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Abstract— This paper investigates the problem of designing
control policies that satisfy high-level specifications described
by signal temporal logic (STL) in unknown, stochastic environ-
ments. While many existing works concentrate on optimizing
the spatial robustness of a system, our work takes a step
further by also considering femporal robustness as a critical
metric to quantify the tolerance of time uncertainty in STL.
To this end, we formulate two relevant control objectives to
enhance the temporal robustness of the synthesized policies.
The first objective is to maximize the probability of being
temporally robust for a given threshold. The second objective
is to maximize the worst-case spatial robustness value within a
bounded time shift. We use reinforcement learning to solve both
control synthesis problems for unknown systems. Specifically,
we approximate both control objectives in a way that enables us
to apply the standard Q-learning algorithm. Theoretical bounds
in terms of the approximations are also derived. We present
case studies to demonstrate the feasibility of our approach.

I. INTRODUCTION

Autonomous systems operating in dynamic environments
face the challenge of making complex real-time decisions.
These systems, known as time-critical systems, must process
real-time information to achieve their goals, and the accuracy
of their decisions is crucial, especially with temporal con-
straints involved. For example, an automated guided vehicle
may need to retrieve a workpiece within 10 minutes and
return it within 20 minutes. However, an ad-hoc approach for
real-time decision-making may lead to errors. Consequently,
ensuring formal guarantees for real-time systems has gained
focus in recent years.

Signal temporal logic (STL) is a formal specification
language used to describe high-level temporal behaviors
of continuous signals. It extends metric temporal logic for
real-time systems by incorporating real-valued predicates on
signals [1]-[3]. One major advantage of STL is its ability to
provide both Boolean satisfaction and quantitative measures,
termed spatial robustness degree. This unique feature has
led to the spreading use of STL in cyber-physical systems,
including autonomous robots [4], process control systems
[5], smart cities [6] and self-driving vehicles [7].

The spatial robustness essentially quantifies the satisfac-
tion of STL tasks based on value changes in the predicate
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function. However, practical scenarios also involve signal de-
lays or ahead-of-time occurrences during online executions,
which necessitates exploring STL satisfaction under signal
time uncertainty. To tackle this, temporal robustness was
introduced in the literature, which quantifies the maximum
left or right time shift a signal trajectory can endure to
maintain satisfaction or violation of an STL specification [8].
In [9], the authors merged left and right temporal robustness
and solved control synthesis. In [10]-[12], the temporal
robustness was further investigated for synchronization issues
of multi-dimensional signals. Additionally, there are other
measures for quantifying the robust satisfaction of STL
formulae under time uncertainty, such as conformance [13]
or AverageSTL robustness [14], [15].

In open or reactive environments, synthesizing control
sequences or policies to ensure the satisfaction of STL
tasks is a major challenge. To tackle this, various synthesis
methods have emerged, including encoding the STL sat-
isfaction as constraints in a mixed-integer linear program
(MILP) [16]-[19] and capturing the satisfaction regions of
the STL formula using control barrier functions (CBFs)
[20]-[22]. These approaches assume system knowledge; yet
in many applications, the system’s dynamic is unknown,
and trajectories can only be generated through interactions.
Thus, reinforcement learning techniques are employed for
STL task control synthesis; see, e.g., [23]-[27]. In [23],
Q-learning was applied to maximize the expected robust
degree for an unknown system modeled by Markov decision
processes (MDPs). Moreover, [26] offered more efficient
MDP construction methods.

The focus of the aforementioned work is to enhance spatial
robustness of control policies. However, in the context of
temporal robustness for time-uncertain systems, synthesis
methods are only available in recent works such as [9],
[10], [28], [29]. These approaches have a common feature,
which is to extend the MILP-based approach by encoding
the temporal robustness using new variables. Similar to the
issue of spatial robustness, these approaches rely on the
system model. To the best of our knowledge, optimizing STL
task temporal robustness in systems with unknown dynamics
remains unexplored.

In this paper, we address the challenge of control policy
synthesis for unknown stochastic systems to achieve STL
tasks. Unlike previous work focusing on spatial robustness,
we extend our focus to include temporal robustness. Specif-
ically, we tackle two control synthesis problems. Firstly,
we aim to synthesize a policy that maximizes the prob-
ability of the trajectory’s temporal robustness exceeding
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a set threshold. Secondly, we aim to maximize the ex-
pected worst-case spatial robustness value of the system’s
trajectories under time uncertainty. To tackle both problems,
we apply reinforcement learning techniques, specifically Q-
learning method, for MDPs. Our approach draws inspiration
from [23], who uses a 7-MDP structure for reinforcement
learning for spatial robustness. Here we reformulate the
two problems and select appropriate augmented horizons
to handle temporal robustness metrics. We also establish a
formal connection between the original problems and the
reformulated problems. Our experimental results show that
the synthesized policies can effectively enhance the temporal
robustness of the system.

II. PRELIMINARIES

This section reviews some basic concepts of signal tem-
poral logic and reinforcement learning of unknown MDPs.

A. Signal Temporal Logic Basics

Signal temporal logic (STL) is a formal language used
for specifying temporal properties for real-time systems. It is
evaluated over dense-time signals in continuous metric space
R™. The syntax of STL is recursively defined as follows [1]:

¢ u=true | p| =d| o1 Ada | 91Ul p) b2, (1)

where p : R™ — {true,false} is an atomic predicate such
that it is satisfied when the value of the associated predicate
function h*(s) > 0, where s € R™; — and A are the standard
Boolean operators, negation and conjunction respectively,
and Uy, ) is the temporal operator “until” with a < b and
a,b € N. Furthermore, one can induce temporal operators:

o “eventually” by F, ;)¢ := trueUy, ;) ¢; and

o “always” by Gy p)¢ = —F[4p)7¢.

Definition 1 (Spatial Robustness of STL): Let ¢ be an
STL formula, s = sps; --- be a signal and ¢t € N be a time
instant. The spatial robustness of ¢ w.r.t. s at time t, denoted
by p(¢,s,t), is defined recursively by

p(true, s, t) = 400,
P H’7S?t) = h’M(St)7
_p(¢7 S, t)7

-
=
>
<
g
wn
=
I

min (P(¢1, S, t)v p(¢25 S, t)) ;
MaXy g[q4¢,b4+¢) Min{p(p2,s,t'),
mingrepr oy p(¢1,8,t")} )

The Boolean semantic of STL is a special instance of the
spatial robustness semantic. Let ¢ be an STL formula, s =
S0s1--- be a signal and ¢ € N be a time instant. We say ¢
is satisfied by s at ¢ , denoted by s[t] = ¢ if its robust value
is larger than zero, i.e.,

slt] = & < p(4,s,1) > 0. 3)

We also define the characteristic function of the STL
formula ¢ w.r.t. signal s at time instant ¢ by

X(¢,s,t){ Lf st = 4)

—1 otherwise
For any STL formula, its satisfaction as well as the robust
degree can be completely determined within its horizon

=
A/—\/]\/—\/-\
&
wn
~
~—
|

denoted by hrz(¢), which can be computed as the maximum
sum of the time interval bound of all nested temporal
operators; see, e.g., [23].

Hereafter in this work, we will restrict our attention to the
following fragment of STL formulae:

@ ::=Fo,m)¢ | Go,m)9, o)

where ¢ is a general STL formula in Equation (1) and H € N
is a time instant.

B. Temporal Robustness of STL

The spatial robustness semantic quantifies the extent of
STL satisfaction based on predicate function value changes.
However, it cannot capture the robust satisfaction of a
formula concerning time shifts. To address this, temporal
robustness was introduced in [8] to quantify the maximum
left or right time shift a signal trajectory can bear to maintain
satisfaction or violation of an STL specification.

Definition 2 (Temporal Robustness of STL, [8]): Let
¢ be an STL formula, s = sps;--- be a signal and t € N
be a time instant. The left (respectively, right) temporal
robustness, denoted by 67 (¢, s, t) (respectively, 07 (¢, s, t)),
is defined as the maximum left (respectively, right) time
shift for a signal s to maintain the satisfaction or the
violation of STL formula ¢. Formally, we have

vt' € [t,t +d] }
0,8,t) = X(¢,s,1)
vt' € [t —d,t] }
o,8,t') = X(p,s,t)
6)

97(¢7 S, t) = X(¢7 S, t) -max § d X(

Remark 1: In the provided definition, when signal shifts
result in undefined states, we fill these states with the initial
or final values. For example, for all ¢ < 0, we have s; := sg.

Remark 2: For simplicity, we only consider left robust-
ness here, given that right shifts or time-delays are more
common in real-world scenarios. Hereafter, we will simply
use the terminology “temporal robustness” denoted as 6(-),
to stand for left temporal robustness 6~ ().

C. Reinforcement Learning for MDPs

We model the underlying dynamic system by a Markov
decision process. Formally, an MDP is a tuple M =
(%, s0, A, P, R), where ¥ is the state space, s is the initial
state, and A is the action space, P : X x Ax X — [0,1] is a
transition probability function and R : ¥ — R is the reward
function. We assume that the state space and action space
are known, but the transition probability is unknown. For
simplicity, we assume the initial state is unique; however,
this can easily be extended to the scenario with an initial
distribution.

Given MDP M, a (stationary) control policy is a function
m: % x A—[0,1] which assigns probabilities to actions at
each state such that for all s € X, ° _, 7(s,a) = 1. The
objective of reinforcement learning is to synthesize a control
policy that maximizes the total sum of discounted rewards

through simulation data [30], i.e.,
T

™ = arg max E Z YRy, @)
t=0
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where R; is the random variable for the reward at instant ¢
when the agent applies policy 7 and « € [0,1] is a discount
factor that balances future rewards.

Q-learning is a prominent algorithm in reinforcement
learning to achieve the above objective without knowing
the transition probability. It is a model-free, off-policy and
temporal-difference method utilizing a Q-table to hold val-
ues for state-action pairs. At each instant ¢, with o be-
ing the learning rate, we use the one-step transition data
(st,at, T, Se+1) to update the Q-table according to the Bell-
man Equation as follows:

Q(styai) = (1 — )Q(s¢,ae) + afry + W?Eaj(Q(StHv a)]l. (8)

III. PROBLEM FORMULATION

We define two optimality metrics for the synthesized
control policy by taking the temporal robustness value into
account and formulate the control synthesis problems.

A. Case of Guaranteed Temporal Robustness

In the first approach, we consider § > 0 as the minimum
required value for the temporal robustness of the signal. Only
signals with temporal robustness greater than or equal to ¢
are considered “robust-enough” signals. The following first
problem aims to maximize the probability of robust-enough
signals.

Problem 1: (Maximizing Probability with Temporal
Robustness Guarantees): Let M be an MDP with unknown
P and ® be an STL formula in form of Equation (5) with
time horizon hrz(®) = T + 1. Given 4, find a policy 77
that maximizes the probability of generating “robust-enough”
trajectories. That is

7] = arg m;‘:cxxPr7r [0(®,s0.7) > 4], )

where Pr™ () denotes the probability under .
Note that, using indicator function I(-), Equation (9) can
be expressed equivalently as

71 = argmax E™[I(6(®, sg.1) > 0)]. (10)

B. Case of Spatial-Temporal Robustness

Note that, the above problem formulation does not con-
sider spatial details within signal values. To address this, we
extend it to a spatial-temporal robustness joint optimization
problem. In this formulation, our goal is twofold: maximiz-
ing the satisfaction probability under time uncertainty and
enhancing the extent of satisfaction.

Specifically, we consider § > 0 as an upper bound of
possible time shifts. Then we define the worst-case spatial
robustness value with time shifts bounded by § by

ps(®,s0.7) := min{p(®,so.7,d) | d <6} (11)

Our objective is to maximize the expectation of such worst-
case spatial robustness value.

IV. REINFORCEMENT LEARNING FOR TEMPORAL
ROBUSTNESS

In this section, we reshape the previous problems into
RL-friendly ones. Specifically, we approximate the original
objective functions in summation-based forms for which
standard Q-learning algorithms can be applied. Theoretical
bounds between the original problems and their approxima-
tions are established.

A. Construction of T-MDPs

As noted by [23], for STL spatial robustness, the standard
Q-learning algorithm cannot be applied to the original MDP
since the reward function is non-Markovian. The same issue
also exists for temporal robustness, and time shifts further
add complexity. To address this, we use the 7-MDP structure
proposed in [23], which essentially augments states in the
original MDP by a sequence of states of length 7.

Definition 3 (7-MDP, [23]): Given an MDP M =
(3, 80, A, P, R) and a positive integer T € N, its associated
7-MDP is a tuple M"™ = (X7, s7, A, P™, R"), where

e X7 C(X)7 is the set of states.

e s( is the initial state, which is initialized as a string
5080 - - - 8o of length T;

o A is the action space, which is the same as M;

o PT:%7" x Ax X" — [0,1] is the transition probability
function such that, for any s7,s],; € ¥7,a; € A, if
si1(i) = sf(i+1),vi € {0,1,---,7 — 2}, where
s7 (i) denotes the ith element in s}, then we have
PT(sz—a at, SI+1) = P(SI(T - 1)7 ag, 5{—}-1(7_ - 1)) Oth-
erwise, P7(s],as,s7,,) = 0;

e RT :¥™ — R is the reward function defined over the
7-MDP.

Intuitively, the 7-MDP “unfolds” the original MDP by
retaining the last 7 visited states. That is, each s] denotes the
T-step history, i.e., s = S¢_r41:¢, where 7 is determined by
the task. For a general STL formula, we need to choose 7 as
the entire horizon of the formula to gather enough informa-
tion for robustness computation. Yet, for formulae F g z7)¢ or
Gio, )¢, we only need 7 = hrz(¢)+0. Specifically, we need
hrz(¢)-step information to determine the satisfaction of the
internal sub-formula ¢, and an additional J-step information
to determine the temporal robustness.

B. Approximation of Robust Probability

Before addressing Problem 1, where our objective is to
maximize the probability of being temporally robust to a
time shift threshold, we first extend the STL semantic to
delayed partial signals.

Definition 4: (Satisfaction of Delayed Signal): Given
specification ®, 7-state s7, and a small delay amount d <
0, we denote the delayed (right shifted) signal trace as
St—h—d+1:t—d> Where h = hrz(¢). The satisfaction of delayed
signal is denoted as follows:

Problem 2: (Maximizing Expectation of Spatio-
Temporal Robustness): Under the same setting as sat(¢, s7,d) = [St—h—dt1:t—d = ¢'] (13)
Problem 1, find a control policy 75 such that where ¢’ is obtained from ¢ by right-shifting the effective
75 = arg max E™ [p5(®, so.7)] - (12)  time window by t —h —d+1 steps, e.g., for ¢ = Gjg (s <
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C), we have ¢' = G;_p—a41,t—a)(s < C). In another word,
the satisfaction of delayed signal is determined by whether
every (or at least) one state on trace S;_j_q+1.4—q Satisfies
the inner sub-formula ¢’ by Boolean semantic (3). With
a slight abuse of notation, hereafter, sub-formulae are by
default shifted according to the elapsed time ¢ and thus we
do not differentiate ¢ and ¢'.

Having defined satisfaction of delayed signals, we can now
formally qualify the concept of being temporally robust.

Definition 5: (5-Temporally-Robust): Given specifica-
tion ®, 7-state s; and temporal robustness lower bound 4,
we say T-state s; is d-temporally-robust if s] satisfies the
specification ® for any delay d € [0, 6], and we denote
1 1f021;26 (sat(®,s7,d)) =1

b(®, s7,8) = (14)

otherwise
Proposition 1: The temporal robustness guarantee of sig-
nal sg. w.r.t. the overall formula ® can be determined by
the temporal robustness guarantee of partial signal s} w.r.t
the sub-formula ¢, i.e., the following equation holds:

I(@(‘I),So;T) Z 5) =

nax (rb(¢, s7,6)) if & =Fo,me (15)
min (rb(¢, s7,0)) if = Gio,m)®

t=0:T

Proof: ~ For disjunction and conjunction of sub-

formulae, we have the following properties in terms of
temporal robustness; see [28]:

0(p1 V ¢2,s0.7) = max (0(¢1,80:7), 0(¢2,50.7))
0(p1 A ¢2,80.7) = min (0(¢1,s0:7), 0(¢2,50.7))

For STL formula ® = F (o )¢, we use the operator “V” to
break down the formula, and since 0(¢, St.ryn—1) > 0,VE €
[0,T], we have

0(®,s0.7) = max (0(¢, Sev+n-1))-

Since  I(max (6(¢,Se:i+n-1)) =

(16)

a7
§) is equivalent to

n(r)lva%x(rb(qb,_sf, J)), we obtain that
1(6(®,s0.7) 2 0) = max (1b(¢, s7,9)).

Proof is similar for ® = Gg g)¢, as tglg% (rb(¢, 7, 9)) is
equivalent to I(tglg%“(e(qb, Stiin_1)) > 0). [ |

We have established the relation between the temporal
robustness of entire trajectory w.r.t. the overall specification
® and the temporal robustness of partial trajectory w.r.t. the
inner sub-formula ¢. In [23], the author approximated and
decomposed the objective function using the LSE (log-sum-
exp) method into a sum of step rewards. Here we use the
similar philosophy in reformulating our problem. The LSE,
also known as a smooth approximation to the maximum
function, is defined as follows:

max (X1, - ,&y) &~ %logZe'B“. (18)
i=1

The approximation is bounded by the following inequalities:

The same can be derived for min (z1, - ,2z,) =

—max (—xy1, -, —Tp) =R f% log >~ e~ #%i. Clearly, in-

creasing 5 will narrow the gap bethe?eln the approximated
value and the actual value.

Problem 1A: (Maximizing Approximated Probability
of Being Temporally Robust): Consider an MDP M =
(3, s0, A, P, R) with unknown P, given an STL specification
®, find a control policy 7, that maximizes the following
objective function:

T T
argmax E[>) ef (@579 if ® =F,mo
Tia = t?O .
argmaxE[ Y —e A P@s00] if & = G gy
0 t=0
(20

The following result shows that the reformulated problem
can be arbitrarily close to the original problem.
Proposition 2: When [ goes to infinity, the optimal pol-
icy to the approximated problem 7}, will converge to the
optimal policy to the original problem 7.
Proof: The proposition can be manifested from Equa-
tion (19), which leads to:

Pr™1 (0(®, s0.7) > ) < Pria(0(®, so.r) > 0)

< Pr1(9(®, s0.7) > 6) + 3 log(T +1). @D

|

Note that, when [ is too large, the objective function
will become less smooth, which prolonging the learning
convergence [30]. Therefore, we select a reasonably large
£ in the experiments.

Now Problem 1A is in the standard form of reinforcement
learning, depending on the type of the STL specification, the
step reward is given as:

eﬁ-rb(qﬁ,s{_'_l,é)

if = Fio
ry = R7(s{1) = {_eﬁ-rb(o;,s;rl,a) 0% (22)

if & = G
C. Maximizing Spatial-Temporal Robustness

Although our original purpose is to further consider the
spatial robustness in addition to the temporal robustness
requirement, the purported approach is also expected to
expedite the learning process. This is because relying solely
on Boolean satisfaction offers little insight into the quality
of the current 7-state. For example, for ® = F[07 H)gb, before
reaching a satisfying 7-state, the agent receives minimum
reward, resulting in infrequent updates to the corresponding
entries in the Q-table. Thus the learning process reduces to a
Monte-Carlo search, which is far from efficient. However, in-
corporating spatial semantic can enhance our data efficiency.
To this end, we denote the objective function in Problem 2
as Jy and we obtain the following equivalent form regarding
P = F[O,H)¢ and = G[O,H)¢

e { E[min{max{p(¢,s7,d)}}] if ®=Fio,me

Efmin{min{p(¢, s, d)}}] it ®=Gome >

1 N Bas Using the same LSE technique to decompose the max and
max(xy,...,z,) < zlog). eP%i , . ; 3 o
B =1 (19) min operator in Jy, we obtain the approximated objective
< max(x1, ... ,xn)—k% logn. function J; by
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T T
E[min{ Y ePr(esi ’d)}] it ®=Fo,me
d<$§ “t=o

T ™
Elmin{ 3> —e @79} if & = Gy
d<é “1=o

J1 = (24)

Note that the above objective function .J; is still not in
the additive form, to further obtain the instant reward at each
step, we define the objective function Jy by

T B-min{p(¢,s] ,d)}
E[S ¢ %6 PLP5e ] if ® =F,mo
Ja = i i )
—B-min{ (¢,3Tad)}
B[S —e 4% PRese | if @ =G,me
t=0

We use the objective function J, to formulate the approx-
imated problem as follows.

Problem 2A: (Maximizing Approximated Expected
Spatial-Temporal Robustness): Consider an MDP M =
(3, s0, A, P, R) with unknown P, given an STL specification
®, find a control policy 75, that maximize the objective
function Js.

Specifically, the step reward is given by

B-ﬂir{;{p(@s;d)}
R =4 ¢

The following result shows that the optimal value of the
approximated Problem 2A provides a lower bound for the
optimal value of the original Problem 2.
Proposition 3: Maximizing the objective function of
Problem 2A maximizes the objective function of Problem 2.
Proof: For ® = F[g )¢9, we denote ePr(¢:si.d) a5
M, where d € {0,1,...,6}. The approximated objective
function J; can be written as

T T T
ﬁ::mm{E:Aﬁﬂijkﬁ“.WEZA@}. 27
t=0 t=0 t=0

Also, the objective in Problem 2A can be written as

if ® = Go,mo

(26)

e—ﬁ-%ig{p((b,sz,d}

T
b::}:mm{A@pMﬁ.”,Mf}. (28)

t=0
For each t, we set min{M?, ..., M} = M, and
we have MZ > M, vd € {0,...,5}. Plugging
the ine%ualities into Equation (27), we obtain J; >
min{Zt:OMta-~-aZ;:T:0Mt} = ZtT:oMt = Jo. The
equality only holds when M? = ... = M/. Furthermore,
Equation (19) establishes the relation between Jy and Ji,
since J; is a direct LSE decomposition of Jo. Namely,
we have §logJy < Jo + glog(T +1). Thus 5 logJp <
Jo + %log(T + 1) also holds as Jo < Jj, which means
that %log Jo — %log(T + 1) is a lower bound for the
objective function value of the original Problem 2. Thus
maximizing Jo maximizes the lower bound of .Jy. The proof
for ® = Gyg )¢ is analogous. [ |

V. CASE STUDIES

In this section, we illustrate the effectiveness of our
algorithm by conducting a set of four simulation experi-
ments'. All algorithms were implemented using MATLAB
and simulated in Coppeliasimona Windows 10 computer
with an Intel Core i7-8550U 1.80GHz processor.

System Descriptions: We consider a scenario, where a
warehouse robot navigates in a manufacturing factory floor
as depicted in Figure 2. There are three functional areas in
the workspace: a storage area marked by the parcel icon
and two loading stations marked by A and B. These areas
will be used later for specifying tasks. Depending on the
specific task, the workspace is abstracted as n xn grid worlds
shown in Figure 1, where star marks the initial state and
yellow regions mark the goal states. We consider the high-
level decision-making problem on the abstracted grid world,
where agent can choose to move to its adjacent grids or to
stay for each decision time step. If the agent chooses an
action leading to collisions with the boundaries, then it will
be forced to stay at the same grid. The high-level decisions
from grid to grid are then executed by a low-level hybrid
controller that ensures collision avoidance along the way.
The objective is to synthesize a control policy that generates
trajectories over grids satisfying a given STL task.

Fig. 2: Aerial view of the factory floor

Policy Learning Setups: We modify the standard tabular
Q-learning algorithm to synthesize policies. To approximate
reward functions, we choose 8 = 50. The learning rate for
the update is chosen as o = max{0.95 x 0.999%,0.0001}
at the ith episode and the discount factor is chosen as v =
0.9999. We settle for the policy after 10* episodes of training.

Result Evaluations: Once a control policy is obtained,
we evaluate it by generating 1000 simulation trajectories.
Note that, we do not explicitly introduce time delays in the
simulation, but evaluate each trajectory by its robustness
to potential delays. For each trajectory, we compute the
following four metrics by existing computation methods for
STL: (i) Boolean satisfaction, (ii) satisfaction with temporal
robustness guarantees, (iii) spatial robustness value and (iv)
temporal robustness value. Then we compute the statistic
values, including the average satisfaction rate Pr(so. = @),
the average time-robust satisfaction rate Pr[0(®,s.1) < 4],
the average spatial robustness p(®P,sg.r) and the average
temporal robustness §(®,so.z) and summarize it in Table I.
For each scenario, we pick one of the sample trajectories with
the highest episodic reward for the purpose of demonstration
as shown in Figure 1.

'Sample videos and codes are available at ht tps://github.com/
WSQOsGithub/TimeRobustLearning.
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Fig. 1: (a)-(d) From left to right: Sample Trajectories generated by 7}, for reachability task, 75, for reachability task, 77 4

for patrolling task and 73, for patrolling task

TABLE I: Experiment parameters and results

Prob. Task Grid size #Q-entry & Pr(sor = ®)  Prl0(®,s0.7) >8] p(®,s0.7)  O(D,s0.7)
1A @ 6 12358 2 0.967 0.963 0.994 8.782
24 B 6 13135 2 0.957 0.95 1274 8.154
1A @ 4 4574 1 0.648 055 0.043 -3.76
A By 4 4534 1 0.657 0.568 0.079 -3.626

Fig. 3: Learning curves of training the policies in Figure 1(a-
d), respectively

Reachability Task: In the first case study, we consider
a 6 x 6 world and a reachability task described by

@1 = F[O,IQ)G[O,Q) (S S GOG,Z).

Specifically, within 14 steps, the agent needs to move to
the storage area and stay for at least 2 steps. We synthesize
policies for both Problems 1A and 2A and show the sample
trajectories in abstract space in Figures 1(a) and (e) for
Problem 1A and Figures 1(b) and (f) for Problem 2A,
respectively. The robot manages to find the shortest path
to the goal region and stays there until the task ends even
though the STL specification only requires it to stay there for
2 steps. Figure 1(b) further shows that the robot is driven to
the center of the goal region as a result of considering spatial
robustness. In this case, the policy of Problem 2A generates
more spatially robust trajectories.

Patrolling Task: In the second case study, we consider
a 4 x 4 world and a patrolling task described by

(1)2 = G[O,12) [F[0,3) (S c A) A\ F[Oyg)(s S B)] .

Specifically, within 15 time steps, the robot needs to visit
regions A and B (two yellow grids) every 3 time steps to
load and unload workpieces. We still synthesize policies for
both Problems 1A and 2A. Sample trajectories are provided
in Figures 1(c) and (g) for Problem 1A, and Figures 1(d)
and(h) for Problem 1B, respectively. For this task, since we
take temporal robustness into account, the robot leaves the
goal region immediately once the work piece is (un)loaded.
Compared with the reachability tasks, this patrolling task is

more difficult to achieve since we need to satisfy the sub-
task for the entire horizon, which explains the relatively low
average temporal robustness compared to the reachability
task, as indicated in Table I.

Discussions: Table I shows that the performance distinc-
tion between policies from the two problem formulations
is statistically insignificant. This is largely because that even
though two problems are theoretically formulated differently,
the shaped reward is numerically similar. Also, because
has to be sufficiently large to approximate min or max
operators, ¢”® becomes very large when z > 0 and close to 0
otherwise. This scaling further narrows the gap between the
two problems. Nevertheless, Figure 1 shows that the spatial
robustness maximization drives the agent towards the goal
region’s center.

Figure 3 reveals intriguing insights from the learning
curves. For the patrolling task, the potential of expediting
learning through spatial robustness consideration is evident.
While for the reachability task, from Figure 3, it seems that
the optimum is later reached. However, this is because that
the agent gets significantly higher reward at the central grid
of the goal region than the others. The agent trained on
Problem 2A can already generate as good trajectories as the
agent trained on Problem 1A before the latter policy reaches
convergence. The fact that the central grid which generates
the best reward when visited, is distant from the initial state,
contributes to the late convergence as it takes longer to find
the central grid.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a novel reinforcement learning
approach to enhance the temporal robustness of signal tem-
poral logic tasks for unknown stochastic systems. We present
two optimization problems to maximize temporal robustness
probability and expected spatial-temporal robustness. Addi-
tionally, we provided approximation techniques that enable
the application of standard Q-learning techniques. Experi-
mental results demonstrate the effectiveness of our proposed
approach. In the future, we plan to extend our results to more
general fragments of STL tasks. We also aim to investigate
how to incorporate the concept of asynchronous temporal
robustness in reinforcement learning and to consider the case
of continuous state and action space.
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