c), and thus is a feasible solution for
𝑃1. A similar deduction can be made for 𝑘 > 1. We can then conclude
that

𝐮̃𝑁 (𝑘) = [𝑢∗T(𝑘|𝑘 − 1),… , 𝑢∗T(𝑁 − 1|𝑘 − 1)]T,

which is constructed from the solution at time 𝑘−1, is always a feasible
solution for problem 𝑃𝑘 at each time step 𝑘, i.e., optimization problems
6

𝑃𝑘 are feasible for all 𝑘 > 0. ■ p
5.3. Extension to uncertain case

We then extend the proposed algorithm to include robustness to
bounded disturbances. Consider the following discrete-time system
with additive uncertainties:

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) +𝑤(𝑘), (14)

where disturbances 𝑤(0), 𝑤(1),… are assumed to be independent and
identically distributed (i.i.d), zero mean stochastic variables with
bounded, compact and convex support  .

Let 𝐰𝑁 (𝑘) = [𝑤T(𝑘|𝑘),… , 𝑤T(𝑁 − 1|𝑘)]T denote a disturbance
ector consisting of the disturbances from time step 𝑘 to time step
− 1. Given an initial state 𝑥(𝑘), a control vector 𝐮𝑁 (𝑘), and a

isturbance vector 𝐰𝑁 (𝑘), one can obtain a stochastic state sequence
(𝑥(𝑘),𝐮𝑁 (𝑘),𝐰𝑁 (𝑘)) = 𝑥(𝑘)𝑥(𝑘 + 1|𝑘)… 𝑥(𝑁|𝑘) based on (14). Define

he disturbance vector over the whole planning horizon as 𝐰𝐹𝑢𝑙𝑙
𝑁 (𝑘) =

𝑤T(0), 𝑤T(1),… , 𝑤T(𝑘−1), 𝑤T(𝑘|𝑘),… , 𝑤T(𝑁−1|𝑘)]T, where 𝑤(0), 𝑤(1),
, 𝑤(𝑘 − 1) are fixed as the observations of disturbances. Similarly to

he nominal case, we employ the simplified STL formulae and the move
locking scheme, and the robust online optimization problem at time
can be constructed as follows.

roblem 2. Consider the uncertain system (14) and an STL task 𝜑.
iven an initial state 𝑥(0) and a constant 𝑁 ≥ len(𝜑), find control

nput 𝑢(𝑘) for the system at each time step 𝑘 by solving the following
ptimization problem, so that the resulting trajectory satisfies 𝜑 against
ncertainties:

min
𝐮̄𝑀𝑆𝑘

(0)
E[𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘))] (15)

. t. 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) +𝑤(𝑘), (15a)

𝛯(𝑥(0),𝐮𝐹𝑢𝑙𝑙
𝑁 (𝑘),𝐰𝐹𝑢𝑙𝑙

𝑁 (𝑘)) ⊧ 𝑅𝑘[𝜑], (15b)

𝐮𝑁 (𝑘) = (𝑆𝑘 ⊗ 𝐼𝑑𝑢 )𝐮̄𝑀𝑆𝑘
(0), (15c)

here 𝐽 is a stage cost function with expectation taken with respect
o disturbance 𝐰𝑁 (𝑘), and we assume that E[𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘))] can be
valuated analytically, which is the case for quadratic 𝐽 .

Due to the existence of disturbances and the complex form of STL
ormulae, the exact feasible set of the optimizations cannot be charac-
erized directly. In the following, we aim to transform Problem 2 into a
equence of solvable deterministic optimization problems imposed on
nominal system. Specifically, the nominal system corresponding to

ystem (14) is given as

(𝑘 + 𝑖|𝑘) = 𝐴𝐾𝑧(𝑘 + 𝑖 − 1|𝑘) + 𝐵𝑣(𝑘 + 𝑖 − 1|𝑘), (16)

here 𝑧, 𝑣 denote the nominal state and input, respectively; 𝐴𝐾 =
+ 𝐵𝐾 with 𝐾 being a feedback gain such that 𝐴𝐾 is stable. Given

n initial nominal state 𝑧(𝑘) = 𝑥(𝑘) and a nominal input vector 𝒗𝑁 (𝑘)
t time 𝑘, we can obtain a prediction of nominal path 𝜉(𝑥(𝑘), 𝒗𝑁 (𝑘)) =
(𝑘)𝑧(𝑘 + 1|𝑘)… 𝑧(𝑁|𝑘) based on (16). Note that as the nominal state
(𝑘) is consistently updated to match the actual state 𝑥(𝑘) at each
ime step 𝑘, we consider 𝜉(𝑥(0), 𝒗𝐹𝑢𝑙𝑙

𝑁 (𝑘)) to represent the sequence
(0)… 𝑥(𝑘)𝑧(𝑘 + 1|𝑘)… 𝑧(𝑁|𝑘). Choose 𝑢(𝑘) = 𝐾𝑥(𝑘) + 𝑣(𝑘) and define
he error between the actual system (14) and the nominal one (16) as
(𝑘 + 𝑖|𝑘) = 𝑥(𝑘 + 𝑖|𝑘) − 𝑧(𝑘 + 𝑖|𝑘), we have:

(𝑘 + 𝑖 + 1|𝑘) = 𝐴𝐾𝑒(𝑘 + 𝑖|𝑘) +𝑤(𝑘 + 𝑖|𝑘), 𝑒(𝑘|𝑘) = 0. (17)

e then transform constraint (15b) into deterministic one imposed on
ominal system (16). Before proceeding, we give the following lemma.

emma 1. All the STL formulae given by (1) can be reformulated into the
oolean combination (conjunctions and disjunctions) over multiple atomic

redicates.



Control Engineering Practice 143 (2024) 105782T. Yang et al.
Proof. For (sub)formulae 𝜇, ¬𝜇, 𝜇1 ∨ 𝜇2, and 𝜇1 ∧ 𝜇2, the conclusion is
trivial. For (sub)formulae with temporal operations 𝐹[𝑎,𝑏]𝜙, 𝐺[𝑎,𝑏]𝜙, and
𝜙1𝑈[𝑎,𝑏]𝜙2, we draw the conclusion based on the facts listed in (2)–(4)
with 𝐹[𝑘′ ,𝑘′]𝜇 = {𝛼(𝑥(𝑘′)) ≥ 0}. ■

Let notation 𝐁𝜑
𝑚∈[1,𝑀𝜑]

(𝜇𝑚), 𝑀𝜑 ∈ N≥1, 𝑚 ∈ N≥1 indicate the Boolean
combination of 𝑀𝜑 predicates 𝜇1,… , 𝜇𝑀𝜑

transformed from 𝜑. Denote
𝛼𝑚(𝑥) = 𝐶𝑚𝑥(𝑘 + 𝑖𝑘𝑚|𝑘) + 𝑑𝑚, 𝐶𝑚 ∈ R1×𝑛, 𝑑𝑚 ∈ R as a predicate function
associated with 𝜇𝑚. Then based on Lemma 1, STL constraint (15b) can
be reformulated into the Boolean combination of 𝑀𝑅𝑘[𝜑] predicates as
follows:

𝐁𝑅𝑘[𝜑]
𝑚∈[1,𝑀𝑅𝑘 [𝜑]]

(𝐶𝑚𝑥(𝑘 + 𝑖𝑘𝑚|𝑘) + 𝑑𝑚 ≥ 0), (18)

where the number of predicates 𝑀𝑅𝑘[𝜑], the values of 𝐶𝑚 and 𝑑𝑚, the
time instants 𝑘 + 𝑖𝑘𝑚, 𝑖𝑘𝑚 ∈ {1,… , 𝑁 − 𝑘}, 𝑚 = 1, 2,… ,𝑀𝑅𝑘[𝜑], and
the Boolean operators (∧,∨) between predicates are all determined
inductively on the structure of 𝑅𝑘[𝜑]. Note that each predicate 𝜇𝑚
in the Boolean combination is imposed on system states of a specific
time instant 𝑘 + 𝑖𝑘𝑚, that is, the value of 𝑖𝑘𝑚 changes with the MPC
implementation to ensure that 𝑘+ 𝑖𝑘𝑚 is a fixed value. In addition, once
states 𝑥 are observed at time 𝑘, they would appear as fixed true values
in (18).

Theorem 2. For Problem 2, task 𝑅𝑘[𝜑] is satisfied at time 𝑘 if with
𝐯𝑁 (𝑘), the nominal path 𝜉(𝑥(0), 𝐯𝐹𝑢𝑙𝑙

𝑁 (𝑘)) satisfies the following tightened STL
formula:

𝑅𝑡
𝑘[𝜑] = 𝐁𝑅𝑘[𝜑]

𝑚∈[1,𝑀𝑅𝑘 [𝜑]]
(𝐶𝑚𝑧(𝑘 + 𝑖𝑘𝑚|𝑘) + 𝑑𝑚 ≥ −𝛾𝑖𝑘𝑚 ),

where

𝛾𝑖𝑘𝑚 = min
𝑤∈

∑

𝑠∈[0,𝑖𝑘𝑚−1]

𝐶𝑚𝐴
𝑠
𝐾𝑤. (19)

In addition, if 𝑅𝑡
𝑘[𝜑] is satisfied at time 𝑘, then 𝑅𝑡

𝑘+1[𝜑],… , 𝑅𝑡
𝑁−1[𝜑] can

be satisfied at time 𝑘 + 1,… , 𝑁 − 1, respectively.

Proof.We begin by the special case where 𝑅𝑘[𝜑] is a predicate and later
extend our analysis to the general case. For
𝑅𝑘[𝜑] = 𝐶𝑚𝑥(𝑘 + 𝑖𝑘𝑚|𝑘) + 𝑑𝑚 ≥ 0, 𝑚 = 1, along with the tightening
parameter 𝛾𝑖𝑘𝑚 defined in (19), the following two conclusions can be
drawn (Kouvaritakis, Cannon, Raković, & Cheng, 2010): (i) 𝐶𝑚𝑧(𝑘 +
𝑖𝑘𝑚|𝑘) + 𝑑𝑚 ≥ −𝛾𝑖𝑘𝑚 ⇒ 𝐶𝑚𝑥(𝑘 + 𝑖𝑘𝑚|𝑘) + 𝑑𝑚 ≥ 0; (ii) If inequality
𝐶𝑚𝑧(𝑘+ 𝑖𝑘𝑚|𝑘)+𝑑𝑚 ≥ −𝛾𝑖𝑘𝑚 holds at time 𝑘, it can remain satisfied at time
𝑘 + 𝑗, 𝑗 = 1,… , 𝑖𝑘𝑚 − 1. The interested reader is referred to Kouvaritakis
et al. (2010) for the detailed proof. Extend the conclusions to the
Boolean combination of multiple predicates, we have

𝜉(𝑥(0), 𝐯𝐹𝑢𝑙𝑙
𝑁 (𝑘)) ⊧ 𝑅𝑡

𝑘[𝜑] ⇒ 𝛯(𝑥(0),𝐮𝐹𝑢𝑙𝑙
𝑁 (𝑘),𝐰𝐹𝑢𝑙𝑙

𝑁 (𝑘)) ⊧ 𝑅𝑘[𝜑].

Define 𝐹 𝑗 as a vector shifting function that removes the first 𝑗 elements
in a vector, i.e., 𝐹 𝑗 (𝐯𝑁 (𝑘)) = [𝑣T(𝑘 + 𝑗|𝑘),… , 𝑣T(𝑁 − 1|𝑘)]T. It follows
that if 𝐯𝑁 (𝑘) is a feasible solution for 𝜉(𝑥(0), 𝐯𝐹𝑢𝑙𝑙

𝑁 (𝑘)) ⊧ 𝑅𝑡
𝑘[𝜑] at time

𝑘, the nominal paths generated by 𝐹 1(𝐯𝑁 (𝑘)),… , and 𝐹𝑁−𝑘−1(𝐯𝑁 (𝑘))
satisfy 𝑅𝑡

𝑘[𝜑] at time 𝑘 + 𝑗, 𝑗 = 1,… , 𝑁 − 𝑘 − 1, respectively, where the
tightening parameters 𝛾𝑖𝑘𝑚 for 𝑅𝑘[𝜑] should be updated at each time step
according to (19). At time 𝑘+ 1, the simplified STL formula is updated
as 𝑅𝑘+1[𝜑]. Based on the simplification rules, we can conclude that the
(sub)formulae of 𝑅𝑡

𝑘[𝜑] satisfied at time 𝑘 are entirely encompassed
by 𝑅𝑡

𝑘+1[𝜑]. Thus, 𝐹 1(𝐯𝑁 (𝑘)) is a feasible solution for the satisfaction
of 𝑅𝑡

𝑘+1[𝜑] at time 𝑘 + 1. By recursion, if 𝑅𝑡
𝑘[𝜑] is satisfied at time 𝑘,

then 𝑅𝑡
𝑘+1[𝜑],… , and 𝑅𝑡

𝑁−1[𝜑] can be satisfied at time 𝑘+ 1,… , 𝑁 − 1,
respectively. ■

Based on Theorem 2, the solvable deterministic optimization prob-
lem, denoted by 𝑃𝑘, can be formulated as:

min
𝐯̄𝑀𝑆𝑘

(0)
E[𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘))] (20)
7

s. t. 𝑧(𝑘 + 1) = 𝐴𝐾𝑧(𝑘) + 𝐵𝑣(𝑘), (20a)
𝜉(𝑥(0), 𝐯𝐹𝑢𝑙𝑙
𝑁 (𝑘)) ⊧ 𝑅𝑡

𝑘[𝜑], (20b)

𝐯𝑁 (𝑘) = (𝑆𝑘 ⊗ 𝐼𝑑𝑢 )𝐯̄𝑀𝑆𝑘
(0). (20c)

Similar to the nominal case, an initial input solution and a reasonable
blocking matrix 𝑆0 is required for 𝑃𝑘. These can be obtained by solving
the following initial problem 𝑃0:

min
𝐯𝑁 (0)

E[𝐽 (𝑥(0),𝐮𝑁 (0))] + 𝜆𝐽𝑏(𝐯𝑁 (0))

s. t. 𝑧(𝑘 + 1) = 𝐴𝐾𝑧(𝑘) + 𝐵𝑣(𝑘),

𝜉(𝑥(0), 𝐯𝑁 (0)) ⊧ 𝜑𝑡,

where 𝐽𝑏(𝐯𝑁 (0)) =
∑𝑁−2

𝑡=0 |sign(
∑𝑑𝑢

𝑖=1 |𝑣𝑖(𝑡 + 1) − 𝑣𝑖(𝑡)|)| with 𝑣𝑖 indicating
the 𝑖th component of 𝑣, and 𝜑𝑡 is constructed by tightening 𝜑 according
to Theorem 2.

So far, through the formula reformulation given in Lemma 1 and
constraint tightening in Theorem 2, we transform Problem 2 into
solvable deterministic problems 𝑃0 and 𝑃𝑘, 𝑘 = 1,… , 𝑁 − 1. By apply-
ing Algorithm 1 with problems 𝑃0 and 𝑃𝑘 replaced by the problems
𝑃0 and 𝑃𝑘, respectively, the STL task satisfaction under uncertainties
can be realized with efficient online computation. The feasibility of
constraint (20b) with previously obtained solutions is established by
Theorem 2, and the design principles of candidate blocking matrices
guarantee the satisfaction of constraint (20c). It can then be inferred
that problem 𝑃𝑘 remains feasible at each time step 𝑘, underscoring the
feasibility of the proposed algorithm in this uncertain scenario.

6. Case study

The algorithm discussed in the previous sections provides flexibility
in selecting the time set 𝑘 and the block matrix 𝑆𝑘 ∈ (𝐹 (𝑆𝑘−1)).
A specific selection method is presented in this section. On this basis,
numerical simulations are carried out to showcase the effectiveness of
the proposed MPC algorithm in nominal cases, while robot experiments
are conducted to evaluate the performance in the presence of system
uncertainties.

6.1. The partitioned horizon

A specific selection method for time set 𝑘 and the block matrix 𝑆𝑘 ∈
(𝐹 (𝑆𝑘−1)) is presented in this section. The approach involves dividing
the predictive horizon into two segments: the initial sub-horizon and
the remaining sub-horizon. To maintain fine-grained control action at
the start, there is no blockage applied at the initial sub-horizon. The
initial sub-horizon is also chosen as the valid time set 𝑘 for each time
step 𝑘. Let 𝐻𝑖𝑠 represent the length of the initial sub-horizon, which is
constrained within a range [𝑙𝑖𝑠, 𝑢𝑖𝑠]. We then define the time set 𝑘 at
time 𝑘 as 𝑘 = [𝑘, 𝑘+𝐻𝑖𝑠]. Let 𝑘 ⊆ (𝐹 (𝑆𝑘−1)) indicate the collection of
feasible block matrices at time 𝑘, and let 𝑆̃𝑛

𝑘 , 𝑛 ∈ N≥1 represent the 𝑛th
feasible block matrix in 𝑘. Suppose that the blocking matrix employed
at time 𝑘 is 𝑆𝑘 ∈ 𝑘. Then at time step 𝑘 + 1, the set of feasible block
matrices 𝑘+1 ⊆ (𝐹 (𝑆𝑘)) can be constructed following the steps below:

Step 1: Obtain 𝐹 (𝑆𝑘);
Step 2: Split the elements in subsequent block vectors one by

one into the initial sub-horizon, such that the length of the initial
sub-horizon satisfies 𝐻𝑖𝑠 ∈ [𝑙𝑖𝑠, 𝑢𝑖𝑠]. For each time split:

(i) If the current matrix satisfies 𝐻𝑖𝑠 < 𝑙𝑖𝑠, proceed to the next
splitting;

(ii) If the current matrix satisfies 𝐻𝑖𝑠 ∈ [𝑙𝑖𝑠, 𝑢𝑖𝑠), include the current
matrix into 𝑘+1 and proceed to the next splitting;

(iii) If the current matrix satisfies 𝐻𝑖𝑠 ≥ 𝑢𝑖𝑠, combine the matrix into
𝑘+1, and stop.

We illustrate the construction procedure of 𝑘+1 with the following

example.



Control Engineering Practice 143 (2024) 105782T. Yang et al.

r
S
1
e
o
𝐹

𝑢
o
T
i
a
s
𝑇
f
𝜙

w
O
a
e
s

(

r

b

t

Fig. 3. The construction process of admissible matrix set under partitioned horizon.
Example 3. Suppose that the blocking matrix employed at time 𝑘 is
𝑆𝑘 = 𝑆̃1

𝑘 , as shown in Fig. 3. Let 𝑙𝑖𝑠 = 2, 𝑢𝑖𝑠 = 4. At time 𝑘 + 1, we first
emove the first column and also the first row of 𝑆𝑘 and obtain 𝐹 (𝑆𝑘).
ince the length of the current initial sub-horizon is 𝐻𝑖𝑠 = 𝑙(𝐹 (𝑆𝑘), 1) =
< 𝑙𝑖𝑠, the subsequent block vectors should be split. If we split one

lement in block vector 𝑏2 of 𝐹 (𝑆𝑘) into the initial sub-horizon, we can
btain 𝑆̃1

𝑘+1 with 𝐻𝑖𝑠 = 2; If we split two elements in block vector 𝑏2 of
(𝑆𝑘) into the initial sub-horizon, we can obtain 𝑆̃2

𝑘+1 with 𝐻𝑖𝑠 = 3,
(which can also be regarded as 𝐻𝑖𝑠 = 4 since 𝑙(𝑆̃2

𝑘+1, 4) = 1). Stop
splitting. These two matrices compose the feasible block matrix set
𝑘+1 = {𝑆̃1

𝑘+1, 𝑆̃
2
𝑘+1}. If 𝑆̃2

𝑘+1 is chosen as the block matrix at time 𝑘+1,
i.e., 𝑆𝑘+1 = 𝑆̃2

𝑘+1, we can further construct 𝑘+2 = {𝑆̃1
𝑘+2, 𝑆̃

2
𝑘+2} by the

similar procedure, see Fig. 3.

6.2. Simulation: Nominal case

In this section, we focus on nominal systems and conduct simula-
tions to compare the control performance of the proposed algorithm
with state-of-the-art methods.

Scenario 1: Consider an agent governed by double-integrator dynam-
ics:

𝑥(𝑘 + 1) =
[

𝐼2 𝐼2
0 𝐼2

]

𝑥(𝑘) +
[

0.5𝐼2
𝐼2

]

𝑢(𝑘),

where 𝑥 =
[

𝑝T, 𝑜T
]T ∈ R4, and 𝑝 = [𝑝𝑥, 𝑝𝑦]T ∈ R2, 𝑜 = [𝑜𝑥, 𝑜𝑦]T ∈ R2,

= [𝑢𝑥, 𝑢𝑦]T ∈ R2 are the position, the velocity, and the acceleration
f the agent, respectively. The input constraint is given as ‖𝑢‖∞ ≤ 0.5.
he sampling interval is chosen as 1 s. The workspace for the agent

s shown in Fig. 6. The agent must always avoid obstacles Obs, arrive
t the terminal region Gterminal within 𝑇𝑔 , choose one of the charging
tations, including Gcharge1 and Gcharge2, to charge the battery before
𝑔∕2 and stay there for at least 𝑇𝑔∕10. The STL task of the agent can be
ormulated as
= 𝐺[0,𝑇𝑔 ](𝑝 ∉ Obs) ∧ 𝐹[0,𝑇𝑔 ](𝑝 ∈ Gterminal)

∧ 𝐹[0,𝑇𝑔∕2]𝐺[0,𝑇𝑔∕10](𝑝 ∈ Gcharge1 ∨ 𝑝 ∈ Gcharge2),
(21)

here the goal regions Gterminal, Gcharge1, Gcharge2 and obstacle region
bs are defined via a set of conjunctions over linear predicates. The
gent is expected to satisfy the specified STL task with minimum control
ffort 𝐽 (𝑥(0),𝐮𝑁 (0)) =

∑𝑁−1
𝑖=0 𝑢T(𝑖)𝑢(𝑖). Consider the following four MPC

chemes:
Case I: Control with the classical STL-MPC algorithm in Raman et al.

2014);
Case II: Control with the proposed low complexity STL-MPC algo-

ithm;
Case III: Control with the proposed STL-MPC algorithm, with the

locking matrices set as identity matrices (no input blockage);
Case IV: Control with the proposed STL-MPC algorithm, with the

ime set 𝑘 chosen as the overall task horizon, i.e., 𝑘 = [0, 𝑇𝑔] (no
formula simplification).

The partitioned horizon-based method introduced in Section 6.1 is
employed to determine the time set 𝑘 and block matrix 𝑆𝑘 at each
8

time step. Set 𝐻𝑖𝑠 = 5 and 𝜆 = 0.1. Under the four MPC schemes,
Fig. 4. The number of binary variables and the computation time under four cases
when 𝑇𝑔 = 20.

Fig. 5. The number of binary variables and the computation time under four cases
when 𝑇𝑔 = 30.

the involved number of binary variables in the optimization problems
and the corresponding online computation time are shown in Fig. 4
and Fig. 5, considering different task length 𝑇𝑔 = 20 and 𝑇𝑔 = 30.
As observed in Fig. 4(a) and Fig. 5(a), when there is no formula
simplification (Case I and Case IV), the number of binary variables
decreases over time with shrinking horizon MPC, and accordingly, the
computation time shows an exponential decline over time. In contrast,
the formula-simplified optimization problems maintain a consistent
number of around 35 binary variables (Case II and Case III), resulting
in consistently low computation times during MPC implementation.

Comparing the simulation results across the four cases, we can conclude



Control Engineering Practice 143 (2024) 105782T. Yang et al.
Fig. 6. Workspace under STL task (21). Agent trajectories are obtained under the
method shown in Case I and Case II with 𝑇𝑔 = 30.

Table 3
The values of cost function under four cases.

Case I Case II Case III Case IV

𝑇𝑔 = 20 0.1566 0.1587 0.1567 0.1586
𝑇𝑔 = 30 0.1432 0.1494 0.1467 0.1487

that using input blocking alone may not significantly reduce the com-
putational workload, as evidenced by the computation time comparison
between Case I and Case IV. However, by reducing the required number
of binary variables through formula simplification, input blocking can
further enhance computation speed, as seen in the computation time
comparison between Case II and Case III.

The values of the cost function 𝐽 (𝑥(0),𝐮∗𝑁 (0)) are similar under the
four MPC schemes, as shown in Table 3. The moving trajectories of
the agent under Case I and Case II with 𝑇𝑔 = 30 are shown in Fig. 6.
Specifically, the initial trajectory in Fig. 6(b) is a predicted trajectory
based on the optimization results of the initial problem 𝑃0; and the
actual trajectories in Fig. 6(a) and Fig. 6(b) are obtained by executing
MPC in Case I and Case II, respectively. Based on the above discussion,
we can conclude that the proposed STL-MPC algorithm enhances the
efficiency of online optimization with reasonable control performance.

Scenario 2: To further assess the efficacy of the proposed algorithm,
we conduct simulations using a more intricate 3D model involving two
unmanned aerial vehicles (UAVs). Particularly, consider the state of
the 𝑗th UAV as 𝑥𝑗 =

[

𝑝T𝑗 , 𝑜
T
𝑗

]T
∈ R6, where 𝑝𝑗 and 𝑜𝑗 are 3D position

and velocity. The inputs 𝑢𝑗 ∈ R3 are the thrust, roll, and pitch of the
UAV. The initial states are specified as 𝑥1(0) = [0, 10, 4, 0, 0, 0]T, 𝑥2(0) =
[9, 1, 0, 0, 0, 0]T. The dynamics of UAVs are obtained via linearization
around hover and discretization, see Luukkonen (2011) for more de-
tails. Similar models have been used for control of real quad-rotors with
success (Pant et al., 2015).

Two UAVs are tasked with a surveillance mission of three regions,
see Fig. 7. The overall specification is of the form 𝜑 =

⋀3
𝑖=1 𝜑𝑖 where:

(i) UAV 1 should reach and stay in zone GA all the time from
10 to 30 time units while always avoid zone GB, 𝜑1 = 𝐺[10,30](𝑝1 ∈
GA) ∧ 𝐺[0,60](𝑝1 ∉ GB);

(ii) UAV 2 should eventually reach zone GB any time between 2
and 60 time units while always avoid zone GA, 𝜑2 = 𝐹[2,60](𝑝2 ∈
GB) ∧ 𝐺[0,60](𝑝2 ∉ GA);

(iii) Zone GC should be surveilled, i.e., either one or both UAVs must
be within GC all the time from 35 to 60 time units, 𝜑3 = 𝐹[35,60](𝑝1 ∈
GC ∧ 𝑝2 ∈ GC).

We implement the proposed algorithm for this STL satisfaction
synthesis problem and conduct a performance comparison with the
methods presented in Raman et al. (2014) and Kurtz and Lin (2022).
The simulations are all executed within the framework of shrinking
horizon MPC. Set 𝑁 = 60, 𝐽 (𝑥(𝑘),𝐮𝑁 (𝑘)) =

∑𝑁−1
𝑖=𝑘 𝑢T1 (𝑖)𝑢1(𝑖) + 𝑢T2 (𝑖)𝑢2(𝑖),

𝐻 = 15, and 𝜆 = 0.1. We observe that the method introduced in Raman
9

𝑖𝑠
et al. (2014) fails to find a solution for this problem, running continu-
ously for over 10,000 s without termination. It thus has been excluded
from further comparisons. Both the method in Kurtz and Lin (2022) and
our approach successfully achieve task satisfaction with similar control
efforts, resulting in cost values of 9.21 and 9.17, respectively. The
trajectories of UAVs under the proposed algorithm is shown in Fig. 7
from different angles. We observe that the method from Kurtz and Lin
(2022) requires a computation time of approximately 200 s during the
initial optimization stage, while our proposed algorithm consistently
demonstrates significantly reduced computation times of around 0.7 s
at each time step during MPC implementation. These results underscore
the efficiency of our algorithm.

6.3. Experiment: Uncertain case

We extend our investigation to evaluate the effectiveness of the
proposed STL-MPC algorithm under uncertain conditions and conduct
experiments using a TurtleBot3 mobile robot. We use VICON position-
ing system to locate the robot and the regions in the environment. A
workstation (Intel Core i5-10400 2.90 GHz CPU and 8 GB of RAM) is
utilized to process the data from VICON and calculate the control inputs
for the robot. The information transactions between the VICON, the
workstation, and the robots are established through a Robot Operating
System. Robot model

𝑥(𝑘 + 1) =
[

1 0.01
0 1

]

𝑥(𝑘) +
[

0.5 0
0 0.5

]

𝑢(𝑘) +𝑤(𝑘) (22)

is employed to calculate the discrete optimal location points 𝑥 =
[𝑝𝑥, 𝑝𝑦]T ∈ R2, and the transition between two location points is
achieved by the activation of low-level continuous controllers of the
robot. The stochastic disturbance 𝑤 models measurement and tracking
error, which is truncated from a Gaussian distribution with mean zero,
standard deviation 0.8 and satisfies ‖𝑤‖∞ ≤ 0.2. The robot’s workspace
in simulations and experiments is illustrated in Fig. 8 and Fig. 10,
respectively, where the gray areas represent obstacles that the robot
cannot enter and the green areas denote the target regions. The motion
task of the robot is to visit three goal regions G1, G2, and G3 within
specified time, while avoiding obstacles. Especially, keys in G1 should
be collected before entering G2. This task can be formulated into STL
formula as follows:
𝜑 =(𝑥 ∉ G2)𝑈[0,27][𝐺[0,3](𝑥 ∈ G1)] ∧ 𝐹[0,27][𝐺[0,3](𝑥 ∈ G2)]∧

𝐹[0,27][𝐺[0,3](𝑥 ∈ G3)] ∧ 𝐺[0,30](𝑥 ∉ Obs).
(23)

We implement the proposed MPC algorithm for this STL satisfaction
synthesis problem, and compare the performance with the methods
proposed in Raman et al. (2014) and Kurtz and Lin (2022). Note that
STL constraint tightening is applied in all cases to ensure solvable
deterministic optimization problems. Set initial state 𝑥(0) = [5.5, 1.5]T,
𝐻𝑖𝑠 = 6, and 𝜆 = 0.1. We observe that the method proposed in Raman
et al. (2014) fails to find a solution for this problem and, therefore,
is excluded from further comparisons. We conduct 100 simulation
instances, and the average computation time at each optimization
are depicted in Fig. 9. Notably, the computation time decreases with
time under the method in Kurtz and Lin (2022), while our proposed
algorithm consistently maintains a lower computation time throughout
the process. Specifically, under the method in Kurtz and Lin (2022),
the maximum computation time occurs at 𝑘 = 3, which is 87.33 s
with a variance of 7.76 (the average computation time at 𝑘 = 3
is 84.29 s). However, with our proposed algorithm, the maximum
computation time is observed at 𝑘 = 1, and it is only 0.47 s with a
variance of 0.014 (the average computation time at 𝑘 = 1 is 0.32 s).
In addition, all generated trajectories under two approaches satisfy the
specified STL task against uncertainties, and two representative robot
simulation trajectories are shown in Fig. 8. The proposed algorithm is
then implemented by TurtleBot3 mobile robot, with the safe distance
from obstacles adjusted based on the robot’s size. Snapshots of some



Control Engineering Practice 143 (2024) 105782T. Yang et al.
Fig. 7. 3D representation of the map for multi-UAV surveillance task from different angles. The trajectories of UAV 1 (orange lines) and UAV 2 (blue lines) are obtained using
the proposed STL-MPC algorithm, which satisfy the specified surveillance mission.
Fig. 8. Workspace under STL task (23). Simulation trajectories of the robot are
obtained with the proposed STL-MPC algorithm and the encoding method in Kurtz and
Lin (2022). Both trajectories satisfy the task, but with different computational costs.

Fig. 9. Computation time of online optimizations under STL task (23) with the
proposed strategy and the encoding method in Kurtz and Lin (2022).

Fig. 10. Snapshots during the experiment. The robot is guided by the proposed STL-
MPC algorithm, with the orange lines indicating its historical trajectories before the
current sampling instant.
10
important time instants during the experiment are given in Fig. 10. We
can observe that the robot successfully arrives at G1, G2, and G3 in
sequence while avoiding obstacles, and the computational speed also
meets the sampling requirement. In conclusion, the proposed STL-MPC
algorithm realizes efficient online problem-solving with performance
guarantees.

7. Conclusion

This paper achieved efficient MILP problem-solving for STL in the
framework of shrinking horizon MPC by formula simplification and
input blocking. The soundness and feasibility of the proposed algorithm
were formally analyzed, and the extension to uncertain systems was
achieved by STL constraint tightening. Simulations and experiments
verified the effectiveness of the STL-MPC algorithm. We are exploring
several extensions and variations in ongoing and future work, including
distributed control scheme and more complex tasks. Moreover, the
selection of time set 𝑘 has significant effects on the optimality of
STL synthesis, which is currently chosen heuristically in this work.
Theoretical support for time set design would also be an important
subject of future research.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This paper is supported by the National Natural Science Foundation
of China (NSFC) (62173224) and the founding from Beijing Advanced
Innovation Center for Intelligent Robots and Systems, China.

References

Bai, T., Li, S., & Zou, Y. (2021). Distributed MPC for reconfigurable architecture systems
via alternating direction method of multipliers. IEEE/CAA Journal of Automatica
Sinica, 8(7), 1336–1344.

Belta, C., & Sadraddini, S. (2019). Formal methods for control synthesis: An optimiza-
tion perspective. Annual Review of Control, Robotics, and Autonomous Systems, 2,
115–140.

Buyukkocak, A. T., Aksaray, D., & Yazıcıoğlu, Y. (2021). Planning of heteroge-
neous multi-agent systems under signal temporal logic specifications with integral
predicates. IEEE Robotics and Automation Letters, 6(2), 1375–1382.

Farahani, S. S., Majumdar, R., Prabhu, V. S., & Soudjani, S. (2018). Shrinking horizon
model predictive control with signal temporal logic constraints under stochastic
disturbances. IEEE Transactions on Automatic Control, 64(8), 3324–3331.

Garcia, C. E., Prett, D. M., & Morari, M. (1989). Model predictive control: Theory and
practice–a survey. Automatica, 25(3), 335–348.

Haghighi, I., Mehdipour, N., Bartocci, E., & Belta, C. (2019). Control from signal
temporal logic specifications with smooth cumulative quantitative semantics. In
2019 IEEE conference on decision and control (pp. 4361–4366).

Huang, M., Zheng, Y., & Li, S. (2022). Distributed economic model predictive control
for an industrial fluid catalytic cracking unit ensuring safe operation. Control
Engineering Practice, 126, Article 105263.

http://refhub.elsevier.com/S0967-0661(23)00351-9/sb1
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb1
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb1
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb1
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb1
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb2
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb2
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb2
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb2
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb2
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb3
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb3
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb3
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb3
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb3
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb4
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb4
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb4
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb4
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb4
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb5
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb5
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb5
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb6
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb6
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb6
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb6
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb6
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb7
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb7
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb7
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb7
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb7


Control Engineering Practice 143 (2024) 105782T. Yang et al.

K

K

L

L

L

L

L

M

P

P

P

R

R

S

S

S

S

T

V

X

Y

Y

Z

Z

Knuth, D. E. (1964). Backus normal form vs. backus naur form. Communications of the
ACM, 7(12), 735–736.

ouvaritakis, B., Cannon, M., Raković, S. V., & Cheng, Q. (2010). Explicit use
of probabilistic distributions in linear predictive control. Automatica, 46(10),
1719–1724.

urtz, V., & Lin, H. (2022). Mixed-integer programming for signal temporal logic with
fewer binary variables. IEEE Control Systems Letters, 6, 2635–2640.

indemann, L., & Dimarogonas, D. V. (2018). Control barrier functions for signal
temporal logic tasks. IEEE Control Systems Letters, 3(1), 96–101.

indemann, L., & Dimarogonas, D. V. (2019). Robust control for signal temporal logic
specifications using discrete average space robustness. Automatica, 101, 377–387.

iu, S., Trivedi, A., Yin, X., & Zamani, M. (2022). Secure-by-construction synthesis of
cyber-physical systems. Annual Reviews in Control, 53, 30–50.

iu, Z., Wu, B., Dai, J., & Lin, H. (2020). Distributed communication-aware motion
planning for networked mobile robots under formal specifications. IEEE Transactions
on Control of Network Systems, 7(4), 1801–1811.

uukkonen, T. (2011). Modelling and control of quadcopter. Independent Research Project
in Applied Mathematics, Espoo, 22(22).

aler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous signals.
In Formal techniques, modelling and analysis of timed and fault-tolerant systems (pp.
152–166).

ant, Y. V., Abbas, H., Mohta, K., Nghiem, T. X., Devietti, J., & Mangharam, R. (2015).
Co-design of anytime computation and robust control. In 2015 IEEE real-time systems
symposium (pp. 43–52). IEEE.

atil, S. V., Hashimoto, K., & Kishida, M. (2022). Traffic flow control at signalized
intersections using signal spatio-temporal logic. In 2022 IEEE 61st conference on
decision and control (pp. 1051–1058). IEEE.

uranic, A. G., Deshmukh, J. V., & Nikolaidis, S. (2021). Learning from demonstrations
using signal temporal logic in stochastic and continuous domains. IEEE Robotics and
Automation Letters, 6(4), 6250–6257.

aman, V., Donzé, A., Maasoumy, M., Murray, R. M., Sangiovanni-Vincentelli, A.,
& Seshia, S. A. (2014). Model predictive control with signal temporal logic
specifications. In 2014 IEEE conference on decision and control (pp. 81–87).
11
odionova, A., Lindemann, L., Morari, M., & Pappas, G. J. (2022). Combined left and
right temporal robustness for control under stl specifications. IEEE Control Systems
Letters, 7, 619–624.

ahin, Y. E., Nilsson, P., & Ozay, N. (2020). Multirobot coordination with counting
temporal logics. IEEE Transactions on Robotics, 36(4), 1189–1206.

hekhar, R. C., & Manzie, C. (2015). Optimal move blocking strategies for model
predictive control. Automatica, 61, 27–34.

on, S. H., Oh, T. H., Kim, J. W., & Lee, J. M. (2020). Move blocked model
predictive control with improved optimality using semi-explicit approach for
applying time-varying blocking structure. Journal of Process Control, 92, 50–61.

un, D., Chen, J., Mitra, S., & Fan, C. (2022). Multi-agent motion planning from signal
temporal logic specifications. IEEE Robotics and Automation Letters, 7(2), 3451–3458.

ian, D., Fang, H., Yang, Q., Guo, Z., Cui, J., Liang, W., et al. (2023). Two-phase
motion planning under signal temporal logic specifications in partially unknown
environments. IEEE Transactions on Industrial Electronics, 70(7), 7113–7121.

ielma, J. P., & Nemhauser, G. L. (2011). Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints. Mathematical Programming,
128(1), 49–72.

u, B., Suleman, A., & Shi, Y. (2023). A multi-rate hierarchical fault-tolerant adaptive
model predictive control framework: Theory and design for quadrotors. Automatica,
153, Article 111015.

u, P., & Dimarogonas, D. V. (2021). Hierarchical control for uncertain discrete-time
nonlinear systems under signal temporal logic specifications. In 2021 60th IEEE
conference on decision and control (pp. 1450–1455). IEEE.

u, X., Yin, X., Li, S., & Li, Z. (2022). Security-preserving multi-agent coordination for
complex temporal logic tasks. Control Engineering Practice, 123, Article 105130.

hou, X., Yang, T., Zou, Y., Li, S., & Fang, H. (2022). Multiple sub-formulae cooperative
control for multi-agent systems under conflicting signal temporal logic tasks. IEEE
Transactions on Industrial Electronics.

hou, X., Zou, Y., Li, S., Li, X., & Fang, H. (2022). Distributed model predictive control
for multi-robot systems with conflicting signal temporal logic tasks. IET Control
Theory & Applications, 16(5), 554–572.

http://refhub.elsevier.com/S0967-0661(23)00351-9/sb8
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb8
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb8
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb9
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb9
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb9
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb9
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb9
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb10
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb10
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb10
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb11
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb11
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb11
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb12
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb12
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb12
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb13
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb13
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb13
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb14
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb14
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb14
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb14
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb14
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb15
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb15
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb15
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb16
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb16
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb16
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb16
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb16
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb17
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb17
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb17
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb17
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb17
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb18
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb18
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb18
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb18
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb18
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb19
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb19
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb19
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb19
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb19
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb20
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb20
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb20
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb20
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb20
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb21
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb21
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb21
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb21
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb21
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb22
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb22
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb22
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb23
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb23
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb23
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb24
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb24
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb24
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb24
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb24
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb25
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb25
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb25
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb26
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb26
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb26
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb26
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb26
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb27
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb27
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb27
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb27
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb27
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb28
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb28
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb28
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb28
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb28
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb29
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb29
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb29
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb29
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb29
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb30
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb30
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb30
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb31
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb31
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb31
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb31
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb31
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb32
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb32
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb32
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb32
http://refhub.elsevier.com/S0967-0661(23)00351-9/sb32

	Signal temporal logic synthesis under Model Predictive Control: A low complexity approach
	Introduction
	Preliminaries and Problem Formulation
	Signal temporal logic
	Shrinking horizon MPC problem formulation

	STL Simplification and Reformulation
	Shrinking Horizon Move Blocked MPC for STL Synthesis
	Move blocking scheme
	Input blocking for STL synthesis

	Low Complexity Model Predictive Control Algorithm for STL Synthesis
	The proposed algorithm
	Performance analysis
	Extension to uncertain case

	Case Study
	The partitioned horizon
	Simulation: Nominal case
	Experiment: Uncertain case

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


