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Abstract—In this article, we investigate the enforcement of
(current-state) opacity, an important information-flow security
property, via insertion functions. An insertion function is an ob-
fuscation mechanism that inserts fictitious events to the out-
puts in order to confuse the outside observer (intruder) such
that the secret of the system is not revealed. In some situations,
the secret may be revealed when the insertion mechanism is (or
becomes) publicly known. This leads to the problem of synthesiz-
ing private-and-public enforcing (PP-enforcing) insertion functions
in the sense that opacity is still enforced even when the mechanism
is discovered or published by the designer. Existing works that
have investigated this synthesis problem are either only sound or
have limited applicability as we show in this work. For this reason,
and more importantly, to better solve the synthesis problem, a
new approach is proposed upon an improved greedy criterion. We
show that the proposed algorithm is both sound and complete,
and can be used to completely solve the synthesis problem for
the PP-enforcing insertion function. With slight modifications of
our algorithm, infinite-step opacity and K-step opacity can also be
enforced under publicly-known insertion mechanisms.

Index Terms—Discrete event systems (DES), insertion mecha-
nism, opacity enforcement, publicly known obfuscation.

I. INTRODUCTION

SECURITY is a major concern in network communication systems,
and people put a lot of effort to protect confidential information. Various
security notions related to information flow have been proposed in the
literature: among others, anonymity, noninterference, nondeductibility,
and opacity, see, for example, [1], [2], and [3]. We are interested in
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opacity, which is a confidentiality property that aims to determine
whether the secret information of the system can be inferred by an
outside intruder with malicious intentions [4].

Discrete event systems (DES) are efficient and successful in provid-
ing formal treatments and analytical techniques for many man-made
systems, such as computer systems, communication systems, database
systems, and traffic systems [5]. Opacity in DES has been extensively
studied in recent years, and various notions of opacity have been consid-
ered in the literature, such as current-state opacity [6], language-based
opacity [7], initial-state opacity [8], initial-and-final-state opacity [9],
and K-step opacity and infinite-step opacity [10], [11]. Different ap-
proaches to enforce opacity in DES have been developed in the litera-
ture, such as supervisory control theory [12], [13], [14], [15] or dynamic
mask [16], [17]. For additional information about opacity in DES, the
readers can refer to [18], [19], and [20], and survey [21], or book [4].

Another important mechanism for enforcing opacity is the use of
an output obfuscation mechanism, which includes insertion mech-
anisms [22] and edit mechanisms [23]. An insertion function is a
monitoring interface placed at the output of the system and does
not interact with the system. Ji et al. [24] pointed out that, if the
existence of the insertion function becomes known to the intruder
(e.g., by performing reverse engineering) or becomes public (e.g., as in
public-key cryptography), the secret may be revealed. In such situations,
a publicly-known insertion mechanism, as illustrated in Fig. 1, needs
to be investigated. Notice that the edit mechanism, which is a more
general version of the insertion mechanism, has been investigated in a
publicly known manner in [25]. However, due to the use of erasures in
the edit mechanism, the synthesis of such obfuscation strategies rely
on distinct methodologies that require exponential complexity in |XE |,
where XE is the state set of the standard observer of the system. This
should be compared with polynomial complexity (with respect to |XE |)
for the publicly-known insertion mechanism proposed in this article.
In addition, the insertion mechanism is more convenient than the edit
mechanism when there exists an intended or legitimate receiver at the
outside for recovering purposes [22], [26]. For additional research about
opacity enforcement under insertion/edit mechanisms, one can refer to
[27], [28], and [29].

To characterize the requirement that the insertion function needs to
maintain the secret even when the insertion function is publicly known,
the notion of private-and-public enforceability (PP-enforceability) was
proposed in [24] and [28]. An (only) sound algorithm was proposed
in [28] for synthesizing private-and-public enforcing (PP-enforcing) in-
sertion functions, and a “sound and complete” approach was attempted
in [24] based on a greedy-maximal criterion (GM-criterion). The
GM-criterion in [24], makes insertion decisions by comparing the
lengths of strings that are to be inserted, but it has limitations as it
is (only) valid for a class of systems (see Example 3). Therefore,
the existing GM-criterion needs to be improved, and the question
of whether or not opacity is PP-enforceable when it is privately
enforceable needs further investigation.

In this article, the notion of PP-enforceability is first revisited
for accuracy, and a sound and complete algorithm for synthesizing
PP-enforcing insertion functions is proposed. In fact, we solve a
partially-solved open problem (the synthesis of PP-enforcing insertion
functions), in a complete manner.
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Fig. 1. Publicly known insertion mechanism.

II. SYSTEM MODEL, OPACITY, INSERTION MECHANISM, AND

ENFORCEABILITY

A. System Model

Let E be a finite set of events and E∗ be the set of all finite
strings over E including the empty string ε. For a nonempty string
s = e1e2 . . . e|s| ∈ E∗, where |s| is the length of string s, we use (s)i
to denote the ith event in s, i.e., (s)i = ei, i = 1, 2, . . . , |s|. We also use
|E| to denote the cardinality ofE, i.e., the number of events inE is equal
to |E|. For strings s and t, we use s � t to denote that there exists an in-
teger sequence 1 ≤ j1 < j2 < . . . < j|s| ≤ |t| such that (t)jk = (s)k,
k = 1, 2, . . . , |s|, i.e., s is “embedded” in t. For two natural numbers
k and l with k < l, [k, l] = {k, k + 1, . . . , l}. We use t′ � t (t′ ≺ t) to
denote that string t′ is a prefix (strict-prefix) of string t. For string t � s,
we use s/t to denote the post string of t in s, i.e., s = t(s/t). A language
L ⊆ E∗ is a subset of E∗. We use L|t to denote the set of strings s in L
having prefix t, and defineL|t = {s ∈ L : t � s}. The prefix closure of
language L is denoted by L, where L = {t′ ∈ E∗ : ∃t ∈ L s.t. t′ � t}.
Language L is prefix-closed if L = L.

The system is modeled as a deterministic finite-state automaton1

G = (X,E, f,X0) with a finite set of states X , a finite set of events
E, a partial deterministic state transition functionf : X ×E → X , and
a set of initial states X0 ⊆ X . In the context of opacity, the intruder
does not have a priori knowledge on the precise initial state, and thus
we include a set of initial statesX0 in the definition ofG. The transition
function f is extended to domain X ×E∗ in the standard manner [5].
For the sake of simplicity, transition f(x, e) = x′, e ∈ E is written
as x

e−→ x′. The language generated by G from state x is denoted by
L(G,x) = {s ∈ E∗ : f(x, s)!} (“!” means “is defined,” and we also
use “!/” to denote “is not defined”). The language generated by G is de-
noted by L(G,X0) := ∪x0∈X0

L(G,x0). For simplicity, we will write
L(G) as shorthand for L(G,X0) when X0 is clearly defined. Automa-
tonG = (X,E, f, {x0}) is also simply denoted asG = (X,E, f, x0),
where x0 ∈ X is the unique initial state of automaton G. The system
G is generally partially observed. Thus, the event set E is partitioned
as E = Eo∪̇Euo, where Eo is the set of observable events and Euo

is the set of unobservable events. The natural projection P : E∗ → E∗
o

is defined as:P (ε) = ε;P (te) = P (t), if e ∈ Euo andP (te) = P (t)e
if e ∈ Eo. For a language L, P (L) = {P (s) : s ∈ L}.

B. Opacity Notation

Definition 1 (Current-State Opacity (CSO)): Given system G =
(X,E, f,X0), natural projection P , and the set of secret states
XS ⊆ X , the system is current-state opaque if ∀t ∈ LS :=
{t ∈ L(G) : ∃x0 ∈ X0, f(x0, t) ∈ XS}, ∃t′ ∈ LNS := {t ∈ L(G) :
∃x0 ∈ X0, f(x0, t) ∈ (X\XS)} s.t. P (t) = P (t′).

CSO can be verified by checking the state information of the standard
observer automaton of G built according to [5]. Hereafter, we will
work on the observer automaton denoted by E = (XE , Eo, fE , xE ,0)
directly, where E is a deterministic automaton with the unique initial
state xE ,0 ∈ XE . In the remainder, E is also called current-state

1Generally, the initial state is taken to be unique for a “deterministic” finite-
state automaton. In our case, however the initial state might not be precisely
known (due to a variety of reasons) but the automaton is still considered
deterministic in the sense that its transition function is deterministic [4].

estimator or simply estimator. The safe language for CSO, denoted
as Lsafe, is defined as [22]

Lsafe = P (L(G))\((P (L(G))\P (LNS))E
∗
o).

The unsafe language for CSO is defined as Lunsafe = P (L(G))\Lsafe.
Language Lsafe is prefix-closed, and the intruder can never infer the
secret by observing strings in Lsafe. A string s is said to be safe if
s ∈ Lsafe, and unsafe otherwise. The continuations of a string t ∈ Lunsafe

still belong to Lunsafe.
Moreover, we can build a deterministic automaton Ed, called desired

estimator, which is in the form Ed = (XEd
, Eo, fEd

, xEd,0), for the
safe language Lsafe. Ed can be constructed from the estimator E by
deleting all the secret revealing states in E and taking the accessible part
from the initial statexEd,0 = xE ,0. For Ed, we haveL(Ed) = Lsafe [22].

C. Insertion Function and PP-Enforceability

An insertion function is defined as a potentially partial func-
tion fI : E∗

o ×Eo → E+
o , where E+

o = E∗
oEo, that outputs a string

with inserted events based on the past observed events string
and the current observed event. Given an observable string teo ∈
P (L(G)), fI(t, eo) = tIeo when string tI ∈ E∗

o is inserted before
eo. The string-based version of fI , denoted by f str

I , is defined
as: f str

I (ε) = ε and f str
I (teo) = f str

I (t)fI(t, eo), where t ∈ E∗
o, eo ∈

Eo. Then, based on fI , the modified language is f str
I (P (L(G))) =

{t̃ ∈ Eo
∗ : ∃t ∈ P (L(G)), f str

I (t) = t̃}. We assume that the events in
the modified output string are observed one by one [24], i.e., from the
intruder’s viewpoint, the modified output language of the system is
prefix-closed. Note that the insertion functions fI (and its string-based
version f str

I ) considered in this article are deterministic.
In this article, the synthesized insertion function is encoded as

an input/output (I/O) automaton IA = (Xia, Eo, E
+
o , fia, qia, xia,0)

[22], where Xia is the set of states, Eo is the input events set, the
output set is a set of strings in E+

o = E∗
oEo, fia : Xia ×Eo → Xia is

the transition function of IA, the output function qia is defined as:
qia(x, eo) = qia(fia(xia,0, t), eo) = tIeo, where x = fia(xia,0, t),
fI(t, eo) = tIeo, and xia,0 is the unique initial state.

We formally recall and revise the definition of PP-Enforceability in
the following.

Definition 2 (PP-Enforceability): Consider G, P , LS , LNS , L safe

and L unsafe. An insertion function fI with its f str
I , is PP-enforcing if

1) ∀teo ∈ P (L(G)), where t ∈ E∗
o, eo ∈ Eo, ∃tI ∈ E∗

o s.t.
fI(t, eo) = tIeo,

2) ∀t ∈ P (L(G)), f str
I (t) ∈ L safe, and

3) ∀t̃ ∈ f str
I (P (L(G))), ∃t ∈ L safe s.t. t̃ � f str

I (t).
When only Conditions (1) and (2) in Definition 2 are satisfied, the

insertion function fI is privately-enforcing [24]. The system is called
privately enforceable if there exists a privately-enforcing insertion
function fI . The problem of verifying whether a given system is
privately enforceable2 or not has been well studied in [22]. When only
Conditions (1) and (3) in Definition 2 are satisfied, the insertion function
fI is publicly-enforcing [24], [28]. Notice that [24] and [28] require
t̃ = f str

I (t) in Condition (3), unlike our definition here. The following
example highlights the difference.

Example 1: Suppose that there is an observer/estimator of a
system G (the system G is not explicitly presented here) with
Eo = {a, b, c, d, e}, set of observable strings {abcde, bcde, c, d},
and set of secret revealing strings {c, bcde}. Then, we
have Lsafe = {abcde, bcd, d}. Consider the insertion function
fI : fI(ε, d) = bcd, fI(ε, c) = bc, fI(ε, b) = ab, and fI(s, eo) = eo
∀seo ∈ {abcde, bcde}\{b}. Clearly, fI is privately-enforcing since
f str
I (abcde) = abcde ∈ Lsafe, f str

I (bcde) = abcde ∈ Lsafe, f str
I (c) =

bc ∈ Lsafe, f str
I (d) = bcd ∈ Lsafe, and f str

I (P (L(G))) = {abcde, bcd};
fI is also PP-enforcing since Condition (3) holds: for any string

2More specifically, private enforceability is termed i-enforceability in [22].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:56:24 UTC from IEEE Xplore.  Restrictions apply. 



2502 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 4, APRIL 2024

t̃ ∈ f str
I (P (L(G))), in particular, for strings abcde = f str

I (bcde) and
bc = f str

I (c) in f str
I (P (L(G))), there exist two safe strings abcde and

d in Lsafe such that abcde � f str
I (abcde) and bc � f str

I (d). Notice
that f str

I (d) = bcd = bc, i.e., for t̃ = bc = f str
I (c), there does not exist

exactly a string t ∈ Lsafe such that bc = f str
I (t).

III. ALL INSERTION STRUCTURE (AIS) AND ANALYSIS

For synthesizing purposes, a structure, named AIS [22], [24], [30],
is recalled in the following.

Given E = (XE , Eo, fE , xE ,0), Ed = (XEd
, Eo, fEd

, xEd,0), and
lettingQ = XEd

×XE be the information state set, the AIS is a game-
like bipartite structure, and formally defined as

AIS = TRIM∗(AISpre = (Y,Z,Eo, E
∗
o, fAIS,yz, fAIS,zy, y0))

where
1) Y ⊆ Q is the set of Y -states and a state y = (xEd

, xE ) ∈ Y
is called a Y deadlock state if ∃eo ∈ Eo s.t. [fE (xE , eo)!] ∧
[fAIS,yz(y, eo)!/].

2) Z ⊆ Q×Eo is the set of Z-states, and a state z ∈ Z is called a
Z deadlock state if there are no fAIS,zy transitions defined at z.
Let Q(z), E(z) denote the information state component and event
component of z ∈ Z respectively, so that z = (Q(z), E(z)).

3) fAIS,yz : Y ×Eo → Z is the transition function from Y -state
to Z-state. For every y = (xEd

, xE ) ∈ Y , e ∈ Eo, we have:
fAIS,yz(y, e) = z if [fE (xE , e)!] ∧ [Q(z) = y] ∧ [E(z) = e].

4) fAIS,zy : Z ×E∗
o → Y is the transition function fromZ-state toY -

state. For every z = ((xEd
, xE ), e) ∈ Z and “cycle-free” string3tI

starting from xEd
in Ed (i.e., tI ∈ {s ∈ L(Ed, xEd

) : �s′ ≺
s s.t. fEd

(xEd
, s′) = fEd

(xEd
, s)}), we have: fAIS,zy(z, tI) = y

if [fEd
(xEd

, tIe)!] ∧ [y = (fEd
(xEd

, tIe), fE (xE , e))].
5) y0 = (xEd,0, xE ,0) ∈ Y is the unique initial Y state.
6) TRIM is an operation that prunes away all Y and Z deadlock

states in the structure and takes the accessible part from y0. TRIM∗

means repeating TRIM operation on AISpre until no more Y and Z
deadlock states exist.

An instance of AIS is presented in Example 3.
Proposition 1 (see [22], [24]): The AIS embeds all and only all

privately-enforcing insertion functions in its transitions.
With a slight abuse of notation, we denote AIS by the form AIS =

(Y,Z,Eo, E
∗
o, fAIS,yz, fAIS,zy, y0) hereafter, and recall/extend the no-

tions related to AIS in [24] as below.
A run r generated by the AIS is a sequence of transitions starting from

the initial state y0 and ending up with a Y -state: r = 〈y0 e0−→ z0
s0−→

y1
e1−→ . . . yk−1

ek−1−−−→ zk−1
sk−1−−−→ yk〉, where ei ∈ Eo, si ∈ E∗

o, zi =
fAIS,yz(yi, ei), and yi+1 = fAIS,zy(zi, si) for 0 ≤ i < k. The set of
runs in the AIS is denoted by R. The original events in run r are
defined as: Sori(r) = e0e1 . . . ek−1. The map Sori erases all states and
inserted strings in run r, and shows the original events corresponding
to the run r. The string generated by run r is defined as: Sp(r) =
s0e0s1e1 . . . sk−1ek−1 and the map Sp erases all states in run r and
then swaps every consecutive ei and si pair. In particular, for run
r = 〈y0〉, we define Sp(〈y0〉) = Sori(〈y0〉) = ε. For a run r = 〈y0〉,
we have Sori(r) � Sp(r), i.e., string Sori(r) is “embedded” in string
Sp(r).

For t ∈ L(E ), we define Mp(t) = {Sp(r) ∈ Lsafe : Sori(r) =
t, where r ∈ R}. TheMp(t) is the set of strings that t can map to under
these privately-enforcing insertion functions that can be synthesized
from the AIS. For any s ∈ Mp(t), we have t � s.

Proposition 2: For a given finite length string t, we have that the
cardinality of Mp(t) is also finite.

3We claim that the cycle-free requirement, which has also been deployed
in [24], does not compromise the functionality of the AIS.

Fig. 2. System model with E = Eo = {a, b} and secret state set
XS = {3}.

Now, we are ready to discuss and derive one of our main re-
sults. In [24], the following partition is proposed for safe language

Lsafe as L1
safe∪̇L2

safe, where L1
safe = L̃safe, L̃safe = {s ∈ Lsafe : �u ∈

Lunsafe, s.t., s � u}, andL2
safe = Lsafe\L1

safe. L̃safe is the set of safe strings
that are not prefixes of any unsafe strings, and L2

safe is a subset of safe
prefixes of unsafe strings. Based on the abovementioned partition [24,
Prop. 2] claims that L1

safe = ∅ if private safety is enforceable. However,
we argue that the abovementioned result is not always correct.

Example 2: Consider system G in Fig. 2 with E = Eo =

{a, b} and secret state set XS = {3}, where L safe = {a}{ba}∗,
Lunsafe = {a}{ba}∗{bb}, L1

safe = ∅ and L2
safe = Lsafe. Define fI so

that fI(E
∗b, b) = ab and fI(s, e) = e, s ∈ L(G), e ∈ E otherwise.

Because f str
I (P (L(G))) = f str

I (L(G)) = {a}{ba}∗ ⊆ Lsafe, fI is a
privately-enforcing insertion function. One can conclude that system G
in Fig. 2 is privately enforceable, whileL1

safe = ∅, which contradicts [24,
Prop. 2].

The partition L1
safe∪̇L2

safe is based on the observation that some safe
strings are prefixes of unsafe strings while others are not. In [24],
Proposition 2 is proved by contradiction: since all the continuations
of unsafe strings are also unsafe if L1

safe = ∅, then one can never
map an unsafe string to a string in L1

safe. However, Example 2 shows
that this is not always true. We can map unsafe strings to L2

safe if
L1

safe = ∅. The condition that continuations of unsafe strings are un-
safe, may have no effect on the map as they can also be mapped
into L2

safe. Also important is the fact that the length/number of safe
prefixes of unsafe strings could be infinite. Indeed, it does not mat-
ter whether L1

safe is empty or not for the enforceability of private
safety.

By reviewing the insertion mechanism, we observe that some strings
must be modified while others need not. For example, unsafe strings
in Lunsafe should be modified. Based on this observation, the observed
system language can be partitioned as follows.

Language P (L(G)) is partitioned into two parts: (i)L1
E ⊆

P (L(G)): a set of strings s ∈ P (L(G)) that satisfy f str
I (s) = s under

all possible privately-enforcing insertion functions fI ; (ii) L2
E :=

P (L(G))\L1
E . Or, we can define L2

E as the collection of strings
s ∈ P (L(G)), which satisfy f str

I (s) = s under a privately-enforcing
insertion function fI .

L1
E is the set of strings that must be modified, while L2

E is the
set of strings that can remain unchanged. Clearly, we have L2

E =

L2
E , and Lunsafe ⊆ L1

E as any string s ∈ Lunsafe should be modified
for safety. Also L2

E ⊆ Lsafe as there may exist a safe string that
must be modified. For example, consider the system in Example 1,
we have L1

E = {c, bcde}, Lunsafe = {c, bcde}, L2
E = {d, abcde}, and

Lsafe = {d, bcd, abcde}, where Lunsafe ⊆ L1
E and L2

E ⊆ Lsafe. Since
{bcd} is the set of safe prefixes for unsafe string bcde, any string
s ∈ {bcd} should be modified. While, in Example 2, the string set that
must be modified is L1

E = Lunsafe = {a}{ba}∗{bb} and L2
E = Lsafe =

{a}{ba}∗. The new partition here captures the feature of strings in
P (L(G)) better.

As L1
E is the set of strings that must be modified, the string in L1

E
cannot map to itself according to the definition of L1

E . We have the
following proposition for L1

E .
Proposition 3: For any string s ∈ P (L(G)), s ∈ L1

E if and only if
s /∈ Mp(s).

If s ∈ L1
E , then ∀α ∈ Mp(s), we have s � α and |s| < |α|.

For L2
E , we have Proposition 4.
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Proposition 4: For any string s ∈ P (L(G)), s ∈ L2
E if and only if

s ∈ Mp(s). Or, For any string st ∈ P (L(G)), s ∈ L2
E if and only if

there exists a string α ∈ Mp(st) such that s � α.
Proof: From the definitions of L2

E and Mp, we have that s ∈ L2
E if

and only if s ∈ Mp(s).
The second statement can be proven as follows. First, we have that

for a string α ∈ Mp(st), there must exist a string α′ � α such that
α′ ∈ Mp(s). This is because, in AIS, any run r′ ∈ R s.t. Sori(r

′) = s
can be extended to a run r ∈ R s.t. Sori(r) = st and any run r ∈ R
s.t. Sori(r) = st can only be extended from a run r′ s.t. Sori(r

′) = s.
Then, (⇒) for a string st ∈ P (L(G)), we have that∀α′ ∈ Mp(s),∃α ∈
Mp(st) such thatα′ � α. In particular, if s ∈ Mp(s), i.e., s ∈ L2

E , then
∃α ∈ Mp(st) such that s � α. (⇐) If �α ∈ Mp(st) s.t. s � α, then
this implies that s must be modified, i.e., s ∈ L1

E . �
Proposition 5: ∀s ∈ L2

E ∀st ∈ P (L(G)), we have Mp(st)|s = ∅.
Proof: If Mp(st)|s = ∅, then ∀α ∈ Mp(st), s is not a prefix of α,

and it implies that s ∈ L1
E must be modified, which is a contradiction.�

According to [24], Lsafe = ∅ if private safety is enforceable. Further-
more, the following proposition shows the nonemptiness ofL2

E ⊆ Lsafe

when private safety is enforceable.
Proposition 6: L2

E = ∅ if private safety is enforceable.
Proof: If private safety is enforceable, then the AIS is not empty. We

prove that L2
E = ∅ by contradiction. If L2

E = ∅, then L1
E = P (L(G)).

For a finite length t0 ∈ P (L(G)) = L1
E , the cardinality of Mp(t0) is

finite (Proposition 2). Let n = |Eo| be the number of events in Eo, then
we can find a sequence of finite length strings ti such that Mp(ti) = ∅,
ti ∈ Mp(ti−1) (i.e., ti−1 � ti) and |ti| − |ti−1| ≥ 1, i = 1, 2, . . . , n.
Since there are onlyndifferent events inEo, there must exist two indices
i1and i2 with 0 ≤ i1 < i2 ≤ n such that ti1 and ti2 have a same first
event eo ∈ Eo, i.e., eo = (ti1)1 = (ti2)1. Notice that ti1 � ti2 means
that when one maps string ti1 to ti2 , for the prefix eo � ti1 , one can
also keep eo unchanged, which implies that eo ∈ L2

E . However, eo is
assumed to be eo ∈ L1

E = P (L(G)), which is a contradiction. The
proof is completed. �

Proposition 7: If AIS is not empty, i.e., private safety is enforceable,
then ∀s ∈ P (L(G)), ∃r ∈ R, t ∈ L2

E s.t. Sori(r) = s ∧ Sp(r) = t.
Proof: For every string s ∈ P (L(G)), we can always find a run

r ∈ R s.t. Sori(r) = s due to the fact that the AIS is built based on E ,
and all observed system behaviors have been embedded in the AIS.

For every string s ∈ L2
E , we can always find a run r ∈ R s.t.

Sp(r) = s as there exists a privately-enforcing insertion function fI
s.t. f str

I (s) = s.
For strings s ∈ L1

E , we prove by contradiction. Assume that there ex-
ists a string setA ⊆ L1

E , such that ∀s ∈ A ∀r ∈ R satisfyingSori(r) =
s, �t ∈ L2

E s.t. Sp(r) = t. Then, ∀s0 ∈ A, we have [Mp(s0) ∩ L2
E =

∅] ∧ [Mp(s0) ∩ (L1
E \A) = ∅], as L1

E \A is the string subset of L1
E

that can map to L2
E . If Mp(s0) ∩ (L1

E \A) = ∅, then there exist strings
l1 ∈ (L1

E \A), l2 ∈ L2
E such that [s0 � l1 � l2] ⇒ [s0 � l2]. There-

fore, ∀s ∈ A, we have Mp(s) ⊆ A. However, such subset A does not
exist, see Appendix. �

Roughly speaking, in the proof of Proposition 7, as L1
E is the

collection of strings that must be modified, one cannot map L1
E to

a subset of itself. Proposition 7 points out that there always exist safe
strings t ∈ L2

E for strings s ∈ P (L(G)) to map to whenever the system
is privately enforceable and in later sections, this observation will be
helpful for synthesizing PP-enforcing insertion functions.

IV. PRIVATELY-AND-PUBLICLY KNOWN INSERTION FUNCTIONS

In the following, we first recall the existing greedy synthesis method,
and then improve it by proposing a new criterion. A formal proof is
presented for the existence of PP-enforcing insertion functions.

A. Existing Greedy Synthesizing Method

Here, we first recall some necessary knowledge for the existing
greedy synthesis method. Recall the sufficient condition for the ex-
istence of PP-enforcing insertion functions.

Fig. 3. Estimator E with secret revealing states 7 and 8, and the
desired estimator Ed.

Fig. 4. AIS. The rectangular/elliptical states are Y /Z states. The
dashed arrows are chosen under the GM-criterion in Definition 3 and the
red arrows are chosen under the improved GM-criterion in Definition 4.
These red-dashed arrows coincide (by chance) with both GM-criteria in
Definitions 3 and 4 for this model in Fig. 3(a).

Lemma 1 (see [24]): A privately-enforcing insertion function fI is
also publicly-enforcing if there exists a language L ⊆ Lsafe such that
f str
I (P ([L(G)])) = L and f str

I (L) = L.
Depending on whether the ε transition is defined at Z-states, the

set of Z-states can be partitioned into two subsets: 1)Z1, defined as
the Z-states in AIS where ε transitions exist and 2)Z2, defined as the
remaining Z-states, where only non ε transitions are defined.

Definition 3 (GM-Criterion [24]):
1) At every z ∈ Z1 in the AIS, choose ε insertion.
2) At every z ∈ Z2 in the AIS, choose for insertion choice

any string smax ∈ arg max{|s|, s ∈ Γ (z)},whereΓ (z) =
⋃{s ∈

E∗
o : fAIS,zy(z, s) is defined}.

Based on [24, Def. 3, Algorithm 2], one can synthesize the so-called
“greedy-maximal insertion function fgreedy” [24] from the AIS. We
would like to point out that the above synthesized “greedy-maximal
insertion functions fgreedy” are not always PP-enforcing as claimed
in [24]. We illustrate this in the following counter-example.

Example 3: Consider a new systemGwhose estimator E is obtained
in Fig. 3(a) with secret-revealing states 7 and 8. Then, for E in Fig. 3(a),
the corresponding desired estimator is shown in Fig. 3(b). The model
here is a customized estimator derived in [24, Example 6]. The AIS is

illustrated in Fig. 4 [transition ((4, 4), c)
ceda−−−→ (0, 0) here should be

added to Fig. 9 in [24, Example 6] since string ceda ∈ L(Ed, 4) is a
cycle-free string]. For Z state ((0, 0), a) ∈ Z2 in Fig. 4, according to
Definition 3, string db can be chosen as the lengths of insertion choices
db and ed are equivalent. Moreover, e transition at state ((0, 0), d) is
chosen. The transitions represented by the dashed arrows at Z-states
are the choices obtained under the GM-criterion given in Definition 3,
and the synthesized “greedy-maximal insertion function fgreedy” [24] is

encoded in Fig. 5 with 0
a/dba−−−→ 7.
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Fig. 5. I/O automata. The transitions 0
a/dba−−−−→ 7 and 8

d/d−−→ 9 are
obtained under the GM-criterion in Definition 3 for “greedy-maximal

insertion function fgreedy” [24] and transitions 0
a/eda−−−−→ 7 and 8

d/ed−−−→ 9
are obtained under the improved GM-criterion in Definition 4 for fI,greedy
in Algorithms 2 or 3 in this article. Note that the states in the I/O
automata synthesized from the AIS have been relabelled with numbers
0, 1, . . . , 10.

Fig. 6. Subestimator/subautomaton E pp
d

.

For the above obtained fgreedy, we show that it is not PP-enforcing.
Given unsafe string a ∈ L(E ), we have f str

greedy(a) = dba, and the
original system’s safe behavior dba has been modified to f str

greedy(dba) =
edabceda. When the intruder observes string dba, the intruder can
assert that secret behavior a in 0

a−→ 7 has occurred and secret-revealing
state 7 is exposed, since there is no safe string t ∈ Lsafe that can map
to a safe behavior string t̃1 ∈ Lsafe such that t̃2 = dba is a prefix of
t̃1, i.e., Condition (3) in Definition 2 has been violated. As a result,
in [24, Th. 2], i.e., the statement that “a greedy-maximal insertion
function is PP-enforcing,” is not correct according to this example.
Whether opacity is PP-enforceable when it is privately enforceable
(in [24, Corollary 1]), is still unclear and we further investigate it later
in this article. �

Furthermore, the requirement that choosing ε insertion at Z1 states
in Definition 3 may also not be permissible.

Example 4: Reconsider Example 3. If one chooses the ε insertion at

Z1 state ((0, 8), d) in Fig. 4 (which corresponds to transition 8
d/d−−→ 9

in Fig. 5), then the unsafe string dbcd would be modified as edabcd.
However, the original safe behavior edabcd has been modified as
edabced and no safe behavior t ∈ Lsafe could be modified as a string
t̃ ∈ Lsafe that has prefix edabced, i.e., Condition (3) in Definition 2
is not satisfied. Thus, the insertion function in Fig. 5 with transition

8
d/d−−→ 9 would not be PP-enforcing. �
In other words, one cannot synthesize PP-enforcing insertion

functions from the AIS by purely examining the lengths of the
insertion choices at Z2 states or simply choosing ε insertion at Z1

states in the AIS.

B. Improved Greedy Synthesizing Method

Following the ideas in Lemma 1 and [28] that a language L ⊆ Lsafe

s.t. f str
I (L) = L should be first identified. For this purpose, we first

build/identify a subestimator/subautomaton of Ed through Algorithm 1,
which is denoted as E pp

d = (Xpp
Ed

, Eo, f
pp
Ed

, xpp
Ed,0

). When building
E pp
d , we only consider those ε transitions at Z-states. For example,

the built E pp
d w.r.t. AIS in Fig. 4 and Ed in Fig. 3(b) is shown in Fig. 6.

To obtain E pp
d , Algorithm 1 starts from y0 = (0, 0) and Q is initialized

as Q = {y0}. For events a, d, and e at y = y0 = (0, 0), Z states z1 =
((0, 0), a), z2 = ((0, 0), d), and z3 = ((0, 0), e) are reachable from

Algorithm 1: Build E pp
d .

Input: AIS = (Y,Z,Eo, E
∗
o, fAIS,yz, fAIS,zy, y0),

Ed = (XEd
, Eo, fEd

, xEd,0)
Output: E pp

d = (Xpp
Ed

, Eo, f
pp
Ed

, xpp
Ed,0

)

1: fpp
Ed

:= ∅, Q := {y0}
2: for all y ∈ Q that have not been examined do
3: for e ∈ Eo s.t. fAIS,yz(y, e) is defined do
4: z = ((xEd

, xE ), e) = fAIS,yz(y, e)
5: if fAIS,zy(z, ε) is defined then
6: fpp

Ed
(xEd

, e) := fEd
(xEd

, e)

7: Q := Q ∪ {fAIS,zy(z, ε)}
8: E pp

d := (XEd
, Eo, f

pp
Ed

, xEd,0)

9: Return the Trimmed E pp
d

y = (0, 0), while, only at state z3, there exists an ε transition; thus, tran-
sition 0

e−→ 1 is added to E pp
d andQ = Q ∪ {(1, 1)} = {(0, 0), (1, 1)}.

For y = (1, 1) ∈ Q, we need to check ε transitions for all Z states that
are reachable from (1, 1) with a single-step transition, and so forth.
Now, we are in the position to find a PP-enforcing insertion function fI
(f str

I ) such that f str
I (L(E pp

d )) = L(E pp
d ) and f str

I (P (L(G))) = L(E pp
d ).

Definition 4 (Improved GM-Criterion): At every z =
((x1, x2), e) ∈ Z in the AIS
1) if z ∈ Z1, choose ε transition if z

ε−→ y = (x′
1, x

′
2) s.t. x′

1 ∈ Xpp
Ed

in E pp
d ;

2) if the above condition is not satisfied or z ∈ Z2, then randomly
choose one sI , where z

sI−→ y = (x′
1, x

′
2) s.t. x′

1 ∈ Xpp
Ed

and
fpp

Ed
(x1, sI) is defined in E pp

d ;
3) otherwise, undefined.

Condition (1) in Definition 4 is used to guarantee that every string
s ∈ L(E pp

d ) is mapped to itself. Condition (2) in Definition 4 is used to
guarantee that the modified output strings belong to L(E pp

d ).
By leveraging Lemma 1 with the improved GM-criterion in Defini-

tion 4, Algorithm 2 is shown here for synthesizing a (greedy) insertion
function fI . Algorithm 2 starts from initial state xia,0 = y0. For a
state xia, all transitions fAIS,yz(xia, e) defined are considered. For
a reached Z-state, i.e., z = fAIS,yz(xia, e), we first check whether
z ∈ Z1. If z ∈ Z1, then we use Condition (1) in Definition 4 (i.e.,
lines 5–9 in Algorithm 2) to choose next the xia state; otherwise, we
use Condition (2) in Definition 4 (i.e., lines 11–14 in Algorithm 2) to
choose the next xia state. The insertion function fI synthesized from
Algorithm 2 is called a greedy insertion function hereafter, denoted as
fI,greedy.

Example 5: Reconsider Example 3. The E pp
d built from the AIS is

shown in Fig. 6.
The AIS with the improved GM-criterion in Definition 4 is

shown in Fig. 4. The red arrows represent the corresponding choices
when using the improved GM-criterion. The corresponding greedy

insertion function fI,greedy is encoded in Fig. 5 with 0
a/eda−−−→ 7 and

8
d/ed−−−→ 9. �

C. Verification for the Greedy Insertion Functions fI,greedy

Lemma 2: If fI,greedy is synthesized from Algorithm 2, then
f str
I,greedy(P (L(G))) = L2

E .
Proof: First, we prove that L(E pp

d ) = L2
E . Recall that L2

E is the col-
lection of strings s satisfying f str

I (s) = s under a privately-enforcing in-
sertion function fI . AIS enumerates all and only all privately-enforcing
insertion functions fI . For every string s ∈ L2

E , there exists a run r ∈ R
s.t. Sori(r) = s and Sp(r) = s, i.e., for all z in this r, fAIS,zy(z, ε) is
defined. According to the construction (Algorithm 1) of E pp

d , we have
L(E pp

d ) = L2
E . Indeed, L(E pp

d ) = L2
E is established from the fact that

every state in E pp
d can be derived from a run r, where the run r only has

ε transitions for all Z states in it.
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Algorithm 2: Synthesize a (Greedy) Insertion Function fI .

Input: AIS = (Y,Z,Eo, E
∗
o, fAIS,yz, fAIS,zy, y0),

E pp
d = (Xpp

Ed
, Eo, f

pp
Ed

, xpp
Ed,0

)

Output: IA = (Xia, Eo, E
+
o , fia, qia, xia,0)

1: xia,0 := y0, Xia := {xia,0}
2: for all xia = (x1, x2) ∈ Xia that have not been examined do
3: for e ∈ Eo s.t. fAIS,yz(xia, e) is defined do
4: z = ((x1, x2), e) = fAIS,yz(xia, e)
5: if [fAIS,zy(z, ε) is defined] ∧ [x′

1 ∈ Xpp
Ed

, where
(x′

1, x
′
2) = fAIS,zy(z, ε)] then

6: y = fAIS,zy(z, ε)
7: x′

ia := y
8: fia(xia, e) := x′

ia

9: qia(xia, e) := e
10: else
11: find a transition z

sI−→ y = (x′
1, x

′
2) in fAIS,zy where

x′
1 ∈ Xpp

Ed
and fpp

Ed
(x1, sI) is defined

12: x′
ia := y

13: fia(xia, e) := x′
ia

14: qia(xia, e) := sIe
15: Xia := Xia ∪ {x′

ia}
16: Return IA

Algorithm 3: Synthesize Greedy Insertion Functions fI,greedy for
System G.

Input: G = (X,E, f,X0), P , XS

Output: A PP-enforcing IA
1: Build E ,Ed

2: Construct All Insertion Structure (AIS)
3: Build E pp

d by Algorithm 1
4: Synthesize a greedy insertion function from AIS by

Algorithm 2

Next, we prove that f str
I,greedy(P (L(G))) = L2

E . We have proved
that L(E pp

d ) = L2
E , and Proposition 7 points out that all strings in

P (L(G)) can be modified into L2
E . The improved GM-criterion in

Definition 4 is used to guarantee that all strings are modified into
L(E pp

d ) and all strings in L(E pp
d ) remain unchanged. Algorithm 2 is

designed under the guidance of the criterion in Definition 4, thus, we
have f str

I,greedy(P (L(G))) = L2
E . �

Proposition 7 guarantees that Condition (3) in Definition 4 will
never occur when executing Algorithm 2, i.e., we will never reach a
Z-state where only non ε transitions are defined and the requirements
for Condition (2) in Definition 4 are not satisfied. Furthermore, we have
the following result.

Theorem 1: The insertion function fI,greedy is PP-enforcing.
Proof: Notice that fI,greedy is a privately-enforcing insertion func-

tion as it is derived from the AIS. Based on Lemma 2, we have
f str
I,greedy(P (L(G))) = L2

E . Based on the criterion given in Definition 4,
we have f str

I,greedy(L
2
E ) = f str

I,greedy(L(E pp
d )) = L(E pp

d ) = L2
E . Thus, ac-

cording to Lemma 1, the privately-enforcing insertion function fI,greedy

is also PP-enforcing. �
Corollary 1: There always exist PP-enforcing insertion functions

when the AIS is not empty; or, the system is PP-enforceable if and only
if it is privately enforceable.

Full steps for synthesizing greedy PP-enforcing insertion functions
are summarized in Algorithm 3.

We briefly discuss the computational complexity of Algorithm 3.
Recall that the time complexity and space complexity for building AIS
are O(|XE |3) and O((1 + |Eo|)|XE |2), respectively, [24], [30]. To
build E pp

d , Algorithm 1 needs a breadth-first search on the AIS, which
requires O(|XE |2) time complexity. Also, a breadth-first search on the

AIS is performed in Algorithm 2 for synthesizing fI,greedy. In all, the
computational complexity of Algorithm 3 is O(|XE |3).

Remark 1: We would like to point that Algorithm 3 can also be
used to synthesize PP-enforcing insertion functions for infinite-step
opacity and K-step opacity4 in [10] and [11] by replacing Ed in line
1 in Algorithm 3 with desired infinite-step estimator E inf

d and desired
K-step estimator E K

d obtained in our work [30], respectively.

V. CONCLUSION

This article investigates opacity enforcement when the inser-
tion mechanism is also publicly known. First, the notion of PP-
enforceability has been revised for accuracy, and an improved GM-
criterion is proposed for synthesizing PP-enforcing insertion functions.
We have solved the soundness problem by showing that there always
exist PP-enforcing insertion functions when the AIS is not empty. A
necessary and sufficient condition is derived for PP-enforceability of the
system. It would be interesting to extend the enforcement method in this
article to other system dynamics, such as cyber-physical systems [32],
[33].

APPENDIX

Material for the Proof of Proposition 7

Suppose that there exists a string set A ⊆ L1
E such that ∀s ∈ A, we

haveMp(s) ⊆ A. Then, forA, we have thatA\A ⊆ L2
E and∀st ∈ L1

E ,
if s ∈ A, then st ∈ A. We define AL = {s ∈ A\A : ∃e ∈ Eo s.t. se ∈
A} and AF = {se ∈ A : e ∈ Eo∀s ∈ AL}. AF is the set of strings
s in A such that any strict-prefix of s does not belong in A. Clearly,
AL ∩A = ∅, AL ⊆ A\A ⊆ L2

E and AF ⊆ A ⊆ L1
E . Any string s ∈

A can be uniquely partitioned as s = s′es′′ such that s′ ∈ AL, e ∈ Eo,
s′e ∈ AF ; then, the longest-safe prefix of s, denoted by sLP, is s′, i.e.,
sLP = s′ ∈ AL and sLPe ∈ AF . AL is a collection set that contains all
the longest-safe prefixes of strings in A.

Suppose that A generated by a finite-state deterministic subautoma-
ton H of estimator E , denoted H = (Q,Eo, δ, q0) with Q ⊆ XE and
q0 = xE ,0. Define a state-event pair set Θ as Θ = {(δ(q0, s), e) ∈
Q×Eo : s ∈ AL, e ∈ Eo, se ∈ AF }. Suppose that there are m state-
event pairs in Θ, then we have m = |Θ| < |XE | × |Eo|. For any
string s in A, we can find a unique prefix s′e � s and a unique state-
event pair (q′, e′) ∈ Θ such that s′ = sLP ∈ AL, s′e ∈ AF , δ(q0, s′) =
δ(q0, s

LP ) = q′ and e = e′. Or, we say that any string in A must “pass
through” a state-event pair in Θ.

To show the nonexistence of A, we first pick up a string s0 ∈ A.
Then, according to Proposition 5, we can further find a sequence of
strings si ∈ A, i = 1, 2, . . .m such that si ∈ Mp(si−1)|sLP

i−1. Clearly,
for such string sequences si, i = 0, 1, . . .m, we also have |si| > |si−1|,
si−1 � si and sLP

i−1 � sLP
i . Since there are at most m pairs in Θ, then

there must exist two indices k, l ∈ [0,m] with k < l and a state-event
pair (q′, e′) ∈ Θ such that sk, sl pass through the same pair (q′, e′),
i.e., δ(q0, sLP

k ) = δ(q0, s
LP
l ) = q′, sLP

k e′ � sk and sLP
l e′ � sl. Since

sLP
k � sLP

l and si ∈ Mp(si−1)|sLP
i−1, i ∈ [k, l], we have that sLP

k = sLP
l

or ∃sI ∈ E∗
o s.t. sLP

k sI = sLP
l and δ(q′, sI) = q′ (i.e., sI is a string that

is obtained from a circle path that starts and ends at the same state q′).
However, both above situations imply that sLP

k e′ ∈ L2
E . Clearly, If sLP

k =
sLP
l , then we have thatsLP

k e′ = sLP
l e′ andsLP

k e′ ∈ L2
E ; ifsLP

k sI = sLP
l and

δ(q′, sI) = q′ (i.e., sl = sLP
l e′(sl\sLP

l e′) = sLP
k sIe

′(sl\sLP
l e′)), which

means that based on sl and sk, we can simply delete the string
sI in sl and obtain a newly modified string s′ = sLP

k e′(sl\sLP
l e′);

4More specifically, the notions of infinite-step opacity and K-step opacity
in [10], [11] are also termed as weak infinite-step opacity and weak K-step
opacity [21], respectively; strong infinite-step opacity and strongK-step opacity
were introduced in [15] and [31] for a higher level of confidentiality, respectively.
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this means that sLP
k e′ ∈ L2

E . Furthermore, recall that sLP
k e′ ∈ AF ⊆

L1
E , which is a contradiction. Therefore, such subset A does not

exist.
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[3] R. Alur, P. Černyỳ, and S. Zdancewic, “Preserving secrecy under refine-
ment,” in Proc. Int. Colloq. Automata, Lang., Program., 2006, pp. 107–
118.

[4] C. N. Hadjicostis, “Estimation and inference in discrete event systems,”
in Series Communications and Control Engineering, Berlin, Germany:
Springer, 2020.

[5] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems., 3rd ed., Berlin, Germany: Springer, 2021.

[6] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. IEEE 46th Conf. Decis. Control, 2007,
pp. 5056–5061.

[7] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[8] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,” Inf. Sci., vol. 246,
pp. 115–132, 2013.

[9] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dynamic Syst., vol. 23, no. 3, pp. 307–339, 2013.

[10] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and K-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162–171, 2017.

[11] A. Saboori and C. N. Hadjicostis, “Verification of infinite-step opacity and
complexity considerations,” IEEE Trans. Autom. Control, vol. 57, no. 5,
pp. 1265–1269, May 2012.

[12] Y. Ji, X. Yin, and S. Lafortune, “Optimal supervisory control with mean
payoff objectives and under partial observation,” Automatica, vol. 123,
2021, Art. no. 109359.

[13] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1155–1165, May 2012.

[14] Y. Xie, X. Yin, and S. Li, “Opacity enforcing supervisory control using
non-deterministic supervisors,” IEEE Trans. Autom. Control, vol. 67,
no. 12, pp. 6567–6582, Dec. 2022.

[15] Z. Ma, X. Yin, and Z. Li, “Verification and enforcement of strong infinite-
and k-step opacity using state recognizers,” Automatica, vol. 133, 2021,
Art. no. 109838.

[16] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Des., vol. 40, no. 1,
pp. 88–115, 2012.

[17] X. Yin and S. Li, “Synthesis of dynamic masks for infinite-step opacity,”
IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1429–1441, 2020.

[18] J. Balun and T. Masopust, “Comparing the notions of opacity for discrete-
event systems,” Discrete Event Dyn. Syst., vol. 31, pp. 553–582, 2021.

[19] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using Petri nets,” IEEE Trans. Autom. Control, vol. 62, no. 6,
pp. 2823–2837, Jun. 2017.

[20] X. Han, K. Zhang, J. Zhang, Z. Li, and Z. Chen, “Strong current-state
and initial-state opacity of discrete-event systems,” Automatica, vol. 148,
2023, Art. no. 110756.

[21] R. Jacob, J. Lesage, and J. Faure, “Overview of discrete event systems
opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[22] Y.-C. Wu and S. Lafortune, “Synthesis of insertion functions for en-
forcement of opacity security properties,” Automatica, vol. 50, no. 5,
pp. 1336–1348, 2014.

[23] Y.-C. Wu, V. Raman, B. C. Rawlings, S. Lafortune, and S. A. Seshia, “Syn-
thesis of obfuscation policies to ensure privacy and utility,” J. Automated
Reasoning, vol. 60, no. 1, pp. 107–131, 2018.

[24] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public and
private insertion functions,” Automatica, vol. 93, pp. 369–378, 2018.

[25] Y. Ji, X. Yin, and S. Lafortune, “Opacity enforcement using nondetermin-
istic publicly-known edit functions,” IEEE Trans. Autom. Control, vol. 64,
no. 10, pp. 4369–4376, Oct. 2019.

[26] R. Liu, J. Lu, and C. N. Hadjicostis, “Opacity enforcement via
attribute-based edit functions in the presence of an intended re-
ceiver,” IEEE Trans. Autom. Control, early access, Nov. 8, 2022,
doi: 10.1109/TAC.2022.3220557.

[27] X. Li, C. N. Hadjicostis, and Z. Li, “Extended insertion functions for
opacity enforcement,” IEEE Trans. Autom. Control, vol. 67, no. 10,
pp. 5289–5303, Oct. 2022.

[28] Y.-C. Wu and S. Lafortune, “Synthesis of opacity-enforcing insertion
functions that can be publicly known,” in Proc. IEEE 54th Conf. Decis.
Control, 2015, pp. 3506–3513.

[29] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, “Enforcement
of K-step opacity with edit functions,” in Proc. IEEE 60th Conf. Decis.
Control, 2021, pp. 331–338.

[30] R. Liu and J. Lu, “Enforcement for infinite-step opacity andK-step opacity
via insertion mechanism,” Automatica, vol. 140, 2022, Art. no. 110212.

[31] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dyn. Syst., vol. 25, no. 4,
pp. 531–570, 2015.

[32] L. An and G. Yang, “Opacity enforcement for confidential robust control
in linear cyber-physical systems,” IEEE Trans. Autom. Control, vol. 65,
no. 3, pp. 1234–1241, Mar. 2020.

[33] X. Yin, M. Zamani, and S. Liu, “On approximate opacity of cyber-physical
systems,” IEEE Trans. Autom. Control, vol. 66, no. 4, pp. 1630–1645,
Apr. 2021.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:56:24 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TAC.2022.3220557


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


