
5508 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Distributed Fault Diagnosis in Discrete Event
Systems With Transmission Delay Impairments

Jiwei Wang , Simone Baldi , Senior Member, IEEE, Wenwu Yu , Senior Member, IEEE,
and Xiang Yin , Member, IEEE

Abstract—This note studies the distributed fault diagnosis prob-
lem in partially-observed discrete event systems, where the system
is monitored by a group of agents to cooperatively diagnose faults
within a finite number of steps. The novelty of this work is the
creation of a methodology to verify when the faults can be diag-
nosed even in the presence of transmission delay impairments. To
address this scenario, a new distributed diagnosability condition is
proposed, which extends decentralized diagnosability conditions
proposed in the literature. Such distributed diagnosability condi-
tion is then verified via a novel structure named delay recorder
and a new diagnosis function. Theoretical analysis shows that the
verification method can successfully determine whether the faults
can be diagnosed.

Index Terms—Diagnosability, discrete event systems (DES), dis-
tributed fault diagnosis, transmission delay impairments.

I. INTRODUCTION

In recent decades, fault diagnosis for discrete event systems (DES)
has attracted increasing attention [1], [2], [3], with the most stud-
ied problems being the verification [4], [5] and the synthesis prob-
lems [6], [7]. In fault diagnosis of DES, the challenge is to diagnose
the occurrence of a fault in finite steps by only observing limited
events, while other events including the faults are unobservable. In
such partially-observed DES, the fault diagnosis architecture is called
centralized when there is only one agent monitoring all observable
events [8], [9].

However, as limited coverage and limited communication ability
may make a centralized architecture unpractical, multiagent architec-
tures have been proposed, where the system is monitored by a group
of agents, each one having partial observation capability [10], [11],
[12], [13], [14], [15], [16]. If each agent can share its information
with a few neighboring agents, the multiagent architecture is called
distributed, otherwise it is decentralized. Decentralized multiagent
diagnosis problems have been mostly considered in DES literature,

Manuscript received 17 December 2022; revised 2 September 2023;
accepted 10 February 2024. Date of publication 23 February 2024; date
of current version 30 July 2024. This work was supported in part by the
National Key R&D Program of China under Grant 2022YFE0198700,
and in part by the National Natural Science Foundation of China
under Grant 62150610499, Grant 62073074, Grant 62073076, Grant
62233004, and Grant 62173226. Recommended by Associate Editor J.
Komenda. (Corresponding authors: Simone Baldi; Wenwu Yu.)

Jiwei Wang is with the School of Cyber Science and En-
gineering, Southeast University, Nanjing 210096, China (e-mail:
jwwang@seu.edu.cn).

Simone Baldi and Wenwu Yu are with the School of Mathematics,
Southeast University, Nanjing 210096, China (e-mail: simonebaldi@
seu.edu.cn; wwyu@seu.edu.cn).

Xiang Yin is with the Department of Automation and Key Laboratory
of System Control and Information Processing, Shanghai Jiao Tong
University, Shanghai 200240, China (e-mail: yinxiang@sjtu.edu.cn).

Digital Object Identifier 10.1109/TAC.2024.3369510

starting from the notion of codiagnosability [10]: codiagnosability is
an extension of the single-agent (centralized) diagnosability to a multi-
agent decentralized scenario, i.e., without information sharing among
agents. Related notions have been studied, Yin and Lafortune [11]
discussed the connection between codiagnosability and coobservability,
Viana and Basilio [12] revisited codiagnosability with a new necessary
and sufficient condition in [13], [14], [15], and [16], different notions
of codiagnosability and verification methods were proposed, where
Keroglou et al. [15] and [16] studied distributed diagnosis under ideal
transmission. It should be noted that ideal transmission allows each
agent to get information with no delay, converging to a centralized
scenario.

The distributed multiagent diagnosis problem is largely open, and in
particular no framework exists to address the inevitable transmission
delay impairments associated with information sharing. Hence, this
article proposes a new diagnosis framework to handle such an issue in
the DES. The framework is able to account for restricted communication
among agents, and it bridges the centralized, the distributed, and the
decentralized architectures in a unified way; in fact, the framework
we propose comprises the decentralized scenario as the transmission
impairments increase and the centralized one as the impairments vanish.

The main difficulties in developing this framework lie in dealing
with the uncertain delays arising from transmitting and processing
the information. Notably, as some information may not contribute
to fault diagnosis, a method should be put in place to identify those
events whose delays need to be recorded. Novel methods and structures
are put forward, which form the main contributions of this article.
We propose a new condition for distributed fault diagnosis, namely
KT-codiagnosability (cf. Definition 3), which extends in a natural way
the state-of-the-art notion of codiagnosability within K steps, i.e.,
K-codiagnosability (cf. Definition 2). We propose a novel structure,
named as delay recorder (cf. Algorithm 1), to record the delays re-
quired for diagnosis; a new diagnosis function is proposed, with which
KT-codiagnosability is verified (cf. Theorem 1). Here, T refers to the
transmission efficiency. Our framework comprises the decentralized
K-codiagnosability as T decreases (i.e., impairments increase), and
the centralized K-diagnosability as T increases (i.e., the impairments
vanish). Summarizing, this study proposes the first unified framework
for distributed fault diagnosis in the DES with transmission delay
impairments.

The rest of this article is organized as follows. Section II describes
the partially-observed DES. Section III proposes the key notion of
KT-codiagnosability. In Section IV, the delay recorder and diagnosis
function are proposed to accomplish verification. Finally, Section V
concludes this article.

II. PRELIMINARIES

Let us recall the basic formalism of automata, used to model DES.
Consider the finite event set E in DES as an alphabet, so that the

1558-2523 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0007-2532-6006
https://orcid.org/0000-0001-9752-8925
https://orcid.org/0000-0003-0301-9180
https://orcid.org/0000-0003-1944-1570
mailto:jwwang@seu.edu.cn
mailto:simonebaldi@seu.edu.cn
mailto:simonebaldi@seu.edu.cn
mailto:wwyu@seu.edu.cn
mailto:yinxiang@sjtu.edu.cn

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024 5509

concatenation of a string of words in the alphabet can be viewed as
a finite sequence of events in E. A language is a set of event strings,
formed from the events in E. Let E∗ be the set of all finite strings
over E. Denote the length of a string s as |s|, and let ε be the empty
string with |ε| = 0. The prefix-closure of a language L is defined as
L = {s ∈ E∗|∃t ∈ E∗, s.t. st ∈ L} and L is prefix-closed if L = L.
We assume to work with live languagesL: ∀s ∈ L, ∃e ∈ E, s.t. se ∈ L,
that is, any string in L can be extended to an arbitrary length.

Automata are a common framework for manipulating languages. Let
us consider a finite automaton

G = (X,E,α,X0) (1)

where X is the set of finite states; E is the set of finite events;
α : X ×E∗ → 2X is the transition function that describes the tran-
sition of an event string; and X0 ⊆ X is the set of possible initial
states. The language generated by G from state x ∈ X is denoted
by L(x,G) = {s ∈ E∗|α(x, s)!}, where ! means that the string s “is
defined”, i.e., it can occur starting from state x. If x ∈ X0, we simply
denote α(x0, s) as α(s) and L(x0, G) as L(G). Given a set of states
ι ⊆ X , we define the set of accessible states of ι as AG(ι) = {x′ ∈
X
∣∣∃x ∈ ι, ∃s ∈ L(x,G), s.t. x′ ∈ α(x, s)}.
In a partially-observed DES, the event set E is divided into the

observable events Eo and the unobservable events Euo. A projection
operator PEo : E∗ → E∗o is used to obtain the observation of an event
string as follows: ∀s ∈ L(G), ∀e ∈ E : α(se)!,

PEo(ε) = ε, PEo(se) =

{
PEo(s)e, if e ∈ Eo

PEo(s), if e /∈ Eo.
(2)

Intuitively, PEo(s) shows the observed events for a trajectory s ∈
L(G). The operator PEo can also handle a set of event string, that is,
∀S ⊆ L(G), PEo(S) = {s ∈ E∗o|∃s′ ∈ S, s.t. s = PEo(s

′)}. Based
on the projection operator PEo , consider an operator ζnEo

: ∀s ∈ L(G),

ζnEo
(s)={s′′ ∈s|∃s′ ∈s : |s′|≥|s| − n, s.t.PEo(s

′′)=PEo(s
′)}.

Intuitively, ζnEo
(s) collects all prefixes of s with the same observation

as a trajectory s′.
To embed the information of observable events into the system model

and determine the indistinguishable states, we make use of the M -
machine w.r.t. G and Eo as [17] and [18]

MEo(G) = (Z,E ∪ {ε}, δ, Z0) (3)

where Z ⊆ X ×X is the set of states and Z0 = X0 ×X0 is the set
of initial states. For any (x1, x2) ∈ Z, e ∈ E, the transition function
δ : Z ×E ∪ {ε} → 2Z is defined as follows.
1) If e∈Eo ∧ α(x1, e)! ∧ α(x2, e)!, then, δ((x1, x2), e) ={(x′1, x′2)
| x′1 ∈ α(x1, e), x′2 ∈ α(x2, e)}.

2) If e /∈ Eo ∧ α(x1, e)!, then, δ((x1, x2), e) = {(x′1, x2) | x′1 ∈
α(x1, e)}.

3) If e /∈ Eo ∧ α(x2, e)!, then, δ((x1, x2), ε) = {(x1, x′2) | x′2 ∈
α(x2, e)}.

Intuitively, the definitions of α and δ are such that L(G) =
L(MEo(G)). In addition, we have ∀s ∈ L(G), δ(s) = {(x, x′) ∈ Z |
x ∈ α(s), x′ ∈ α(s′) : PEo(s

′) = PEo(s)}, which implies that for any
(x, x′) ∈ Z, x and x′ are indistinguishable with the observation ability
Eo. In the following, we use the notation I1(x, x′) = x and I2(x, x′) =
x′ to indicate the first and the second state component of (x, x′) ∈ Z.

Fig. 1. Air heating unit, the model G of its start-up process and the
M -machine ME′o (G) with E′o = {e1}. (a) Air heating unit. (b) G. (c)
ME′o (G).

A. Illustrative Example

To illustrate the key concepts, we present throughout this work a few
examples inspired by an air heating unit start-up scenario, cf. Fig. 1(a).
At start-up, under healthy conditions, the fan creates an air flow heated
by the heating coil. The air flow blows the heat away from the coil so
that a desired temperature is reached at an equilibrium. But in some
start-up scenarios, the fan may fail to turn ON and we need to diagnose
the fault to avoid coil overheating. The system is monitored by the
following two sensors: 1) a temperature sensor close to the coil and 2)
an air flow sensor at the outlet. Denote the event observed by sensor 1
as e1 (desired temperature is reached) and the event observed by sensor
2 as e2 (flow rate is regular). The fault, obviously unobservable by any
sensor, is denoted as f .

Example 1: (System model). We model the start-up of the air heating
unit as the automaton G in Fig. 1(b), where the initial state x0 = {0}
means that the system is OFF initially. The branch on the left of state 0
represents the healthy functioning. The air flow is regular (in state 1), so
that after some time the desired temperature is reached (in state 2). The
branch starting on the right of state 0 represents the scenario that the fan
does not start, which may be due to an unobservable fault (in state 3),
leading to overheating detected via sensor 1 (in state 4). However, it is
possible that the fan simply did not start timely (e.g., due to blockage in
the flow channel, or wear), and after some time, e2 may occur, detected
by sensor 2. Using the automaton formalism, we have that when the
system is in state 0, the only events that can occur are f and e2, that
is, α(0, f)! and α(0, e2)!. For the string fe1e2e2 generated by G,
let Eo = {e1, e2}. Then, PEo(fe1e2e2) = e1e2e2, ζ0Eo

(fe1e2e2) =
{fe1e2e2} and ζ3Eo

(fe1e2e2) = {ε, f, fe1, fe1e2, fe1e2e2}. To il-
lustrate the M -machine, consider an observable event set E ′o = {e1}.
Then, we have ME′o(G) = (Z ′, E ∪ {ε}, δ′, Z ′0) shown in Fig. 1(c).
For fe1e2e2 ∈ L(ME′o(G)), we have δ′(fe1e2e2) = {(4, 4), (4, 2)},

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

5510 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Fig. 2. Distributed observation architecture (lower) and relations be-
tween the three modules of each agent (upper).

indicating that states 4 and 2 are indistinguishable when we rely only
on the observation of e1. �

III. DISTRIBUTED DIAGNOSABILITY

The notion of codiagnosability [10] was proposed as the basic prop-
erty to handle decentralized fault diagnosis, i.e., without information
sharing between agents. We provide a distributed extension, called
KT -codiagnosability, when information sharing between agents is
allowed (possibly subject to transmission impairments). Before this, we
discuss the distributed observation architecture and ambiguities arising
from partial observation and transmission impairments.

A. Distributed Observation

Let the system under consideration be monitored by a set of
agentsA = {a1, a2, . . . , aN}(N ∈ N+) with corresponding events in
{E1, E2, . . . , EN} such that Eo = E1 ∪ · · · ∪EN . Each agent can
share its information with some of the other agents according to a
weighted connected graph CA = (VA,WA) consisting of a set of
vertices VA = {a1, . . . , aN} representing the agents, and a set of undi-
rected weighted edges WA ⊆ VA × VA representing the transmission
links among neighboring agents; the nonnegative weight of each edge
is related to a transmission delay as specified later. Denote the length
of the path between two vertices as the sum of the weights along the
path. Then, for any two agents ai, aj , we define their distance |aiaj |
as the minimum length between them.

With the distributed structure above, we now consider a simple
communication protocol between agents. The following three modules
are required for each agent: 1) communication; 2) storage; and 3)
observation modules in Fig. 2:
1) Communication module: this module forwards Mr (message re-

ceived from neighbours) to the storage module, and sends Mnew

(new message from storage module) and Mo (message from ob-
servation module) to the neighbours.

2) Storage module: this module stores Mo from the observation
module, and avoids that the occurrence of a certain event is recorded
multiple times, in fact,Mr is stored asMnew only if it is not already
in the storage set.

3) Observation module: in this module, a new observed event from
sensors receives a timestamp and becomes Mo; the module also
performs diagnosis by processing Mo, Mnew with a diagnoser [1]
or an observer [2].

The operations of communication and storage are expected to intro-
duce delays between the observation of an event by one of the agents

and the reception of the same event by the other agents. Nevertheless,
asCA is a connected graph, the message that an event is observed (and
its timestamp) will reach all other agents, possibly with some delay. For
better readability and in line with the literature (e.g., [10], [11], [12],
[13], [14]), we will simply analyze two agents ai(i ∈ {1, 2}). All the
results in this work can be extended to more agents, at the price that
more cases should be analyzed.

Note that the messages processed by each agent ai(i ∈ {1, 2}) have
two sources as follows: 1)Mo from the observation module and 2)Mnew

from the storage module. Thus, the set of all observable events Eo can
be partitioned into Ei and Eo\Ei, where the occurrence of the events
in Ei is received with no delay, while the occurrence of the events in
Eo\Ei is received from the storage module with some delay.

We now introduce a coefficient T > 0 related to transmission effi-
ciency, where T =1 indicates a nominal efficiency and T <1 indicates
that the efficiency degrades. The distance between agents is |a1a2| ≥ 0
and we represent the transmission delays as follows: if another agent
ak (k �= i) observes an event e /∈Ei, ai will receive the observation e
with a delay of no more than |a1a2 |

T
� steps (·� rounds the element

to the nearest integer towards infinity). Note that T�1 degrades to a
decentralized setting, whereas T�1 converges to a centralized setting
where each agent can monitor all observable events with delay of no
more than one step.

B. Kt-Codiagnosability

As a starting point for fault analysis in the distributed setting, we
recall state-of-the-art notions for centralized and decentralized fault
diagnosis.

Let G = (X,E,α, x0) be the system model and f be the fault
events we intend to diagnose. Let K be the maximum number of steps
allowed from the occurrence of a fault to its diagnosis. To diagnose
the faults within K steps, a structure of step counter Δ : L(G)→
{−1, 0, 1, . . . ,K} is used to count the number of steps in an event
string after a fault occurs: ∀s ∈ L(G), ∀e ∈ E : α(se)!⇒ Δ(ε) =
−1,Δ(se) =

{
Δ(s), if [Δ(s)=−1 ∧ e �=f] ∨ [Δ(s)=K]
Δ(s)+1, if [Δ(s)=−1 ∧ e=f] ∨ [0≤Δ(s)<K]

(4)

where −1 means no fault happens. By means of Δ, the literature has
introduced the notions of K-diagnosability and K-codiagnosability.

Definition 1. (K-diagnosability [19]): For K ∈ N, the live lan-
guage L(G) is K-diagnosable w.r.t. f if ∀s ∈ L(G) : Δ(s) = K,

∀s′ ∈ L(G) : PEo(s
′) = PEo(s),Δ(s′) �= −1. (5)

Definition 2. (K-codiagnosability [20]): For K ∈ N, the live lan-
guage L(G) is K-codiagnosable w.r.t. f if ∀s ∈ L(G) : Δ(s) = K,

∃i∈{1, 2}, s.t.∀s′ ∈L(G) :PEi
(s′)=PEi

(s),Δ(s′) �=−1. (6)

Obviously,K-diagnosability is a centralized notion as a single mon-
itors all observable events. In K-codiagnosability, f can be diagnosed
by either a1 or a2 unambiguously withinK steps, without any commu-
nication between agents. Unfortunately, the following example shows
that some faults may go undetected in the absence of communication.

Example 2. (Limits of K-codiagnosability): For the system in
Fig. 1(b), we consider a1 with observation ability E1 = {e1},
and a2 with observation ability E2 = {e2}. Since PE1

(fe1e2e2) =
PE1

(e2e1e2) = e1 and PE2
(fe1e2e2) = PE2

(e2e1e2) = e2e2, i.e.,
faulty and healthy strings are indistinguishable, it is impossible for
a1 or a2 to determine within K = 3 steps if the fault f has occurred

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024 5511

or not. We conclude that, when K = 3, L(G) is not K-codiagnosable
w.r.t. f . �

Intuitively, a fault that goes undetected in the absence of communica-
tion may become detectable if communication among agents is allowed
(cf. Example 3). This means that K-codiagnosability is restrictive and
an appropriate extension is required, which is the key definition in this
article.

Definition 3. (KT -codiagnosability): For K ∈ N and T > 0, the
live language L(G) is KT -codiagnosable w.r.t. f if ∀s ∈ L(G) :
Δ(s) = K,

∃i ∈ {1, 2}, s.t. ∀s′ ∈ L(G) : PEi
(s′) = PEi

(s) ∧

PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(s′)) ∩ PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(s)) �=∅,Δ(s′) �=−1. (7)

Intuitively, if (7) holds, then, ai can timely observe or receive all key
events to determine the occurrence of f . In other words, ai is capable
of consistently distinguishing a fault string (s satisfying Δ(s) = K)
from a normal string (s satisfying Δ(s) = −1), despite the imperfect
observation caused by delay. As T increases, the strings that cannot
be distinguished from the string s : Δ(s) = K become less and less,
that is, (7) gets weaker and weaker. As expected, KT-codiagnosability
⇒KT ′-codiagnosability when T ≤ T ′ (higher transmission efficiency
improves diagnosis ability).

Example 3. (KT -codiagnosability): Consider the same system
and agents as Example 2. Suppose |a1a2| = 2, T ′ = 2, then, a1
will receive the occurrence of e2 in no more than |a1a2 |

T ′ � = 1
step. When e2e1 occurs, the occurrence of e2 will be received
by a1 before e1, but no e2 will be received by a1 before the
observation of e1 when fe1 occurs. This implies that e2e1 and fe1
are distinguishable, i.e., the fault can be diagnosed by a1. Indeed,
Definition 3 gives PE1

(fe1) = e1, PEo(ζ
1
E2

(fe1)) = {ε}, and
each string s′ ∈ {s|PE1

(s) = e1 ∧ PEo(ζ
1
E2

(s)) ∩ {ε} �= ∅} =
{fe1, fe1e2} satisfies Δ(s′) ≥ 0. We conclude that L(G) is
KT ′ -codiagnosable w.r.t. f when T ′ = 2 and K ≥ 1. Next,
suppose T = 1, so that a1 will receive the occurrence of e2 in
no more than |a1a2 |

T
� = 2 steps. In this case, we know that

fe1e2e2 and e2e1 are indistinguishable since e2 may not be
received before e1. Correspondingly, the string set {s | PE1

(s) =
PE1

(fe1e2e2) ∧ PEo(ζ
2
E2

(s)) ∩ PEo(ζ
2
E2

(fe1e2e2)) �= ∅} =
{e2e1, fe1e2, fe1e2e2, . . . } and Δ(e2e1) = −1. That is, the
fault may not be diagnosed by a1 when T = 1 and K = 3.
Nevertheless, Example 6 will show that KT -codiagnosability is
satisfied when T = 1 and K = 3, as the fault can be diagnosed
by a2. �

Remark 1. (Relations between K-codiagnosability, KT -
codiagnosability and K-diagnosability): Obviously, (6) ⇒ (7),
that is, if K-codiagnosability holds, then, KT-codiagnosability
holds for any T . From (7) and the definition of ζ, we have
PEo(s

′) = PEo(s) ⇔ PEo(ζ
0
Eo\Ei

(s′)) = PEo(ζ
0
Eo\Ei

(s)) ⇒
PEi

(s′)=PEi
(s) ∧ PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(s′))∩PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(s)) �=∅ for

any T . We obtain that (7)⇒ (5), that is, if KT-codiagnosability holds
for any T , then, K-diagnosability holds. Hence, we conclude the
following:
K-codiagnosability⇒KT -codiagnosability ⇒ K-diagnosability.

IV. VERIFICATION OF DISTRIBUTED DIAGNOSABILITY

In general, it is impossible to determine if a fault can be diagnosed
by analyzing each event string as in Example 3. It is necessary to embed
the delay information into the automaton and develop a feasible method
to verifyKT-codiagnosability. This is done by linking the system states
to fault events and by building a delay recorder structure to handle the
delays.

Fig. 3. Fault automaton Ĝ and delay recorder R′1. (a) Ĝ. (b) R′1.

A. Delay Recorder

In diagnosis, it is crucial to observe the events that help to distinguish
the faulty from the healthy strings. A delay recorder aims to register the
delays of these events correctly. Note that recording all the delays can
be deleterious for verification, which will be more clear in Example 4.

Motivated by the step counterΔ in (4), a structure of fault automaton
is constructed from (1) to count the number of steps after a fault
happens [11]

Ĝ = (X̂, E, α̂, X̂0) (8)

where X̂ = X × {−1, 0, 1, . . . ,K} includes the state in X and the
fault counting component, i.e., x̂ = (x, |x̂|f) ∈ X̂ where |x̂|f indicates
the number of steps after a fault occurs, as calculated in [11]. The
transition function α̂ : X̂ ×E → 2X̂ is defined as follows: for any x̂ =
(x, |x̂|f) ∈ X̂ and e ∈ E satisfyingα(x, e)!, we have α̂((x, |x̂|f), e)=
{(x′, |x̂|f + v)|x′ ∈α(x, e)},where |x̂|f ∈ {−1, 0, 1, . . . ,K} and v is
defined by

v =

{
0, if [|x̂|f = −1 ∧ e �= f] ∨ [|x̂|f = K]
1, if [|x̂|f = −1 ∧ e = f] ∨ [0 ≤ |x̂|f < K].

The set of initial states is X̂0 = {(x0,−1) | x0 ∈ X0}. Obviously,
L(Ĝ) = L(G). Let us consider the M -machine w.r.t. Ĝ and Eo, that
is,MEo(Ĝ) = (Z,E ∪ {ε}, δ, Z0). For each state z ∈ Z ⊆ X̂ × X̂ ,
we have that I1(z), I2(z) ∈ X̂: thus, we can use |I1(z)|f and |I2(z)|f
to represent the fault counting value. We denote the “confusing state”
subset as

ZC = {z : |I1(z)|f = K ∧ |I2(z)|f = −1} ⊆ Z. (9)

We are now in the position to explain how to handle delays. For
agent ai(i ∈ {1, 2}), the delay recorder to determine the delays to be
recorded is defined as an automaton

Ri = (Xi, E, αi,Xi0) (10)

where each state xi = (x̂, (|xi|jii)ji) ∈ Xi ⊆ X̂ ×
({0, 1, . . . , |a1a2 |

T
�,∞})ji(ji ∈ {1, . . . , ni}) contains the following

two components: 1) the state in X̂ and 2) the delay value, denoted by
|xi|jii . Here, ni is the number of the delay value we need to record.
The transition function αi : Xi ×E → 2Xi and the set of initial states
Xi0 are built as in Algorithm 1.

Algorithm 1 consists of two parts: the first part (lines 1–20) marks
ni sets of transitions, utilized to build the delay recorders with the
RECORD procedure in the second part (lines 21–29). All the procedures
are listed in Algorithm 2. The procedure FORWARD1(ι, Y j

i) collects
the transition sets for Y j

i , that, only containing the events in Eo\Ei,
cannot be distinguished under the observation abilityEo. The procedure
FORWARD2(Y j

i) explores new transition sets; lines 3–20 check which
transition set in Y j

i is necessary to be marked. The procedure RECORD
appends the delay∞ to the subsequent states of the marked transitions,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

5512 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Algorithm 1: The Construction of the Delay RecorderRi.

Input: Ĝ = (X̂, E, α̂, X̂0), |a1a2 |
T
�, ZC

Ei
, Eo, Ei(i ∈ {1, 2});

Output:Ri = (Xi, E, αi,Xi0);
1: T ini, T 1

i ,X
1
i , Y

1
i ,Xi0,Xi ← ∅; m← 1;

2: FORWARD1 (X̂0,X
1
i , Y

1
i); FORWARD2(Y

1
i); n← m;

3: for l ∈ {1, . . . , n} do
4: I←⋃

y∈Y l−n+m
i

{{x̂′ ∈X̂|∃x̂∈X̂ : (α̂(x̂, e)= x̂′)∈y}};
5: if ∀(x̂k, x̂−1)∈ZC

Ei
, [∀ι, ι′ ∈I : ι �= ι′, x̂k /∈AĜ(ι),

x̂−1 /∈AĜ(ι′)] ∧ [x̂k /∈Xl−n+m
i ∨ x̂−1 /∈Xl−n+m

i] then
6: T l−n+m

i ←Tm
i ; Xl−n+m

i ←Xm
i ; Y l−n+m

i ←Y m
i ;

7: m←m− 1;
8: end if
9: end for

10: n← m; n′ ← 1; ni ← 1;
11: for j ∈ {2, 3, . . . , n} do
12: if ∀l ∈ {1, . . . , ni}, ∃y ∈ Y j

i ,s.t.∀y′ ∈ Y l
i , y �⊆ y′ then

13: for l′ ∈ {0, . . . , n′− 1} do
14: if ∀y ∈ Y n′−l′

i , ∃y′ ∈ Y j
i , s.t. y ⊆ y′ then

15: Tn′−l′
i ←Tni

i ; Y n′−l′
i ←Y ni

i ; ni←ni−1;
16: end if
17: end for
18: ni ← ni + 1; n′ ← ni; T

ni
i ← T j

i ; Y ni
i ← Y j

i ;
19: end if
20: end for
21: for x̂0 ∈ X̂0 do
22: Xi0 ← Xi0 ∪ {(x̂0, (∞)1)}; Xi ← Xi ∪ {(x̂0, (∞)1)};
23: RECORD((x̂0, (∞)1),Ri);
24: for j ∈ {2, . . . , ni} do
25: Xi0←Xi0∪{(x̂0, (0)j)}; Xi←Xi∪{(x̂0, (0)j)};
26: RECORD((x̂0, (0)j),Ri);
27: end for
28: end for
29: ReturnRi;
30: procedure FORWARD1ι,Xj

i , Y
j
i

31: Xtem←{x̂∈X̂|∃x̂′ ∈ ι, s∈(E\Eo)
∗, s.t.x̂∈ α̂(x̂′, s)};

32: if Xtem �⊆ Xj
i then

33: Xj
i ← Xj

i ∪Xtem;
34: for e ∈ Eo : ∃x̂ ∈ Xtem, s.t. α̂(x̂, e)! do
35: if e ∈ Ei then
36: FORWARD1({x̂ ∈ Xi|∃x̂′ ∈ Xtem, s.t.

x̂ ∈ α̂(x̂′, e)},Xj
i , Y

j
i);

37: else if e ∈ Eo\Ei then
38: Y j

i ← Y j
i ∪ {{α̂(x̂′, e) = x̂|∃x̂′ ∈ Xtem,

x̂ ∈ X̂, s.t. x̂ ∈ α̂(x̂′, e)}};
39: end if
40: end for
41: end if
42: end procedure
43: procedure FORWARD2Y j

i

44: for y ∈ Y j
i do

45: X ′ ← {x̂′ ∈ X̂|∃x̂ ∈ X̂ : (α̂(x̂, e) = x̂′) ∈ y};
46: if [∃(x̂k, x̂−1) ∈ ZC

Ei
, s.t. x̂k, x̂−1 ∈

AĜ(X ′)] ∧ [y /∈ T ini] then
47: T ini ← T ini ∪ y; m← m+ 1;
48: Tm

i ← y; Xm
i ← ∅; Y m

i ← ∅;
49: FORWARD1(X ′,Xm

i , Y
m
i); FORWARD2(Y m

i);
50: end if
51: end for
52: end procedure

Algorithm 2: The RECORD Procedure in Algorithm 1.

1: procedure RECORD(x̂, (u)j),Ri

2: for e ∈ E : α̂(x̂, e)! do
3: for x̂′ ∈ α̂(x̂, e) do
4: if (α̂(x̂, e) = x̂′) ∈ T j

i then
5: u′ ← ∞;
6: else if u =∞∧ e ∈ Eo\Ei then
7: u′ ← |a1a2 |

T
�;

8: else if u > 0 then
9: u′ ← u− 1;

10: else if u = 0 then
11: u′ ← 0;
12: end if
13: Add αi((x̂, (u)

j), e) = (x̂′, (u′)j) toRi;
14: if (x̂′, (u′)j) /∈ Xi then
15: Xi ← Xi ∪ {(x̂′, (u′)j)};
16: RECORD((x̂′, (u′)j),Ri);
17: end if
18: end for
19: end for
20: end procedure

and records the delay of the transitions that “leave” these states marked
by∞.

AsRi is built from Ĝ, we haveL(Ri) = L(Ĝ). Note thatRi records
the delay of the events in Eo\Ei that help to distinguish the pair of
system trajectories s and s′ satisfying PEi

(s) = PEi
(s′) and Δ(s) =

K,Δ(s′) = −1. This is needed to verifyKT-codiagnosability, as it will
be clear in the next section.

Example 4. (The importance of a delay recorder): For the systemG
in Fig. 1(b), the corresponding fault automaton Ĝ is shown in Fig. 3(a).
With the observable event set E1 = {e1}, we obtain the M -machine
ME1

(Ĝ) and the confusing state subset ZC
E1

= {((4, 3), (2,−1))}.
Next, using Ĝ, |a1a2| = 2, T ′ = 2, ZC

E1
, Eo and E1, we run

Algorithm 1 to obtain the delay recorderR′1 shown in Fig. 3(b). From
R′1, one can see that only the delay ofe2 (denoted with bold) infe1e2e2
and e2e1e2 are recorded. The delay value “0” in ((4, 3), (0)1) and
((2,−1), (0)1) indicates that the occurrence of these e2 that help to
distinguish fe1e2e2 and e2e1e2 have been received, which implies that
the fault can be diagnosed by a1, as shown in Example 3 with T ′ = 2.
Nevertheless, without a delay recorder, a naive strategy could be to
record each delay ofe2, that is, fe1e2e2 ande2e1e2. Unfortunately, by
doing this, one would obtain ((4, 3), (1)1) and ((2,−1), (1)1), where
the delay value “1” implies that we cannot determine if e2 has been
received by a1, leading to a trouble for verification. �

Remark 2. (Complexity analysis): Like existing diagnosis algo-
rithms, Algorithm 1 relies on the construction of observers (or diag-
nosers). This operation is known from the literature having worst-case
exponential complexity O(22n) [2], where n is the number of states.
However, this worst-case complexity is rarely reached, and recent
studies have shown that, for deterministic automata, the average state
size of diagnosers isO(n0.77 logk+0.63) [21], where k is the number of
events.

B. Verification of Kt-Codiagnosability

Using all structures introduced before, we now initiate the verifica-
tion process of KT-codiagnosability.

Let Ĝ in (8) be the fault automaton built from G in (1). We first
consider the delay value of ai (i ∈ {1, 2}). To run Algorithm 1, we

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024 5513

Fig. 4. Part of M -machineME1
(R1) that may include the fault states

and the reconstructed automaton R̂1. (a) R1. (b) Part ofME1
(R1). (c)

R̂1.

builtMEi
(Ĝ) to get the state subset ZC

Ei
, and then, the delay recorder

Ri in (10) is obtained. Aiming to determine the fault states that ai
cannot diagnose even with the received message, we further build the
M -machine MEi

(Ri) = (Zi, E ∪ {ε}, δi, Zi0). As MEi
(Ri) only

contains the delay information of ai, we need to run Algorithm 1 again
with Ek (k ∈ {1, 2}, k �= i) to obtain the delay information of ak.
Considering that the input of Algorithm 1 should be a fault automaton,
we need reconstructMEi

(Ri) to be a fault automaton with the delay
information of ai. To this end, we remove the second component of
each state in Zi and the empty event ε in event set E, constructing the
automaton

R̂i = (X̂i, E, α̂i, X̂i0). (11)

The state X̂i = X̂ × ({0, 1, . . . , |a1a2 |
T
�,∞})ji × {H,F}

(ji ∈ {1, . . . , ni}), where “H” means “healthy’ and “F ”
means “faulty”. For each zi ∈ Zi and the corresponding
x̂i = ((x, |x̂i|f), (|x̂i|jii)ji , |x̂i|d) ∈ X̂i, denote |x̂i|f = |I1(zi)|f ,
|x̂i|jii = |I1(zi)|jii and

|x̂i|d =

{
F, if zi ∈ VCi
H, otherwise

(12)

where we define the condition zi ∈ VCi as follows:

|I1(zi)|f =K, |I2(zi)|f =−1, |I1(zi)|jii >0, |I2(zi)|jii >0. (13)

Clearly, R̂i can be seen as a fault automaton, in fact, each state x̂i ∈ X̂i

has a fault counting value, and |x̂i|d = F can be regarded as the fault
states x̂ ∈ X̂ satisfying |x̂|f = K in the automaton Ĝ to determine the
confusing state subset ZC

Ek
.

Example 5. (The reconstructed automaton): For the fault
automaton Ĝ and the state subset ZC

E1
in Example 4, we run

Algorithm 1 with T =1 to obtain R1 shown in Fig. 4(a). The
crucial difference between R1 and R̂1 [shown in Fig. 4(c)]
is the third component {H,F}. For compactness, Fig. 4(b)
shows the M -machine ME1

(R1)=(Z1, E ∪ {ε}, δ1, Z10) after
omitting the states z1 ∈ Z1 satisfying AR1(I1(z1)) ∩ {z′1 ∈
Z1||I1(z′1)|f =K}=∅ ∨ |I2(zi)|f >0 [according to (13), all

states x̂1 ∈ X̂1 corresponding to the omitted states in Fig. 4(b)
must satisfy |x̂1|d=H]. For the string fe1e2e2 ∈ L(ME1

(R1)),
we have δ1(fe1e2e2)={(((4, 3), (1)1), ((2,−1), (0)1)),
(((4, 3), (1)1), ((2,−1), (1)1)), . . . }, which corresponds to
α̂1(fe1e2e2)={((4, 3), (1)1,H), ((4, 3), (1)1, F)}. The state
((4, 3), (1)1, F) corresponds to the fact, shown in Example 3, that the
fault may not be diagnosed by a1. �

Using the automaton R̂i, we then construct the M -machine
MEk

(R̂i) to obtain ZC
Ek

and further run Algorithm 1 with R̂i and
Ek to get the augmented delay recorder

Ri,k = (Xi,k, E, αi,k,Xi,k,0) (14)

where similar to ai, we can obtain nk and denote the delay value of ak
as | · |jkk (jk ∈ {1, . . . , nk}). Then, using Ek, the M -machine

MEk
(Ri,k) = (Zi,k, E ∪ {ε}, δi,k, Zi,k,0) (15)

is obtained, where we still denote I1(z) as the first state component,
I2(z) as the second state component for each state z ∈ Zi,k. Finally,
we define a diagnosis function ψ : z → {H,F} as follows: ∀z ∈ Zi,k,

ψ(z) =

{
F, if z ∈ VCk
H, otherwise

(16)

where condition z ∈ VCk is defined as follows:

|I1(z)|d=F, |I2(z)|f =−1, |I1(z)|jkk >0, |I2(z)|jkk >0. (17)

With a slight abuse of notation, although the notation | · |d is defined for
states in R̂i, we denote |I1(z)|d = F for I1(z) ∈ Xi,k inRi,k. This is
possible because Ri,k is built from R̂i, the only difference being that
Xi,k contains the delay information of ak. Similarly, we also allow the
states in Xi,k to use | · |f .

Now we are in the position to verify KT-codiagnosability with the
following theorem.

Theorem 1: Let G in (1) be the system model, E1 and E2 be the
set of observable events for agents a1 and a2, f be the fault events,
MEk

(Ri,k) in (15) be theM -machine built from the augmented delay
recorderRi,k in (14). Then, L(G) is KT -codiagnosable w.r.t. f iff

∀z ∈ Zi,k, ψ(z) = H. (18)

Proof: (⇒) By contradiction, let us first suppose that L(G) is KT -
codiagnosable w.r.t. f while ∃z ∈ Zi,k, s.t. ψ(z) = F . Then, we have
that z satisfies (17).

First, we consider ak, combining (17) and (13), we have
∃j ∈ {1, . . . , nk}, s.t. |I1(z)|jk > 0, |I2(z)|jk > 0, |I1(z)|f = K,
|I2(z)|f = −1 and I1(z), I2(z) ∈ Xi,k.

Since |I1(z)|jk > 0 and |I2(z)|jk > 0, there must be a pair
of event strings, sf , sck ∈ L(Ri,k) : I1(z) ∈ αi,k(s

f) ∧ I2(z) ∈
αi,k(s

c
k) ∧ PEk

(sf) = PEk
(sck) such that two transitions are marked,

where we denote the events of the marked transition as ef1 in
sf and ec1 in sck. Then, we further denote sf = sf1ef1sf2 and
sck = sc1ec1sc2. Recalling the FORWARD1 procedure in Algorithm 1,
we havePEo(s

f1ef1) = PEo(s
c1ec1). We now consider the following

two cases.
1) If the delay of an event ef2 (or ec2) ∈Eo\Ek in sf2 (sc2)

is recorded, then the system will enter I1(z) (or I2(z)) within
 |a1a2 |

T
�−1 steps after the occurrence of ef2 (or ec2), that is,

0< |I1(z)|jk≤ |a1a2 |
T
� (or 0< |I1(z)|jk≤ |a1a2 |

T
�). In this case,

we further denote sf2=sf3ef2sf4 (or sc2=sc3ec2sc4), where
|sf4|< |a1a2 |

T
� (or |sc4|< |a1a2 |

T
�).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

5514 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

2) If no delay in sf (or sck) is recorded, then the system will enter
I1(z) (or I2(z)) without any occurrence of the events in Eo\Ek,
that is, |I1(z)|jk=∞ (or |I1(z)|jk=∞).

Recalling the FORWARD1 procedure in Algorithm 1, we know
that PEo\Ek

(sf1ef1) = PEo\Ek
(sf1ef1sf3) and PEo\Ek

(sc1ec1) =
PEo\Ek

(sc1ec1sc3) in case 1), and PEo\Ek
(sf1ef1) = PEo\Ek

(sf)
and PEo\Ek

(sc1ec1) = PEo\Ek
(sck) in case 2). Then, we have

sf1ef1 ∈ ζ
|a1a2 |

T
�

Eo\Ek
(sf) and sc1ec1 ∈ ζ

|a1a2 |
T

�
Eo\Ek

(sck), indicating that

PEo(ζ
 |a1a2 |

T
�

Eo\Ek
(sf)) ∩ PEo(ζ

 |a1a2 |
T

�
Eo\Ek

(sck)) �= ∅.
Now we consider ai: we know that Ri,k is built with Al-

gorithm 1 from R̂i which is reconstructed from the M -machine
MEi

(Ri) = (Zi, E ∪ {ε}, δi, Zi0). From |I1(z)|d = F , we have the
corresponding |x̂i|d = F , and further zi satisfies ∃j ′ ∈ {1, . . . , ni},
s.t. |I1(zi)|j′i > 0, |I2(zi)|j′i > 0, |I1(zi)|f = K and |I2(zi)|f =
−1, where I1(zi), I2(zi) ∈ Xi in Ri = (Xi, E, αi,Xi0). Then,
from I1(z) ∈ αi,k(s

f), we know that I1(zi) ∈ αi(s
f). Recalling

the property of M -machine, ∃sci ∈ L(Ri) : I2(zi) ∈ αi(s
c
i), s.t.

PEi
(sci) = PEi

(sf). And with a similar analysis as above, we have

PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(sf)) ∩ PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(sci)) �= ∅.
To sum up, for the event string sf ∈ L(Ri,k) = L(Ri) = L(G) :

Δ(sf) = K, ∀l ∈ {1, 2}, PEl
(sf) = PEl

(scl), PEo(ζ
 |a1a2 |

T
�

Eo\El
(sf)) ∩

PEo(ζ
 |a1a2 |

T
�

Eo\El
(scl)) �= ∅ and Δ(scl) = −1. In other words, L(G) is not

KT -codiagnosable w.r.t. f , resulting in a violation.
(⇐) By contradiction, let us suppose that ∀z ∈ Zi,k, ψ(z) = H

whileL(G) is notKT -codiagnosable w.r.t. f . Then, we have that there
exists s ∈ L(G) : Δ(s) = K, such that condition (7) is violated for a1
and a2.

First, we consider ai :∃sci ∈L(Ĝ) = L(Ri) :Δ(sci)=−1, s.t.

PEi
(s)=PEi

(sci), PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(s))∩PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(sci)) �=∅.
Then, we have that ∃ef1, ec1 ∈ Eo\Ei : s = sf1ef1sf2, sci =

sc1ec1sc2, s.t. PEo(s
f1ef1) = PEo(s

c1ec1) ∈ PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(s)) ∩

PEo(ζ
 |a1a2 |

T
�

Eo\Ei
(sci)). Since PEo(s

f1ef1) = PEo(s
c1ec1), the transi-

tions of ef1 and ec1 in s and sci must be marked by an index in line 2 of
Algorithm 1. Nevertheless, after the first check in lines 3–9, the mark
on ef1 and ec1 may be canceled, but an event in sf2 and an event in sc2

will still be marked according to the condition in line 5. Hence, we can
regard ef1 and ec1 as the marked transition without loss of generality.
Next, after the second check in lines 11–20, the transition ef1 and ec1

in s and sci may not be marked, but there must be another pair of event
strings marking ef1 and ec1 according to the conditions in lines 12 and
14. Hence, we can regard s and sci as the pair of event strings where
ef1 and ec1 are marked without loss of generality. Now we consider
ji ∈ {1, . . . , ni} as the index that marks the transitions of ef1 and ec1

in s and sci . Recalling the RECORD procedure in Algorithm 1, there are
two cases to be analyzed as follows.
1) If the delay of an event ef2 (or ec2) after ef1 (or ec1) is recorded,

then, we can denote sf2 = sf3ef2sf4 (or sc2 = sc3ec2sc4). Here,
we know |sf4| < |a1a2 |

T
� (or |sc4| < |a1a2 |

T
�), otherwise there

will be a violation that PEo(s
f1ef1) /∈ PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(s)) [or

PEo(s
c1ec1) /∈ PEo(ζ

 |a1a2 |
T

�
Eo\Ei

(sci))]. Since the delay is recorded

as |a1a2 |
T
� steps, there must be a state xi ∈ αi(s) : |xi|jii > 0 [or

x′i ∈ αi(s
c
i) : |x′i|jii > 0].

2) If no delay after ef1 (or ec1) is recorded, then there must be a state
xi ∈ αi(s) : |xi|jii =∞ (or x′i ∈ αi(s

c
i) : |x′i|jii =∞).

Since PEi
(s) = PEi

(sci), we have (xi, x
′
i) ∈ δi(s) ⊆ Zi in

MEi
(Ri) with |xi|jii > 0, |x′i|jii > 0, |xi|f = K and |x′i|f = −1,

Fig. 5. Augmented delay recorder R1,2 and part of M -machine
ME2

(R1,2) that may include the fault state. (a) R1,2. (b) Part of
ME2

(R1,2).

which means the corresponding state x̂i ∈ α̂i(s) in R̂i, as well as
xi,k ∈ α̂i,k(s) inRi,k, satisfies |x̂i|d = |xi,k|d = F .

Now we consider ak:∃sck∈L(Ĝ)=L(Ri,k):Δ(sck)=−1,s.t.

PEk
(s)=PEk

(sck), PEo(ζ
 |a1a2 |

T
�

Eo\Ek
(s))∩PEo(ζ

 |a1a2 |
T

�
Eo\Ek

(sck)) �=∅.
Then, as well, there must be an index jk∈{1, . . . , nk} marking
the relevant transitions in s and sck. With a similar analysis as
above, we have that ∃(xi,k, x′i,k)∈δi,k(s)⊆Zi,k in MEk

(Ri,k),

s.t. xi,k∈αi,k(s), x
′
i,k∈αi,k(s

c
k), |xi,k|jkk >0, |x′i,k|jkk >0. Since

|xi,k|d=F and |x′i,k|f =−1, we have ψ((xi,k, x′i,k))=F , resulting
in a violation, which completes the proof. �

Example 6. (Verifying KT -codiagnosability): Considering the au-
tomaton R̂1 in Example 5, we build the M -machine ME2

(R̂1) to
get ZC

E2
= {(((4, 3), (1)1, F), ((2,−1), (0)1,H))}. Then, we run

Algorithm 1 with R̂1, |a1a2 |
T
�, ZC

E2
, Eo and E2 to obtain the

augmented delay recorder R1,2 as shown in Fig. 5(a). Finally, the
M -machine ME2

(R1,2) = (Z1,2, E ∪ {ε}, δ1,2, Z0) is constructed
with E2: Fig. 5(b) shows 11 of the 31 states of ME2

(R1,2),
where the omitted 20 states z ∈ Z1,2 obviously satisfy |I1(z)|d =
H according to (17). The only state z satisfying |I1(z)|d = F is
(((4, 3), (1)1, F, (0)1), ((2,−1), (0)1,H, (1)1)), however, we have
|((4, 3), (1)1, F, (0)1)|12 = 0, violating (17). Hence, for any z ∈ Z1,2,
we have ψ(z) = H , indicating that L(G) is KT -codiagnosable w.r.t.
f with K = 3 and T = 1. Despite a1 failing to diagnose the fault (cf.
Example 3), the diagnosis task can be fulfilled thanks to a2, indicating
that distributed diagnosability is possible if and only if at least one of
the agents can diagnose the faults with the information received from
other agents. �

V. CONCLUSION

In this article, a novel framework has been presented to solve
the problem of distributed fault diagnosis in discrete event systems
with delays arising from transmission impairments. A new notion
of KT -codiagnosability was proposed that extends the well-known
K-codiagnosability to the distributed setting. Accordingly, a novel
delay recorder structure and a new diagnosis function were proposed to
verifyKT -codiagnosability. Future work could consider more complex
diagnosis problems with transmission impairments, such as distributed
dynamic sensor activation.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024 5515

REFERENCES

[1] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis, “Diagnosability of discrete-event systems,” IEEE Trans. Au-
tom. Control, vol. 40, no. 9, pp. 1555–1575, Sep. 1995.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Berlin, Germany: Springer, 2009.

[3] S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of diagnos-
ability and opacity in discrete event systems,” Annu. Rev. Control, vol. 45,
pp. 257–266, 2018.

[4] X. Yin, J. Chen, Z. Li, and S. Li, “Robust fault diagnosis of stochastic
discrete event systems,” IEEE Trans. Autom. Control, vol. 64, no. 10,
pp. 4237–4244, Oct. 2019.

[5] C. Keroglou and C. N. Hadjicostis, “Verification of AA-diagnosability in
probabilistic finite automata is PSPACE-hard,” in Proc. IEEE 58th Conf.
Decis. Control, 2019, pp. 6712–6717.

[6] W. Wang, C. Gong, and D. Wang, “Optimizing sensor activation in a
language domain for fault diagnosis,” IEEE Trans. Autom. Control, vol. 64,
no. 2, pp. 743–750, Feb. 2019.

[7] Y. Hu, Z. Ma, and Z. Li, “Design of supervisors for active diagnosis in
discrete event systems,” IEEE Trans. Autom. Control, vol. 65, no. 12,
pp. 5159–5172, Dec. 2020.

[8] X. Yin and S. Lafortune, “A general approach for optimizing dynamic
sensor activation for discrete event systems,” Automatica, vol. 105,
pp. 376–383, 2019.

[9] A. White, A. Karimoddini, and R. Su, “Fault diagnosis of discrete event
systems under unknown initial conditions,” IEEE Trans. Autom. Control,
vol. 64, no. 12, pp. 5246–5252, Dec. 2019.

[10] R. Debouk, S. Lafortune, and D. Teneketzis, “Coordinated decentralized
protocols for failure diagnosis of discrete event systems,” Discrete Event
Dyn. Syst., vol. 10, no. 1/2, pp. 33–86, 2000.

[11] X. Yin and S. Lafortune, “Codiagnosability and coobservability under dy-
namic observations: Transformation and verification,” Automatica, vol. 61,
pp. 241–252, 2015.

[12] G. S. Viana and J. C. Basilio, “Codiagnosability of discrete event systems
revisited: A new necessary and sufficient condition and its applications,”
Automatica, vol. 101, pp. 354–364, 2019.

[13] C. E. Nunes, M. V. Moreira, M. V. Alves, L. K. Carvalho, and J. C.
Basilio, “Codiagnosability of networked discrete event systems subject
to communication delays and intermittent loss of observation,” Discrete
Event Dyn. Syst., vol. 28, no. 2, pp. 215–246, 2018.

[14] G. Viana, M. V. S. Alves, and J. C. Basilio, “Codiagnosability of networked
discrete event systems with timing structure,” IEEE Trans. Autom. Control,
vol. 67, no. 8, pp. 3933–3948, Aug. 2022.

[15] C. Keroglou and C. N. Hadjicostis, “Distributed fault diagnosis in dis-
crete event systems via set intersection refinements,” IEEE Trans. Autom.
Control, vol. 63, no. 10, pp. 3601–3607, Oct. 2018.

[16] M. Z. Veras, F. G. Cabral, and M. V. Moreira, “Distributed synchronous
diagnosis of discrete event systems modeled as automata,” Control Eng.
Pract., vol. 115, 2021, Art. no. 104892.

[17] K. Rudie and J. C. Willems, “The computational complexity of decen-
tralized discrete-event control problems,” IEEE Trans. Autom. Control,
vol. 40, no. 7, pp. 1313–1319, Jul. 1995.

[18] X. Yin and S. Lafortune, “Minimization of sensor activation in decentral-
ized discrete-event systems,” IEEE Trans. Autom. Control, vol. 63, no. 11,
pp. 3705–3718, Nov. 2018.

[19] F. Cassez and S. Tripakis, “Fault diagnosis with static and dy-
namic observers,” Fundam. Informaticae, vol. 88, no. 4, pp. 497–540,
2008.

[20] F. Cassez, “The complexity of codiagnosability for discrete event and timed
systems,” IEEE Trans. Autom. Control, vol. 57, no. 7, pp. 1752–1764,
Jul. 2012.

[21] L. B. Clavijo and J. C. Basilio, “Empirical studies in the size of diagnosers
and verifiers for diagnosability analysis,” Discrete Event Dyn. Syst., vol. 27,
pp. 701–739, 2017.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:57:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

