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Abstract—We investigate the control synthesis problem
for Markov decision processes (MDPs) with unknown
transition probabilities under signal temporal logic (STL)
specifications. Our primary objective is to learn a control
policy that maximizes the probability of satisfying the
STL task. However, existing approaches to STL control
synthesis using reinforcement learning encounter a signif-
icant exploration challenge, particularly when expanding
the state space to incorporate STL tasks. In this letter, we
propose a novel reinforcement learning algorithm tailored
for STL tasks, addressing the exploration difficulty by effec-
tively leveraging counterfactual experiences to expedite
the training process. Through experiments we show that
these generated experiences enable us to fully employ
the knowledge embedded within the task, resulting in a
substantial reduction in the number of trial-and-error explo-
rations required before achieving convergence.

Index Terms—Reinforcement learning, signal temporal
logic, formal methods.

I. INTRODUCTION

W ITH the rapid advancement of cyber-physical systems
(CPS), there is a growing imperative to formally verify

and synthesize spatial-temporal behaviors and provide prov-
able guarantees. As a formal specification language, signal
temporal logic (STL) offers a structured approach to reasoning
about temporal properties related to real-valued physical sig-
nals. STL empowers the expression of intricate requirements,
such as “drive to the charging station within 20 minutes and
remain there for at least 10 minutes.” In the past years, STL
has been successfully applied to various safety-critical CPSs
such as autonomous vehicles [1], industrial automation [2],
smart grids [3] and healthcare systems [4].

To address the control synthesis problem concerning STL
specifications, recent literature has witnessed the development
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of various synthesis methods. Effective strategies include
encoding the satisfaction of STL formulae as constraints using
mixed-integer linear programming techniques [5], [6], [7] and
encapsulating the forward invariant satisfaction regions of STL
tasks using control barrier functions [8], [9], [10]. However,
these approaches necessitate complete knowledge of the
system’s dynamics, which is not readily accessible in practical
applications.

When the dynamics of the system are unknown a priori,
model-free reinforcement learning (RL) becomes a prevalent
approach for synthesizing control policies [11], [12], [13],
[14], [15], [16], [17]. In the context of RL for STL, a
prominent approach is the τ -MDP approach [11]. However,
this approach heavily relies on partial history trajectories,
leading to an exponential growth in state space with the
maximum sub-task horizon. In [15], the authors proposed
an F-MDP formulation to more efficiently record historical
information. However, even with this formulation, the state
space can still become excessively large in complex scenarios.
Therefore, substantial interactions between the agent and the
environment are essential to generate sufficient experiences
for effective learning, which may be time-consuming and
mechanically harmful.

Experience replay is a widely utilized technique in RL
that can enhance sampling efficiency by storing and reusing
past experiences. Through random sampling from these
experiences during training, the agent can disrupt temporal
correlations and improve generalization [18]. Our research
draws inspiration from [19], [20], wherein counterfactual
experience replay is incorporated into policy synthesis for
linear temporal logic (LTL) specifications. This approach
leverages the known automaton representation of the LTL
task, incorporating that information to generate counterfactual
experiences. However, to our knowledge, leveraging counter-
factual experiences to expedite RL for STL tasks has not
been explored. This problem presents a significant depar-
ture from the LTL problem, as STL lacks similar automata
representations.

Motivated by the necessity for a more efficient RL algorithm
tailored for STL tasks, this letter adopts the philosophy
of counterfactual experience replay to guide RL for STL
synthesis. Specifically, our contributions can be summarized
as follows. First, we utilize the F-MDP model to encode
both the physical state and the task progress state of the
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agent. Building upon this F-MDP representation, we introduce
an approach to generate counterfactual experiences from
factual ones. Subsequently, we present an off-policy RL
framework designed to synthesize policies for STL-specified
tasks, effectively leveraging the generated information. Finally,
we conduct an extensive set of experiments, focusing on a
path planning problem for a mobile robot within a factory
floor. We thoroughly analyze the efficiency of our approach in
comparison to the baseline methodologies.

II. PRELIMINARIES

A. Signal Temporal Logic Tasks
We consider tasks specified by signal temporal logic (STL)

formulae. STL is a formal language widely used for describing
high-level logic behaviors over continuous signals. Similar to
the setting of [15], we consider a restrictive yet expressive
fragment of STL with the following syntax:

� := ¬� | F[0,T)φ,

φ := ¬φ | φ1 ∧ φ2 | F[0,τ )ψ,

ψ := true | μ | ¬ψ | ψ1 ∧ ψ2, (1)

where μ : R
m → {true, false} is an atomic predicate such

that it is satisfied for signal value s ∈ R
m iff hμ(s) > 0, where

hμ : R
m → R is the underlying predicate function; ¬ and

∧ are the Boolean operators “negation” and “conjunction”,
respectively; F is the temporal operator “eventually” with
τ,T ∈ N≥0 are two non-negative time instants.

Intuitively, formula class ψ represents Boolean formulae,
in which “disjunction” ∨ and “implication” → can also be
induced. Formula class φ represents the sub-formulae, in
which temporal operators can only be applied in front of a
Boolean formula ψ . Note that, within this class, one can also
define the temporal operator “always” G[0,τ )φ := ¬F[0,τ )¬φ.
Finally, formula class � captures the overall task of our
interest, in which two nested temporal operators are allowed
in front of Boolean formulae.

STL formulae are evaluated over finite signals that take
values in a continuous metric space R

m. For any signal s, we
denote by st its value at time t. Also, we denote by (s, t) |= ϕ

that signal s satisfies formula ϕ at time instant t. Formally, the
(Boolean) semantic of STL is defined recursively as

(s, t) |= μ ⇔ hμ(st) > 0,

(s, t) 	|= ϕ ⇔ (s, t) |= ¬ϕ,
(s, t) |= ϕ1 ∧ ϕ2 ⇔ (s, t) |= ϕ1 and (s, t) |= ϕ2,

(s, t) |= F[0,T)ϕ ⇔ (
s, t′

) |= ϕ ∃t′ ∈ [t, t + T). (2)

Based on the above semantics, the semantic for the temporal
operator “always” G[0,T) can also be induced as

(s, t) |= G[0,T)ϕ ⇔ (
s, t′

) |= ϕ ∀t′ ∈ [t, t + T).

We also define the characteristic function of an STL formula
ϕ w.r.t. signal s at time instant t by

χ(ϕ, s, t) =
{

1 if (s, t) |= ϕ,

0 otherwise, (3)

where χ(ϕ, s, t) = χ(ϕ, s) when t = 0. For any STL
formula, its satisfaction can be completely determined within
its horizon, denoted by hrz(ϕ), which can be computed as
the maximum sum of the time interval bound of all nested
temporal operators [11].

B. Q-Learning for Markov Decision Processes
We model the dynamic of the underlying system by a

Markov decision process (MDP). Formally, an MDP is defined
as a 5-tuple M = (�, s0,A,P,R) , where � is the set of
states, s0 is the initial state, A is the set of actions, P : � ×
A × � → [0, 1] is a unknown transition probability function
and R : � → R is the reward function. Note that we include
the reward function R to maintain alignment with standard
models despite it is not directly used in our current method.
For simplicity, we focus on a single initial state; all results
can be extended easily to the case of initial distribution.

Given MDP M, a (stationary) control policy is a function
π : � × A → [0, 1] that assigns each action a probability at
each state with ∀s ∈ � :

∑
a∈A π(s, a) = 1. The objective is to

synthesize a control policy that maximizes the total discounted
rewards [18], i.e.,

π∗ = arg max
π

E

[
T−1∑

t=0

γ trt

]

, (4)

where rt is the random variable for the reward at instant t when
the policy π is applied and γ ∈ [0, 1] is a discount factor that
penalizes the reward in the future.

Since the transition probability is assumed to be unknown,
one needs to learn the optimal control policy based on the
online information of states, actions and rewards. Particularly,
tabular Q-learning, one of the simplest yet widely used RL
algorithms, is a model-free, temporal-difference method which
maintains the values of all state-action pairs in a Q-table.
Specifically, at each update, the Q-table is updated with a
transition (st, at, rt, st+1) according to the Bellman equation:

Q(st, at) := (1 − α)Q(st, at)+ α

[
rt + γ max

a∈A
Q(st+1, a)

]
,

(5)

where α is the learning rate.

III. PROBLEM FORMULATION

Given an MDP M = (�, s0,A,P,R) with unknown P and
STL formula �, the overall control objective considered in
this letter is to maximize the probability of the satisfaction
of STL formula �. Formally, we aim to find the following
optimal policy π∗ defined by

π∗ = arg max
π

P
π [(s, 0) |= �], (6)

where P
π is the probability measure over the set of all finite

signals of length hrz(�) under policy π . Note that, using
the characteristic function, Equation (6) can also be written
equivalently as

π∗ = arg max
π

E
π [χ(�, s)]. (7)

Note that the objective function in the above formulation
cannot be handled by the standard Q-learning algorithm since
the reward is defined over the entire horizon rather than in
the discounted sum form. Therefore, following the approach
in [11], we use Log-Sum-Exp (LSE) to transform the original
objective into the RL-friendly form. Specifically, the LSE is a
smooth approximation method for max and min operators:

max(x1, . . . , xn) ≈ 1

β
log

n∑

i=1

eβxi ,
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min(x1, . . . , xn) ≈ − 1

β
log

n∑

i=1

e−βxi , (8)

where the approximation error is bounded by two inequalities,
see [11].

In the context of the STL control synthesis problem, since
we focus on the STL formula of form F[0,T)φ or G[0,T)φ,
the control synthesis problem stated in Equation (6) can be
approximated as follows:

π∗
A = arg max

π
E

{∑T−1
t=0 eβχ(φ,s,t) if � = F[0,T)φ,∑T−1
t=0 −e−βχ(φ,s,t) if � = G[0,T)φ.

(9)

In the above problem reformulation, the objective is in form
of a summation of rewards, where each step reward can be
determined within the horizon of sub-formula φ. In order to
calculate the step reward, a direct approach is to augment
the original MDP to keep track of all states in the latest
hrz(φ)-step history. This is known as the τ -MDP approach
[11], which results in an augmented state space of size equal
to |�|hrz(φ). However, this approach requires extremely large
memory when the horizon of φ increases. In this letter, we
will introduce a simple and tractable method for calculating
sub-task satisfaction.

IV. REINFORCEMENT LEARNING WITH

COUNTERFACTUAL EXPERIENCE REPLAY

In this section, we introduce our main algorithm for approx-
imating the objective function, building upon the flag-based
encoding of task progress proposed in [15]. Additionally, we
utilize the STL formula to guide the generation of coun-
terfactual experiences, enhancing the learning process and
resulting in a more efficient approach compared to the original
algorithm in [15].

A. Tractable Representation of Task Progress
First, we recall the F-MDP defined in [15] that captures

the system state as well as the task progress. The defini-
tion is slightly different from the original version for the
purpose of later developments. Recall that our task is of
form F[0,T)φ or G[0,T)φ. Furthermore, each formula φ is
a Boolean combination of sub-formulae. Therefore, we can
write φ in terms of its sub-formulae by φ = g(φ1, . . . , φn),
where g is a Boolean function and each φi is of form
F[0,τi)ψi or G[0,τi)ψi. Therefore, an F-MDP is constructed by
augmenting the state space of the original MDP by assigning
flag variables for each sub-formula φi to keep track of its
progress.

Definition 1 (F-MDP): For MDP M = (�, s0,A,P,R), its
F-MDP is defined as a tuple MF = (�F, sF

0 ,A,PF,RF), where
• �F ⊆ (� × ∏n

i=1 Fi) is the augmented state space
obtained by taking the Cartesian product of the system
state space with the n flag state sets Fi, i ∈ {1, . . . , n};

• sF
0 = (s0, f1,0, . . . , fn,0) is the initial state with fi,0 =

0,∀i ∈ {1, . . . , n};
• PF : �F × A × �F → [0, 1] is the transition

function. Let sF = (s, f1, f2, . . . , fn) and sF ′ =
(s′, f ′

1, f ′
2, . . . , f ′

n). We have PF(sF, a, sF ′
) = P(s, a, s′)

if and only if f ′
i = update(fi, s′),∀i ∈ {1, . . . , n},

where update(·) is the update rule of flag variables
defined by:

fi,t+1

=

⎧
⎪⎨

⎪⎩

τi if st+1 |= ψi & φi = F[0,τi)ψi,

max
(
fi,t − 1, 0

)
if st+1 	|= ψi & φi = F[0,τi)ψi,

min
(
fi,t + 1, τi

)
if st+1 |= ψi & φi = G[0,τi)ψi,

0 if st+1 	|= ψi & φi = G[0,τi)ψi.

(10)

• RF : �F → R is a reward function defined over the
augmented state space.

The update rule of the flag variables is the essence of the F-
MDP formulation. Each flag variable captures the completion
progress of each sub-task and one can use it to determine the
overall satisfaction. For each sub-task, the satisfaction of each
sub-task is dependent on how st |= ψi is seen in the last τi-
step history. For φi = F[0,τi)ψi, fi,t > 0 means that there exists
at least one t′ in the last τi-step history that st′ |= ψi holds.
And for φi = G[0,τi)ψi, fi,t = τi means there exists continuous
τi-step satisfaction of st′ |= ψi. Thereby we derive satisfaction
for sub-task φi:

χ(φi, sF
t ) =

⎧
⎨

⎩

1 if (fi,t > 0 & φi = F[0,τi)ψi)

or (fi,t = τi & φi = G[0,τi)ψi)

0 else
(11)

The satisfaction of the inner formula φ can be derived using
simple Boolean operations according to Equation (2). Thus the
step reward for the agent can be derived from Equation (11).
Specifically, the step reward is given by:

rt = RF(
sF

t+1

) =
⎧
⎨

⎩
e
βχ

(
φ,sF

t+1

)

if � = F[0,T)φ

−e
−βχ

(
φ,sF

t+1

)

if � = G[0,T)φ

. (12)

One can easily derive that the size of the state space for
F-MDP is |�| · ∏n

i=1 τi.
Remark 1: In most circumstances, the number of sub-task,

n, is often trivial compared to each sub-task’s horizon τi,
∀i ∈ {1, . . . , n}, which can increase drastically as the problem
complicates when one sub-task takes longer to finish. The
F-MDP representation is applicable to a broader context.
Only in extreme circumstances, where the inner formula
consists of multiple sub-formulas with short horizons, and the
original state space is small, the τ -MDP representation is more
economic.

B. STL-Guided Counterfactual Experience Generation
Although the F-MDP formulation reduces the state space

to certain degree, the state space size still grows exponentially
with the number of sub-tasks n and linearity with each sub-task
horizon hrz(φi). In RL processes, experiences are obtained by
interacting with physical systems or simulation environments.
Optimal policies can be learned given all states are visited
infinitely many times. However, when there exist multiple
sub-tasks or long-horizon sub-tasks, it is extremely time-and-
resource-consuming to explore the entire state space.

In order to enhance the usage of samples, we propose an
STL-guided counterfactual experience generation scheme to
combat the issue of large state space. The philosophy of our
experience generation procedure is simple. Specifically, in the
F-MDP constructed, at each time step t, the transition of
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Algorithm 1 Counterfactual Experience Replay (CFER)
1: Initialize the learning algorithm A � Q-Learning
2: Initialize the replay buffer B
3: for episode = 1 : M do
4: Sample an initial state s0.
5: for t = 0,H − 1 do
6: Interact and get e = (st, ft, at, rt, st+1, ft+1)

7: Generate counterfactual transitions Ẽ via (14)
8: Store the transitions in B
9: if episode%Replay Period= 0 then

10: Sample a minibatch B: = S(B)
11: Update policy π : = UPDATEA(π,B)
12: end if
13: end for
14: end for
15: return Policy π

flag variable is fully known given the resulted signal state
st+1. Therefore, in addition to considering the original flag
transition, one can further use this physical transition sampled
together with artificial flags to generate new associated flag
transitions.

To be more specific, at each step t, the agent takes an
action at from state sF

t and then lands in state sF
t+1, receiving

a reward rt. For the convenience of further discussions, we
write sF

t = (st, f1,t, . . . , fn,t) and combine the flag states
(f1,t, . . . , fn,t) to form a vector ft ∈ ∏n

i=1 Fi, where Fi is the
state set for each flag variable fi,t. We define such transitions
resulted from actual interactions with the physical system
factual experiences. We store this experience as a tuple

e = (st, ft, at, rt, st+1, ft+1). (13)

Definition 2 (Counterfactual Experience): The set of coun-
terfactual experiences generated by a factual experience e is
defined by

Ẽ =
{(

st, f̃t, at, r̃t, st+1, f̃t+1

)
| ∀f̃t ∈ F

}
, (14)

where f̃t+1 = update(st+1, f̃t) and r̃t = RF(s̃F
t+1), s̃F

t+1 =
(st+1, f̃t+1) as defined Equation (10) and (12).

Intuitively, from each factual experience, we can pretend
that the agent starts from any arbitrary flag state ft and
generates a set of counterfactual experiences. In essence, to
achieve complete coverage of the augmented state space, the
agent is only required to explore the primary state space �,
while the augmented states can be systematically generated.

In Algorithm 1, we provide a framework for RL with STL-
guided counterfactual experience replay. During each learning
step, the agent produces a factual experience and generates a
set of counterfactual experiences according to Equation (14),
which are then stored into the replay memory. At each replay
period, the agent samples a batch of experiences from the
memory based on a sampling strategy S and performs batch
policy update according to Equation (5).

V. CASE STUDY AND NUMERICAL COMPARISONS

In this section, we conduct a case study to illustrate
the feasibility and effectiveness of the proposed algorithm.
Specifically, we consider the control synthesis problem for

Fig. 1. Simulation environment.

Fig. 2. Sample traces generated by optimal CFER policies.

a mobile robot navigating in a workspace. We show in the
simulations that control policies can be learned to success-
fully achieve the STL tasks. Furthermore, we conduct a set
of numerical experiments with different tasks and different
grid sizes to compare the proposed algorithm with existing
algorithms.

All algorithms are implemented using Python 3.7 on a
Ubuntu 20.04 machine. Simulations are provided by robot sim-
ulator Coppeliasim. Codes and video of sample trajectories
are available at https://github.com/WSQsGithub/STL-CFER.

A. Environment Description and STL Tasks
We consider the scenario, where a mobile robot navigates

in a manufacturing factory as shown in Figure 1. As shown
in the figure, the factory workspace has two regions where
the robot can pick up or unload products and one charging
region where the robot can charge its battery. The robot is
navigating in the workspace in order to achieve some STL task.
We discretize the workspace into a grid world, considering
resolutions of 5 × 5 and 10 × 10 as shown in Figure 2. Then
at each instant, the agent makes a high-level decision in the
discrete abstract grid world to move to any of its adjacent grid
or to stay still. If the agent chooses an action that results in
collision with the boundaries, then it is forced to remain still in
the same grid. Then the high-level command from grid to grid
is executed by a low-level hybrid controller for navigation.
Due to discretization errors as well as disturbances in the real
world, the transitions from grid to grid under high-level actions
are uncertain with an unknown probability.

We consider the following three different types of STL
tasks, where signal s at each instant is the coordinate (x, y) of
the center of the current grid of the robot:
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Fig. 3. Satisfaction curves for naive, naiveER,CFER for reaching, charging and patrolling task during training.

Reaching task: The agent is supposed to reach the storage
area (the blue colored region in Figure 2) to report to duty in
T + τ time units. Note that, although our fragment � requires
two nested temporal operator, this task can still be captured by

�1 = F[0,T+τ)(s ∈ A) = F[0,T)F[0,τ )(s ∈ A). (15)

Charging task: The robot needs to visit the charging station
every T time units and for each visit, to stay inside the charging
region for certain time τ to get fully charged. This task can
be specified by

�2 = F[0,T)G[0,τ )(s ∈ Charging Region). (16)

Patrolling task: During the working hour, the robot must
pick up parcels from one area and deliver them to another,
completing each cycle within τ time units by patrolling
between blue and red regions in Figure 2. This task is
specified as

�3 = G[0,T)
[
F[0,τ )(s ∈ A) ∧ F[0,τ )(s ∈ B)

]
. (17)

B. Implementation Details of Learning Algorithm
We use the standard tabular Q-learning algorithm in [15]

as a baseline to synthesize control policies and compare it to
our modified version denoted as CFER. We adopt a uniform
sampling strategy to sample from the buffer. Furthermore, to
investigate the effect of counterfactual experience generation
and experience replay, we also conduct tests with ordinary
experience replay, which we denote as naiveER. Specifically,
in naiveER, only factual experiences are inserted into the

TABLE I
IMPLEMENTATION PARAMETERS

replay memory in contrast to CFER, where counterfactual
experiences are also used for replay.

Note that for each of the three tasks, we consider two
different pairs of time horizons T and τ . Recall that we
consider two different resolutions of abstraction: 5 × 5 and
10 × 10. Therefore, we essentially run the three learning
algorithms on 3 × 2 × 2 = 12 different scenarios.

To make a fair comparison, each algorithm is implemented
using the identical hyper-parameters as specified in Table I.
Additionally, shared parameters we use throughout all exper-
iments are β = 50 for the reward function approximation,
learning rate α = 0.01, and discount factor γ = 0.9999 for
the policy update(5). We decay the exploration ratio ε by
ε = ε∞ + (ε∞ − ε0) × e−episode/nd , where ε0 = 0.99 and
ε∞ = 0.01 denotes the maximum and minimum value of ε
and nd, a parameter that determines the rate of the decay.
During the learning process, the policy is evaluated every 20
episodes with the average success rates, the result of which is
visualized in the learning curve in Figure 3. The success rate
at the end of the curve demonstrates the test success rate after
training.
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C. Simulation Results and Discussions
We analyze our results from the following perspectives:
1) Is Each Task Achieved?: To demonstrate the feasibility

of our algorithm, in Figure 2, we depict trajectories observed
in the last evaluation with the maximum accumulative reward.
Specifically, Figure 2(a)-(c) correspond to 5 × 5 grids with
τ = 5, and Figure 2(d)-(f) correspond to 10 × 10 grids with
τ = 10. In all of these six scenarios, the CFER policies
are able to generate satisfying trajectories after a reasonable
time of learning, thereby verifying the feasibility of the
CFER algorithm. It is worth noting that, for the patrolling
task, only CFER policies successfully generate trajectories
that meet the task specification. The reason behind this
observation will be analyzed later along with the learning
curve.

2) Does CFER Facilitate Learning?: Figure 3 depicts the
learning curves for the entire 12 sets of experiments with three
different algorithms. It is commonly observed that in each
sub-figure, the CFER curve converges much faster than the
naive one. However, in the reaching and charging task, the
naiveER policy converges sightly faster. But in the patrolling
task, only CFER policy manages to converge to a non-zero
success probability within given training episodes.

Our explanation is that the efficiency of CFER compared
with naiveER will become more significant when the com-
plexity of task increases. For �1 = F[0,10)F[0,5)(s ∈ A) in a
10×10 grid world, the size of the state space is 5×102 = 500,
which is smaller than the replay memory size 1000. Since it
is easy to visit all the 500 states, having factual transitions
filled into the replay memory already ensures the variety
of exploration. However, due to the limited replay memory
size, the generation of counterfactual experience homogenizes
the replay memory by producing repetitive transitions across,
leading to a less ideal learning curve. However, for the
patrolling task, where substantial improvement of CFER is
observed across all experiments, the sizes of the state spaces
are 2500, 5625, 10000, and 22500, and replay memory is set
to 10, 000. While it is burdensome for the agent to explore
the state space on its own or even fill up the replay memory,
the generation of counterfactual transitions saves it from
unnecessary trials and errors.

3) Does CFER Improve Scalability?: It is worth noting that
the task difficulty increases from the reaching task to the
charging task and patrolling task. Additionally, task difficulty
escalates with increasing horizons. Figure 3 demonstrates
that the gap between CFER’s learning curve and the naive
learning curve widens as task difficulties increase. For tasks
like patrolling, which cannot be completed within a finite
time using naive or naiveER methods, CFER can effort-
lessly achieve the desired results. Moreover, since experience
generations are performed on CPUs, the computation time
is negligible compared to the time consumption of a single
interaction. This provides evidence that our algorithm will
considerably expedite learning on large-scale complex tasks
described by STL formulae.

VI. CONCLUSION

In this letter, we investigate the control synthesis problem
for STL tasks. We observe in experiments that the CFER
policies generally converge faster compared to the naive

policies. Specifically, our CFER approach proves particularly
effective for handling complex STL tasks featuring long hori-
zons and multiple sub-tasks in large state spaces. A potential
extension of this letter is to achieve a balance between the roles
of factual and counterfactual experience replay. An effective
sampling scheme can be explored to unleash the potential
of CFER.
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