
4958 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Optimal Synthesis of Opacity-Enforcing
Supervisors for Qualitative and Quantitative

Specifications
Yifan Xie , Student Member, IEEE, Shaoyuan Li , Senior Member, IEEE,

and Xiang Yin , Member, IEEE

Abstract—In this article, we investigate both qualitative
and quantitative synthesis of optimal privacy-enforcing su-
pervisors for partially observed discrete-event systems. We
consider a dynamic system whose information flow is par-
tially available to an intruder, which is modeled as a passive
observer. We assume that the system has a “secret” that
does not want to be revealed to the intruder. Our goal is to
synthesize a supervisor that controls the system in a least-
restrictive manner such that the closed-loop system meets
the privacy requirement. For the qualitative case, we adopt
the notion of infinite-step opacity as the privacy specifica-
tion by requiring that the intruder can never determine for
sure that the system is/was at a secret state for any specific
instant. If the qualitative synthesis problem is not solvable
or the synthesized solution is too restrictive, then we fur-
ther investigate the quantitative synthesis problem so that
the secret is revealed (if unavoidable) as late as possible
within a finite security-preserving horizon. Effective algo-
rithms are provided to solve both the qualitative and quanti-
tative synthesis problems. Specifically, by building suitable
information structures that involve information delays, we
show that the optimal qualitative synthesis problem can
be solved as a safety game. The optimal quantitative syn-
thesis problem can also be solved as an optimal total-cost
control problem over an augmented information structure.
Our work provides a complete solution to the standard
infinite-step opacity control problem, which has not been
solved without an assumption on the relationship between
controllable events and observable events. Furthermore,
we generalize the opacity enforcement problem to the nu-
merical setting by introducing the secret-revelation-time as
a new quantitative measure.

Index Terms—Discrete-event systems (DES), opacity, op-
timal control, supervisory control.

Manuscript received 9 February 2023; revised 7 November 2023; ac-
cepted 2 December 2023. Date of publication 14 December 2023; date
of current version 30 July 2024. This work was supported by the National
Natural Science Foundation of China under Grant 62061136004, Grant
61803259, and Grant 61833012. Recommended by Associate Editor J.
Komenda. (Corresponding author: Xiang Yin.)

Yifan Xie is with the Institute for Systems Theory and Automatic
Control, University of Stuttgart, 70569 Stuttgart, Germany (e-mail: yifan.
xie@ist.uni-stuttgart.de).

Shaoyuan Li and Xiang Yin are with the Department of Automa-
tion and Key Laboratory of System Control and Information Process-
ing, Shanghai Jiao Tong University, Shanghai 200240, China (e-mail:
syli@sjtu.edu.cn; yinxiang@sjtu.edu.cn).

Digital Object Identifier 10.1109/TAC.2023.3342880

I. INTRODUCTION

PRIVACY and security issues have been becoming increas-
ingly more important concerns in cyber-physical systems

(CPS) as communications and information exchanges among
smart devices may cause information leakage that threatens
the system. Formal model-based methods provide rigorous,
algorithmic, and correct-by-construction approaches toward the
analysis and design of safety critical CPS whose security and pri-
vacy demands are ever increasing. In this article, we investigate
a formal information-flow security property called opacity in
the context of discrete-event systems (DES). Roughly speaking,
a system is opaque if its “secret” can never be revealed to a
malicious intruder that can access the information flow of the
system. The notion of opacity is essentially a confidentiality
property that captures the plausible deniability for the system’s
secrets [1].

In the context of DES, opacity has been studied very exten-
sively in the past few years, see, e.g., some recent works [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
and the survey papers [16] and [17]. Especially, to characterize
different types of security requirements, different notions of
opacity are proposed in the literature. For example, current-state
opacity (respectively, initial-state opacity) requires that the in-
truder should never know for sure that the system is currently
at (respectively, was initially from) a secret state by utilizing
the information available up to the current instant [18]. In many
situations, the intruder may further use future information to
better infer the security status of the system for some previous
instants, which is essentially an information smoothing process.
To capture this scenario, the notions of K-step opacity [19],
[20] and infinite-step opacity [19], [21], [22] are proposed.
Particularly, infinite-step opacity is the strongest one among
all notions of opacity mentioned above, which requires that the
intruder can never know for sure that the system is/was at a secret
state for any specific instant even by using future information.

When a system is verified to be nonopaque, one important
problem is to enforce opacity via some mechanisms. In general,
there are two approaches for enforcing opacity: one is to control
the actual behavior of the system so that those secret-revealing
behaviors can be avoided [23], [24], [25], [26], [27], [28], [29],
[30], [31] and the other one is to change the information flow of
the system so that the intruder can be “cheated” or be “confused”

1558-2523 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7158-1514
https://orcid.org/0000-0003-3427-2912
https://orcid.org/0000-0003-1944-1570
mailto:yifan.penalty -@M xie@ist.uni-stuttgart.de
mailto:yifan.penalty -@M xie@ist.uni-stuttgart.de
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4959

[32], [33], [34], [35], [36], [37], [38], [39], [40]. In particular, the
first approach is essentially the supervisory control of opacity
that aims to find a supervisor that restricts the behavior of the
system dynamically such that the closed-loop system is opaque.
For example, Dubreil et al. [30] studied the supervisory control
problem for current-state opacity assuming that all controllable
events are observable and the intruder cannot observe more
events than the supervisor. Tong et al. [29] relaxed the above
assumptions but assumed that the intruder does not know the
implementation of the supervisor. In [41], nondeterministic su-
pervisors are used to enhance the plausible deniability of the
controlled system. Note that all the above mentioned works
on opacity-enforcing supervisory control consider current-state
opacity.

In this article, we study the problem of synthesizing optimal
supervisors for infinite-step opacity and its quantitative gener-
alization. Enforcing infinite-step opacity is significantly more
challenging than the standard current-state opacity enforce-
ment problem. Specifically, in the infinite-step opacity setting,
whether or not a secret can be revealed to the intruder not
only depends on the information available currently, but also
depends on the information in the future. To handle this future
information, in the verification problem, we can look ahead
in the original open-loop system by “borrowing” the future
information from the fixed plant model, see, e.g., [19] and [21].
However, in the synthesis problem, the future information of
the closed-loop system is unknown and depends on the control
policy in the future, which is to be determined. Hence, how to
handle the dependency between the delayed information and
the future control policy is the main difficulty in the synthesis
of infinite-step opacity. In this article, we propose effective ap-
proaches that solve both the qualitative and quantitative versions
of the infinite-step opacity control synthesis problem. Our main
contributions are twofold.

1) First, we provide a new synthesis algorithm that solves
the standard qualitative infinite-step opacity supervisory
control problem without any assumption on the relation-
ship between controllable events and observable events.
Our approach is based on the generic structure of bi-
partite transition systems (BTSs) [28] and a new type
of information state that effectively captures the issue
of information delay while avoiding the dependence on
future control policy. In particular, we show that the
proposed synthesis algorithm is sound and complete, and
the resulting supervisor is maximally permissive in terms
of language inclusion. Therefore, for the qualitative part,
we completely solve the standard infinite-step opacity
control problem, which was only partially solved in the
literature under restrictive assumptions.

2) Furthermore, we investigate a quantitative version of the
opacity-enforcing control problem by introducing a secret
revelation cost based on the notion of secret-revelation-
time, i.e., the earlier the secret is revealed, the higher
the cost will be. This leads to a numerical generalization
of infinite-step opacity (as well as the notion of K-step
opacity [19], [20]). The control objective is to reveal
each visit of secret states (if unavoidable) as late as
possible. By suitably augmenting timing information into

the information state space, we show that this problem can
be solved effectively as an optimal worst-case total-cost
control problem. Our approach provides a new angle for
quantifying secret in control synthesis with information
delays using the concept of secret-revelation-time.

Our work is also related to several works in the literature.
Regarding the qualitative synthesis problem, as we mentioned
earlier, most of the existing works on opacity-enforcing supervi-
sory control only consider current-state opacity. One exception
is [42], where Saboori and Hadjicostis proposed a method to
enforce infinite-step opacity by synthesizing a set of supervisors
that run synchronously. However, our approach synthesizes
a single supervisor directly. More importantly, the approach
in [42] is based on the restrictive assumption that all controllable
events are observable; this assumption is also relaxed in our
approach. In our recent work [35], we consider the synthesis
of dynamic masks for infinite-step opacity. However, dynamic
masks can only change the observation of the system, while
supervisor can change the actual behavior of the system with-
out interfering the information flow directly. Hence, different
information-state updating rules are proposed here to handle the
control problem. In terms of quantification of opacity, most of
the existing works focus on qualifying how opaque the system
is in terms of probability measure, see, e.g., [2], [5], [43], [44],
[45], and [46]. In the very recent work [47], Lefebvre and
Hadjicostis proposed the concept of opacity revelation time to
characterize how long the initial secret is kept. This concept
is closely related to our secret-revelation-time. However, here
we essentially consider a delayed-state-estimation problem for
each visit of secret states, which is much more involved than
the initial-state-estimation problem considered in [47]. Further-
more, we consider the control synthesis problem, while the work
in [47] only considered the verification problem.

The rest of this article is organized as follows. Section II
presents some necessary preliminaries. In Section III, we for-
mulate the qualitative opacity-enforcing control problem. In
Section IV, we present a new class of information states for
infinite-step opacity. In Section V, we first define BTSs and
then present a synthesis algorithm that returns a maximally
permissive partial-observation supervisor to enforce infinite-
step opacity. Furthermore, we quantify infinite-step opacity
via secret-revelation-time and solve the quantitative synthesis
problem in Section VI. Finally, Section VII concludes this
article. Some preliminary results for the qualitative part were
presented in [48] without proof. This article presents complete
proofs as well as detailed explanations. Moreover, we further
investigate the quantitative synthesis problem by quantifying the
secret-revelation-time. The techniques for solving the qualitative
and quantitative problems are also different.

II. PRELIMINARY

A. System Model

We assume basic knowledge of DES and use common nota-
tions, see, e.g., [49]. Let Σ be an alphabet. A string is a finite
sequence of events s = σ1 . . . σn, σi ∈ Σ for all i = 1, . . . , n;
|s| = n denotes its length. We denote by Σ∗ the set of all
strings over Σ including the empty string ε whose length is

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4960 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

zero. A language L ⊆ Σ∗ is a set of strings, and we define
L = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv ∈ L} as the prefix closure ofL. For
the sake of simplicity, we write s ≤ t if s ∈ {t}; we write s < t
if s ≤ t and s �= t.

A DES is modeled as a deterministic finite-state automaton
G = (X,Σ, δ, x0), where X is the finite set of states, Σ is the
finite set of events, δ : X × Σ → X is the partial transition func-
tion, where δ(x, σ) = y means that there is a transition labeled
by event σ from state x to y, and x0 ∈ X is the initial state. The
transition function can also be extended to δ : X × Σ∗ → X
in the usual manner [49]. For simplicity, we write δ(x, s) as
δ(s) when x = x0. The language generated by G is defined by
L(G) :={s ∈ Σ∗ : δ(s)!}, where ! means “is defined”.

When the system is partially observed, Σ is partitioned into
two disjoint sets:Σ = Σo∪̇Σuo, whereΣo is the set of observable
events and Σuo is the set of unobservable events. The natural
projection P : Σ∗ → Σ∗

o is defined recursively by

P (ε) = ε and P (sσ) =

{
P (s)σ, if σ ∈ Σo

P (s), if σ ∈ Σuo.

We also extend the natural projection to P : 2Σ
∗ → 2Σ

∗
o by:

for any L ⊆ Σ∗, we have P (L) = {P (s) ∈ Σ∗
o : s ∈ L}. For

any observation αβ ∈ P (L(G)), we define X̂G(α | αβ) as the
delayed-state estimate that captures the set of all possible states
the system could be in at the instant when α is observed given
the entire observation αβ, i.e.,

X̂G(α | αβ) :={δ(s)∈X : st∈L(G), P (s)=α, P (st)=αβ} .
For simplicity, we define X̂G(α) := X̂G(α | α) as the current-
state estimate upon the occurrence of α.

B. Secret and Intruder

We assume that the privacy specification of the system is
captured by a set of secret states XS ⊆ X . We consider an
intruder modeled as a passive observer having the following
capabilities:

A1 The intruder knows the system model G;
A2 The intruder can observe the occurrence of each observ-

able event in Σo.
Then, the intruder can infer whether or not the system is/was

at a secret state based on the information flow available. Specif-
ically, we use the notion of infinite-step opacity to describe the
privacy requirement of the system, which says that for any string
that leads to a secret state, the intruder can never determine
for sure whether the system is/was at a secret state for any
current/previous instant.

Definition 1: Given system G, a set of observable events Σo,
and a set of secret states XS , system G is said to be infinite-step
opaque w.r.t. XS and Σo if

∀αβ ∈ P (L(G)), X̂G(α | αβ) � XS .

The following example illustrates infinite-step opacity.
Example 1: Let us consider system G in Fig. 1(a) with Σo =

{o1, o2} and XS = {5}. Then, G is not infinite-step opaque
w.r.t. XS and Σo. To see this, we consider string abo1o2 with
P (abo1o2) = o1o2, then the delayed-state estimate is X̂G(o1 |
o1o2) = {5} ⊆ XS . This means that the intruder knows for sure

Fig. 1. For G: Σo = {o1, o2},Σc = {a, b, c}, and XS = {5}. (a) Sys-
tem G. (b) System G1. (c) System G2.

that the system was at a secret state one step ago when string
o1o2 is observed. Upon the occurrence of o1o2, the secret state
5 will be revealed to the intruder.

III. QUALITATIVE PRIVACY-ENFORCING CONTROL PROBLEM

We start by the qualitative synthesis problem for infinite-step
opacity. When a given system G is not opaque, i.e., the secret of
the system can be revealed to the intruder, we need to enforce
opacity on the system. One typical approach is to synthesize a
supervisor that restricts the system’s behavior to a sublanguage
that satisfies the privacy requirement.

In the framework of supervisory control, a supervisor can re-
strict the behavior ofG by dynamically enabling/disabling some
events. In this setting, we assume that the events set is further
partitioned as Σ = Σc∪̇Σuc, where Σc is the set of controllable
events and Σuc is the set of uncontrollable events. Controllable
events are events that can be prevented from happening, or
disabled by the supervisor; uncontrollable events cannot be
disabled by the supervisor. A control decision γ ∈ 2Σ is said
to be admissable if Σuc ⊆ γ, namely, uncontrollable events can
never be disabled. We define Γ = {γ ∈ 2Σ : Σuc ⊆ γ} as the
set of admissable control decisions or control patterns. Since a
supervisor can only make decisions based on its observation, a
partial-observation supervisor is a function

S : P (L(G)) → Γ.

We use notation S/G to represent the closed-loop system under
supervision and the language generated by S/G, denoted by
L(S/G), is defined recursively by the following manners:

1) ε ∈ L(S/G);
2) for any s ∈ Σ∗, σ ∈ Σ, we have sσ ∈ L(S/G) iff sσ ∈

L(G), s ∈ L(S/G), and σ ∈ S(P (s)).
In this article, we want to synthesize a supervisor that disables

events dynamically based on the observation trajectory such that
the controlled systemS/G satisfies the privacy requirement, e.g.,
being infinite-step opaque for the qualitative setting. Note that
the implementation of supervisor S may become a public infor-
mation. Therefore, we further make the following assumption:

A3 The intruder knows the functionality of the supervisor S.

Then, under assumption A3, the intruder may further know
that some behaviors in the original open-loop system are no
longer feasible in the closed-loop system. Therefore, for any

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4961

observable string αβ ∈ P (L(S/G)), when the system is con-
trolled by supervisor S, we define

X̂S/G(α | αβ) :=
{
δ(s)∈X :

st ∈ L(S/G),
P (s) = α, P (st) = αβ

}
as the delayed-state estimate in the closed-loop system. Sim-
ilarly, we define X̂S/G(α) = X̂S/G(α | α). Then, we say that
the closed-loop system S/G is infinite-step opaque w.r.t. XS

and Σo if

∀αβ ∈ P (L(S/G)), X̂S/G(α | αβ) � XS . (1)

In the supervisory control framework, it is desirable that the
supervisor enables as many events as possible to leave autonomy
for the original system. Therefore, our goal is to find a maximally
permissive supervisor (in terms of language inclusion). Then,
the qualitative privacy-enforcing supervisory control problem
for infinite-step opacity is formulated as follows.

Problem 1 (Qualitative opacity-enforcing control problem):
Given system G and a set of secret states XS ⊆ X , synthesize
a partial-observation supervisor S : P (L(G)) → Γ, such that

(i) S/G is infinite-step opaque w.r.t. XS and Σo;
(ii) for any other supervisor S ′ satisfying (i), we have

L(S/G) �⊂ L(S ′/G).
The second condition implies that the synthesized supervisor

is maximal in the sense that its permissiveness cannot be im-
proved anymore. As we will see in the following example, such
a maximal solution is not unique in general.

Example 2: To enforce infinite-step opacity for system G, as
shown in Fig. 1(a), we need to find a supervisor such that the
closed-loop behavior of the controlled system is opaque. Let
Σc = {a, b, c} be the set of controllable events. By disabling
event b initially, we can get an infinite-step opaque system, as
shown in Fig. 1(b). By disabling event a initially, we can get
another infinite-step opaque system, as shown in Fig. 1(c). One
can easily check that bothL(G1) andL(G2) satisfy condition (ii)
in Problem 1. It is worth noting that both of them are infinite-step
opaque and maximal, i.e., they satisfy condition (i) and (ii) in
Problem 1. However, the union of L(G1) and L(G2) is not a
feasible solution since the supervisor needs to disable b initially
in L(G1) but needs to enable b initially in L(G2).

Remark 1: In Problem 1, the control objectives are infinite-
step opacity and maximally permissiveness. In some problems,
one may further require that the closed-loop system is nonblock-
ing with respect to a given set of marked states. We do not
tackle the issue of nonblockingness in this work since it requires
completely different techniques. Interested readers are referred
to [50] for how to solve the nonblocking supervisory control
problem under partial observation. In principle, the techniques
in [50] can be combined with our results in this work to ensure
nonblockingness in addition to the opacity requirement.

Finally, we introduce some necessary operators that will be
used for further developments. Let q ∈ 2X be a set of states,
γ ∈ Γ be a control decision, and σ ∈ Σo be an observable event.
The unobservable reach of q ⊆ X under control decision γ ⊆ Σ
is defined by

URγ(q) := {δ(x,w) ∈ X : x ∈ q, w ∈ (Σuo ∩ γ)∗} , (2)

which is the set of states that can be reached from states in q
via unobservable strings allowed in γ. The observable reach of
q ⊆ X upon the occurrence of σ ∈ Σo is defined by

NXσ(q) := {δ(x, σ) ∈ X : x ∈ q}, (3)

which is the set of states that can be reached from states in q upon
the occurrence of the observable event σ ∈ Σo. Similarly, let
ρ ∈ 2X×X be a set of state pairs. Intuitively, for each (x, x′) ∈ ρ,
x represents where the system was from at some instants, and
x′ represents where the system is currently at. Let γ ∈ Γ be a
control decision and σ ∈ Σo be an observable event. We define

ŨRγ(ρ)= {(x, δ(x′, w))∈X×X : (x, x′)∈ρ,w∈(Σuo∩γ)∗} ,
(4)

ÑXσ(ρ)= {(x, δ(x′, σ))∈X×X : (x, x′)∈ρ} , (5)

�γ(q)= {(x, δ(x,w))∈X×X :x ∈ q, w∈(Σuo∩γ)∗} . (6)

Intuitively, ŨRγ(ρ) and ÑXσ(ρ), respectively, modify the unob-
servable reach and the observable reach, by not only tracking all
possible current states, but also tracking where they come from.
Also, �γ(q) maps q to a set of state pairs such that, in each pair
of states, the first state can reach the second state via enabled
but unobservable strings.

Example 3: Let us consider system G in Fig. 1(a) again. Let
q = {1, 5} ∈ 2X be a set of states and γ = {o1, o2, a, b} ∈ Γ be
a control decision. Then, we have URγ({1, 5}) = {1, 2, 3, 5}.
Upon the occurrence of enabled observable event
o1 ∈ Σo ∩ γ, we know that NXo1({1, 2, 3, 5}) = {5, 6}.
Let ρ = {(0, 1), (4, 5)} ∈ 2X×X be a set of state pairs,
which represents that the system is either currently at state
1 from state 0; or currently at state 5 from state 4. Let
γ = {o1, o2, a, b} ∈ Γ be a control decision. Then, we have
ŨR{o1,o2,a,b}({(0, 1), (4, 5)}) = {(0, 1), (0, 2), (0, 3), (4, 5)}.
Upon the occurrence of enabled observable event o1 ∈ Σo ∩ γ,
we have ÑXo1({(0, 1), (0, 2), (0, 3), (4, 5)}) = {(0, 5), (0, 6)}.
Besides, let q = {1, 2, 3, 5} ∈ 2X and γ = {o1, o1, a, b},
we have �γ(q) = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3),
(5, 5)}.

IV. INFORMATION STATE AND ITS FLOW

To enforce infinite-step opacity, the main difficulty is that the
state estimation is delayed and one can use future observation
to improve its knowledge about the system at some previous
instants. In this section, we study how information evolves in
the closed-loop system when delayed information is involved.

A. Notion of Information State

In the synthesis of partially observed systems, 2X is usually
chosen as the set of information states representing current in-
formation of the system. This information state has been shown
to be suitable for current-state opacity enforcement. However,
infinite-step opacity requires that the secret cannot be revealed at
any instant currently and in the future; hence, 2X is not sufficient
enough.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4962 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Note that, the requirement of infinite-step opacity in the
following can be equivalently written as:

∀α ∈ P (L(S/G)) ∀α′ ≤ α : X̂S/G(α
′ | α) � XS . (7)

This reformulation suggests that, to enforce infinite-step opac-
ity, it is sufficient to capture the delayed-state estimates of all
previous instants. Therefore, instead of using 2X , we use another
set of information states defined by

I := 2X × 22
X×X

.

Then, each information state ı ∈ I is in the form of ı =
(C(ı), D(ı)), where the following holds.

1) The first component C(ı) ∈ 2X is a set of states that
captures the current-state estimate of the system.

2) The second component isD(ı) ∈ 22
X×X

, whose elements
are sets of state pairs that captures all possible delayed-
state estimates in history. Specifically, each element ρ ∈
D(ı) is in the form of {(x1, x

′
1), . . . , (xk, x

′
k)}, where

xi ∈ X represents the state of the system at some previous
instants and x′

i ∈ X represents the current state of the
system for all i = 1, . . . , k, and ρ contains all possibilities
for that instant. Then, D(ı) = {ρ1, . . . , ρn} essentially
contains all such sets of pairs for all previous instants.

The intuitions for defining the above information structure
are as follows. For the infinite-step opacity synthesis problem,
according to (7), we need to consider the effects of current
control decision for all previous instants. To this end, we need
to keep track of all delayed-state estimates for all previous
instants as well as the current-state estimate. This is why each
information state consists of two parts: the first part corresponds
to the current-state estimate whose domain is 2X and the second
part corresponds to all possible delayed-state estimates whose
domain is 22

X×X
. Without these information, one cannot check

whether or not some previous secrets have been released or not.

B. Information State Updating Rule

Suppose that the system’s information state is ı =
(C(ı), D(ı)). Then, upon the occurrence of an observable event
σ ∈ Σo (should also be allowed by the previous control deci-
sion), the supervisor will issue a new control decision γ ∈ Γ.
Therefore, (σ, γ) is our new information about the system and
the information state ı = (C(ı), D(ı)) needs to be updated to
ı′ = (C(ı′), D(ı′)) as follows:

Information state updating rule⎧⎨⎩
C(ı′) = URγ(NXσ(C(ı)))

D(ı′) = {ŨRγ(ÑXσ(ρ)) ∈ 2X×X : ρ ∈ D(ı)}
∪{�γ(C(ı′))}.

(8)

Intuitively, the first equation simply updates the current-state
estimate of the system, while the second equation updates all
possible delayed-state estimates (pairs) of previous instants and
adds the current-state estimate to the history. Then, we consider
a controlled system S/G. Let α = σ1σ2 . . . σn ∈ P (L(S/G))
be an observable string. Then, the following information states

evolution will happen:

ı0
(σ1,S(σ1))−−−−−−→ ı1

(σ2,S(σ1σ2))−−−−−−−−→ · · · (σn,S(σ1...σn))−−−−−−−−−−→ ın (9)

where ı0 = (URS(ε)({x0}), {�S(ε)(URS(ε)({x0}))}) repre-

sents the initial information state, and each ıi−1
(σi,S(σ1...σi))−−−−−−−−−→

ıi means that ıi is obtained from ıi−1 with new information
(σi, S(σ1 . . . σi)) according to the updating rule in (8). We
denote by I(α) the information state reached by α, i.e., I(α) =
ın.

We illustrate the above information updating procedure by the
following example.

Example 4: LetS be the supervisor that results in closed-loop
system G2 in Fig. 1(c). Specifically, supervisor S disables a
initially and then enables all events, i.e., S(ε) = {o1, o2, b, c}
and S(α) = Σ for α �= ε. Let us consider observable string
o2o1 ∈ P (L(S/G)). Then, we have

I(ε) = (URS(ε)({x0}), {�S(ε)(URS(ε)({x0}))}),

where

C(I(ε)) = {0, 4, 5, 7},

D(I(ε)) =
{{

(0, 0),(0, 4),(0, 5),(0, 7),
(4, 4),(4, 5),(4, 7),(5, 5),(7, 7)

}}
.

Once event o2 is observed, new control decision S(o2) =
{o1, o2, a, b, c} is made, and the updated information state is
I(o2), where

C(I(o2)) = URS(o2)(NXo2(C(I(ε))))
= {6, 8},

D(I(o2)) = {ŨRS(o2)(ÑXo2(ρ)) : ρ ∈ D(I(ε))}

∪ {�S(o2)(C(I(o2))}

=

{
{(0, 6),(0, 8),(4, 6),(4, 8),(5, 6),(7, 8)},

{(6, 6), (8, 8)}

}
.

Then, event o1 is observed and new control decision S(o2o1) =
{o1, o2, a, b, c} is made. The information state is then updated
to I(o2o1), where

C(I(o2o1)) = URS(o2o1)(NXo1(C(I(o2))))
= {6},

D(I(o2o1)) = {ŨRS(o2o1)(ÑXo1(ρ)) : ρ ∈ D(I(o2))}
∪ {�S(o2o1)(C(I(o2o1))}

= {{(0, 6),(4, 6),(7, 6)}, {(8, 6)}, {(6, 6)}}.

C. Property of the Information State

In the following result, we formally show that the proposed in-
formation state updating rule indeed yields the desired delayed-
state estimate in the controlled system.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4963

Proposition 1: Let S be a supervisor, α ∈ P (L(S/G)) be an
observable string, and I(α) be the information state reached.
Then, we have the following properties:

i) C(I(α)) = X̂S/G(α)
ii) D(I(α)) = {ρα′,α ∈ 2X×X : α′ ≤ α}, where

ρα′,α=

{
(δ(s), δ(st))∈X×X :

st ∈ L(S/G),
P (s) = α′, P (st) = α

}
.

(10)
Recall that each information state is in the form of ı =

(C(ı), D(ı)) ∈ 2X × 22
X×X

, where D(ı) is a set of possible
state pairs. We define

D1(ı) := {{x ∈ X : (x, x′) ∈ ρ} : ρ ∈ D(ı)} (11)

as the set of its first components. For example, for I(o2)=
({6,8},{{(0, 6),(0, 8),(4, 6),(4, 8),(5, 6),(7, 8)},{(6, 6),(8, 8)}})
in Example 4, we have D1(I(o2)) = {{0, 4, 5, 7}, {6, 8}}. The
following result shows that D1(ı) indeed captures all possible
delayed-state estimates.

Corollary 1: Let S be a supervisor, α ∈ P (L(S/G)) be an
observable string, and I(α) be the information state reached.
Then, we have

D1(I(α)) = {X̂S/G(α
′ | α) ∈ 2X : α′ ≤ α}.

Proof: By Proposition 1, we know that D(I(α)) = {ρα′,α ∈
2X×X : α′ ≤ α}. Therefore

D1(I(α))
= {{x ∈ X : (x, x′) ∈ ρα′,α} : α′ ≤ α}

=

{{
δ(s) ∈ X :

st ∈ L(S/G),
P (s) = α′, P (st) = α}

}
: α′ ≤ α

}
= {X̂S/G(α

′ | α) ∈ 2X : α′ ≤ α}.

�

V. SOLVING THE QUALITATIVE SYNTHESIS PROBLEM

In this section, we discuss how to synthesize a maximally
permissive supervisor that enforces infinite-step opacity. Our
approach is to first construct a structure called the BTS that
contains all opaque solutions and then extract a maximally
permissive supervisor from it. The existence of such a BTS can
also be used to verify whether or not there exists a supervisor
such that the closed-loop system is infinite-step opaque.

A. Bipartite Transition System

In Section IV, we have proposed a new type of information
state that can capture all possible delayed-state estimates. Note
that, the information state updating rule as defined in (8) es-
sentially consists of two steps: the immediate observable reach
when a new observable event occurs and the unobservable reach
when a new control decision is issued. However, this is based
on the assumption that supervisor S is given. In the synthesis

problem, the control decision at each instant is unknown and
to be determined. Therefore, we need to separate these two
updating steps clearly. To this end, we adopt the generic structure
of the BTS that was originally proposed in [28] by incorporating
the new information state.

Definition 2: A BTS T w.r.t. G is a 7-tuple

T =
(
QT

Y , Q
T
Z , h

T
YZ , h

T
ZY ,Σo,Γ, y

T
0

)
, (12)

where the following holds:
1) QT

Y ⊆ I is the set of Y -states. Therefore, a Y -state y ∈
QT

Y is in the form of y = (C(y), D(y));
2) QT

Z ⊆ I × Γ is the set of Z-states. For each z ∈ QT
Z ,

and I(z) and Γ(z) denote, respectively, the information
state and the control decision, so that z = (I(z),Γ(z))∈
2X × 22

X×X × Γ. For simplicity, we further write z =
(C(I(z)), D(I(z)),Γ(z)) as z = (C(z), D(z),Γ(z));

3) hT
YZ : QT

Y × Γ → QT
Z is the partial transition function

from Y -states to Z-states satisfying the following con-
straint: for any hT

YZ(y, γ) = z, we have⎧⎪⎨⎪⎩
C(z) = URγ(C(y))

D(z)=
{

ŨRγ(ρ)∈2X×X : ρ∈D(y)} ∪ {�γ(C(z))
}

Γ(z) = γ
(13)

4) hT
ZY : QT

Z × Σ → QT
Y is the partial transition function

from Z-states to Y -states satisfying the following con-
straint: for any hT

ZY (z, σ) = y, we have σ ∈ Γ(z) ∩ Σo

and{
C(y) = NXσ(C(z))

D(y) =
{

ÑXσ(ρ) ∈ 2X×X : ρ ∈ D(z)
} (14)

5) Σo is the set of observable events of G;
6) Γ is the set of admissible control decisions of G;
7) yT0 := ({x0}, {∅}) ∈ QT

Y is the initial Y -state.
The BTS is essentially a game structure between the con-

troller and the environment. When the controller picks a control
decision γ ∈ 2Σ at a Y -state, the game moves to a Z-state. A
transition fromY -state toZ-state is an unobservable reach under
the issued control decision and remembers the control decision.
When the environment picks an observation σ ∈ Σo ∩ γ at a
Z-state, the game moves to a Y -state, and so forth. A transition
from Z-state to Y -state is the observable reach. Transitions
from Z-states to Y -states and transitions from Y -states to
Z-states are indeed the information state updating rule in (8),
but we separate the updating procedure into two parts. Specif-
ically, for any z ∈ QT

Z , y ∈ QT
Y , γ ∈ Γ, and σ ∈ Σo, we have

hT
YZ(h

T
ZY (z, σ), γ) = (ı′, γ), where I(z)

(σ,γ)−−−→ ı′. For simplic-

ity, we write a transition as hYZ whenever it is defined for some
hT
YZ , and the same for hZY . The basic generic structure of

the BTS was originally proposed in [28]. Here, we generalize
the original BTS by using new information states capturing
delays rather than the current-state-type information states used
in [28].

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4964 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

B. Supervisor Synthesis Algorithm

By (7) and Corollary 1, to make sure that the closed-loop
system S/G is infinite-step opaque, it suffices to guarantee that,
for any information state ı reached, we have ∀q ∈ D1(ı), q �
XS . Therefore, we define

Qrev = {z ∈ QZ : q ∈ D1(I(z)), q ⊆ XS}

as the set of secret-revealingZ-states. To synthesize a supervisor
that enforces infinite-step opacity, the controlled system S/G
needs to guarantee that all reachable information states are not
secret revealing. Furthermore, as the supervisor can only play
at Y -states, we need to make sure that 1) there is at least one
choice at each Y -state, and 2) all choices at each Z-state should
be considered. Therefore, for each BTS T , we say that a state is
consistent if the following holds.

1) At least one transition is defined when it is a Y -state.
2) All feasible observations are defined when it is a Z-state.

Let T be the set of all BTSs. For any BTS T ∈ T , we define
QT

consist as the set of consistent states in T . Also, for a set of states
Q ⊆ QT

Y ∪QT
Z , we define T |Q as the restriction of T to Q, i.e.,

T |Q is the BTS obtained by removing states not in Q and their
associated transitions from T .

In order to synthesize an opacity-enforcing supervisor, first,
we construct the largest BTS that enumerates all possible tran-
sitions for each state, i.e., a transition is defined whenever it
satisfies the constraints in hYZ or hZY . We define Ttotal ∈ T as
the largest BTS that includes all possible transitions. Second,
we remove all secret-revealing states from Ttotal and define

T0 = Ttotal|Q\Qrev
.

Then, we need to solve a safety game by iteratively removing in-
consistent states from T until the BTS is consistent. Specifically,
we define a removing operator

F : T → T

by: for any T , we have F (T) = T |QT
consist

. Note that T |QT
consist

need not be consistent in general since removing inconsistent
states may create new inconsistent states. Note that, iterating
the removing operator F always converges in a finite number of
steps since we need to remove at least one state for each iteration
and there are only finite number of states in T . We define

T ∗ = lim
k→∞

F k(T0), where T0 = Ttotal|Q\Qrev

as the resulting BTS after the convergence of the removing
operator F .

Remark 2. (Simplification of information states): In the in-
formation state updating rule, at each instant, the current-state
estimate is added to the second component. However, if a
current-state estimate does not even contain a secret state, it
is impossible to infer that the system was at a secret state no
matter what is observed in the future. For such a scenario,
adding the current-state estimate is irrelevant for us to determine
Qrev. Therefore, if C(ı′) ∩XS = ∅, then the second part of the
information state updating rule in the following can be further

simplified as:

D(ı′) = {ŨRγ(ÑXσ(ρ)) ∈ 2X×X : ρ ∈ D(ı)}. (15)

This simplification does not affect any results of the proposed
approach but can reduce the space state significantly when the
number of secret states is relatively small. For the sake of
simplicity, we will use this simplified rule in the example by
omitting current-state estimate in the second component when
no secret state is involved.

Before we proceed further, we illustrate the above procedure
by the following example.

Example 5: Let us still consider system G in Fig. 1(a). Then,
T ∗ in Fig. 2 is a BTS. For the sake of simplicity, uncontrollable
events o1 and o2 are omitted in each control decision in Fig. 2.
Also, we follow the simplification in the above remark by
omitting secret-irrelevant information in the second part of
Z-states. Furthermore, some decisions are “equivalent” at a
Y -state in the sense that some events in the control decision may
not be feasible within the unobservable reach. For example,
decisions {a} and {a, c} are equivalent at s1 in Fig. 2 as
event c is not feasible. For those equivalent decisions, we
only draw the one with all redundant events included in the
figure, which is without loss of generality for the purpose of
control synthesis. At the initial Y -state s1 = ({0}, {∅}), the
supervisor makes control decision γ = {b, c}, we reach Z-state
s5 = hYZ(s1, γ) = ({0, 4, 5, 7}, {{(0, 0), (0, 4), (0, 5), (0, 7),
(4, 4),(4, 5),(4, 7),(5, 5),(7, 7)}},{b, c}). From s5, the
occurrence of observable event o2 leads to the next Y -state
s6 = hZY (s5, o2) = ({6,8}, {{(0, 6),(0, 8),(4, 6),(4, 8), (5, 6),
(7, 8)}}). From Y -state s6, by making control decision
γ = {a, b, c}, the system will reach the next Z-state s7 =
hYZ(s6, γ) = ({6,8}, {{(0, 6),(0, 8),(4, 6),(4, 8),(5, 6),(7, 8)},
{(6, 6),(8, 8)}}, {a, b, c}) according the original updating
rule in (8). Note that since the current-state estimate is
C(ı′) = {6, 8} in which there is no secret state, we can apply
the simplification rule without adding {�γ(C(ı′))}. This is why
we have D(s7)={{(0, 6),(0, 8),(4, 6),(4, 8), (5, 6), (7, 8)}}
in Fig. 2. From Z-state s7, observable event o1 occurs and
the system will reach the next Y -state s8 = hZY (s7, o1) =
({6}, {{(0, 6), (4, 6), (7, 6)}}). Then, supervisor makes control
decision γ = {a, b, c} and system will reach to Z-state
s9 = hYZ(s8, γ) = ({6}, {{(0, 6), (4, 6), (7, 6)}}, {a, b, c}).
Again, {�γ({6})} is not added as no secret state is
involved.

In fact,T ∗ is obtained as follows. First, we construct the largest
BTS that enumerates all possible transitions for each state, which
is Ttotal shown in the entire box marked with black lines in
Fig. 2. Note thatQrev = {s18} sinceD1(s18) = {{0, 1, 2}, {5}}
and {5} ⊆ XS . Therefore, T0 is obtained by restricting Ttotal to
Q\Qrev, which is shown in the box marked with blue lines in
Fig. 2. Then, we need to remove all inconsistent states from
T0. Since s18 has been removed, s15 becomes an inconsistent
Z-state, which should be removed by applying operator F for
the first time. Then, s12 becomes a new inconsistent Z-state
as feasible observable event o2 is not defined; hence, s12 is
deleted when applying operator F for the second time. We keep

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4965

Fig. 2. Example of the construction of the BTS. Rectangular states correspond to Y -states and rectangular with rounded corners states
correspond to Z-states. Ttotal is the entire system in the box marked with black lines, which is the largest BTS that enumerates all transitions,
T0 is the system in the box marked with blue lines, and T ∗ is the system in the box marked with red lines.

applying operator F and need to remove state s11. This makes
s10 and s13 inconsistent because feasible observable event o1 is
not defined; operatorF will further remove them. Then, operator
F converges to T ∗.

Next, we show that synthesizing a supervisor within T ∗ is
without loss of generality.

Theorem 1: The opacity-enforcing synthesis problem has no
solution if T ∗ is empty.

Proof (Sketch): Suppose that the synthesis problem has a
solution S. Then, we know that any information states reached
in S are not in Qrev. Moreover, for any Y - or Z-states reached
by supervisor S are consistent as S can correctly choose a
transition. Therefore, all information states reached under S
should not be removed during the iteration of operator F .
Hence, T ∗ should not be empty if the synthesis problem has a
solution. �

Then, for any Y -state y in T ∗, we define

DecT ∗(y) = {γ ∈ Γ : hT ∗

YZ(y, γ)!}

as the set of control decisions defined at y in T ∗. Clearly,
〈DecT ∗(y),⊆〉 forms a finite poset, which contains at least one
maximal element γ such that ∀γ′ ∈ DecT ∗(y) : γ �⊂ γ′. When
T ∗ is not empty, we can synthesize a supervisor S∗ as follows.
At each instant, the supervisor S∗ will remember the current
information statey (Y -state) and pick a maximal control decision
γ from DecT ∗(y). Note that maximal control decision is not
unique in general and we denote by Decmax

T ∗ (y) ⊆ DecT ∗(y) the
set of maximal control decisions at y in T ∗. Then, we update the
information state based on the control decision issued and wait
for the next observable event and so forth. The execution of S∗

is formally described as Procedure 1.

Procedure 1: Execution of Qualitative Supervisor S∗.

Finally, we show that the proposed supervisor S∗ indeed
solves Problem 1.

Theorem 2: Supervisor S∗ executed as Procedure 1 enforces
infinite-step opacity and is maximally permissive.

Example 6: Again we consider system G in Fig. 1(a) and
we use Procedure 1 to solve Problem 1. At the initial Y -state
y0 = ({x0}, {∅}), we have Decmax

T ∗ (y0) = {{a, c}, {b, c}}. If we
choose control decision {a, c}, then we reach Z-state s3 and
the system has no future observation. This gives supervisor S1

shown in Fig. 3(a), which results in the language generated by
G1 in Fig. 1(b).

On the other hand, if we choose control decision {b, c} ini-
tially, then the system moves to s5. From s5, the occurrence of
o2 leads to s6 and the supervisor picks {a, b, c} as the maximal
control decision and the system moves to s7. Then, observable
events o1 occurs and the system moves to s8, where supervisor

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4966 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Fig. 3. Solutions S1 and S2. (a) Solution S1. (b) Solution S2.

S2 picks {a, b, c} leading the system to state s9. This gives
supervisor S2 shown in Fig. 3(b), which results in the language
generated byG2 in Fig. 1(c). As we have discussed in Example 2,
both supervisors are maximal and they are incomparable.

Finally, we discuss the complexity of the proposed qualita-
tive supervisor synthesis algorithm. To synthesis an opacity-
enforcing supervisor, first, we need to construct the largest
BTS Ttotal, which contains at most 2|X|+2|X|×|X|

Y -states and
2|Σc|+|X|+2|X|×|X|

Z-states. For each Y -state, there are at most
2|Σc| transitions defined, and for each Z-state, there are at most
|Σo| transitions defined. Therefore, in the worst case, Ttotal con-
tains 2|X|+2|X|×|X|

+ 2|Σc|+|X|+2|X|×|X|
states and 2|X|+2|X|×|X| ·

2|Σc| + 2|Σc|+|X|+2|X|×|X| · |Σo| transitions. The complexity of
removing all secret-revealing states from Ttotal to obtain T0

is linear in the size of Ttotal. The complexity of removing all
inconsistent states iteratively to obtain T ∗ is quadratic in the
size of Ttotal. Next, we use Procedure 1 to execute the qualitative
supervisor S∗ using T ∗. During the execution, the supervisor
needs to record the information state. The information state
contains at most |X| × 2|X|×|X| states. By making a new control
decision upon the occurrence of a new observable event, the
information state is updated in exponential time in the size
of G. Overall, the entire complexity of the proposed synthesis
algorithm is doubly exponential in the size of the system G for
the offline synthesis strategy, but is single exponential for the
online execution stage in Procedure 1.

VI. QUANTIFYING SECRET-REVELATION-TIME

So far, we have solved a qualitative version of privacy-
enforcing control problem by requiring that the closed-loop
system under control is infinite-step opaque. In some cases,
such a binary requirement may be too strong as the se-
cret may be revealed inevitably after some delays no matter
what control policy is taken, i.e., infinite-step opacity is not
enforceable.

In most of the applications, however, the importance of
secret will decrease as time goes on. Then, for the sce-
nario where infinite-step opacity is not enforceable, it makes
sense to consider an optimal synthesis problem by max-
imizing the secret-revelation-time for each visit of secret
states. In the rest of this article, we will implement this
idea by further generalizing the qualitative synthesis prob-
lem to a quantitative version by ensuring the secret be re-
vealed as late as possible within a finite security-preserving
horizon.

A. Problem Formulation of Quantitative Synthesis
Problem

Let S be a supervisor, α ∈ P (L(S/G)) be an observation,
and α′ ≤ α be a prefix of α. We define

REV(α′, α) = {β : α′ ≤ β ≤ α ∧ X̂S/G(α
′ | β) ⊆ XS}

as the set of observations that are prefixes of α and upon which
the visit of secret state at instant α′ is revealed. If a secret state
is visited at instant α′ and it is revealed when α is executed,
then we have REV(α′, α) �= ∅. Note that once we know that the
system was at a secret state at instant α′, we know this forever.
Therefore, we are interested in the first instant when the secret is
revealed, i.e., the shortest string βshort ≤ α in REV(α′, α). Then,
|βshort| − |α′| is referred to as the secret-revelation-time for the
instant α′ upon α.

To quantify when the visit of a secret state is revealed, we
consider a cost function that assigns each secret-revelation-time
to a nonnegative cost by

Δ : N → R (16)

such that Δ is monotonically nonincreasing and will decrease
to zero in Nmax steps, where Nmax ∈ N is a nonnegative integer
associated with function Δ. Cost function of the above form
is reasonable in most cases because the importance of secret
decreases as time goes on and revealing secret early usually
yields high cost. For example, in location-based services, the
intruder may want to infer whether or not a user has been to
some secret locations, e.g., a hospital, which may be related
to the health condition of the user. Clearly, knowing the health
condition two days ago is more sensitive than knowing the health
condition a year ago, because the former is more related to the
current health condition of the user. Note that here we consider
parameterNmax as a security-preserving horizon associated with
the cost function, i.e., after Nmax steps the secret is free to be
revealed.

To avoid counting the revelation of each visit of secret state
duplicatively, we define the cost incurred for α′ upon α as
the cost incurred at the first secret-revelation-instant as we
assume the cost function is nonincreasing, i.e.,

Cost(α′, α) =

{
0, if REV(α′, α)=∅
Δ(|βshort| − |α′|), if REV(α′, α) �=∅

where βshort is the shortest string in REV(α′, α). Note that,
for string st ∈ L(S/G), if δ(s) /∈ XS , then we always have
Cost(P (s), P (st)) = 0.

Finally, we define the total cost incurred along an observation.
Note that there may have multiple visits of secret states along
string α at different instants. Therefore, we define the total cost
incurred uponα ∈ P (L(S/G)) as the summation of the costs for
all visits of secret states and their associated secret-revelation-
times, i.e.,

Cost(α) =
∑
α′≤α

Cost(α′, α).

Then, the cost of the closed-loop system S/G, i.e.,

Cost(S/G) = max
α∈P (L(S/G))

Cost(α).

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4967

Fig. 4. System G with Σo = {o1, o2},Σc = {a}, and XS = {2}.

Then, the quantitative privacy-enforcing synthesis problem is
then formulated as follows.

Problem 2: (Quantitative privacy-enforcing control problem)
Given a systemG, a set of secret statesXS ⊆ X , and a cost func-
tion Δ : N → R associated with upper bound Nmax, determine
whether or not there exists a supervisor S : P (L(G)) → Γ such
that its cost is finite. If so, synthesize an optimal supervisor S
such that the following holds:

1) for any S ′, we have Cost(S/G) ≤ Cost(S ′/G);
2) for anyS ′ such that Cost(S/G) = Cost(S ′/G), we have

L(S/G) �⊂ L(S ′/G).
Intuitively, the cost of a closed-loop system is defined as the

worst-case cost and the control problem is essentially a min–
max optimization problem aiming to minimize the worst-case
cost of the system under control. Note that, we require the cost
of the synthesized supervisor to be finite in order to avoid the
case of repeatedly revealing secrets. Specifically, if there is an
uncontrollable sequence of events along which secret can be
revealed repeatedly, then we cannot find a supervisor such that
the cost of closed-loop system is finite. Clearly, such a supervisor
leading to infinite cost is meaningless and we consider this case
as no solution.

Remark 3: The quantitative formulation using cost function
can also captures the notions of current-state opacity [51] and
K-step opacity [52] in the literature, which requires that the
visit of a secret state should not be revealed currently and in the
next K steps, respectively. Specifically, K-step opacity, where
K ∈ N is an integer, it suffices to consider cost function ΔKst

defined by

∀k ≤ K : ΔKst(k) = ∞ and ∀k > K : ΔKst(k) = 0

and current-state opacity is nothing but 0-step opacity. For the
above designed cost function, we observe thatNmax = K. These
existing notions are essentially binary, while our new formula-
tion allows to investigate the effect of secret revelation delays
more quantitatively.

Remark 4: For the sake of simplicity, hereafter, we consider
a cost function Δ in a simple specific form of

Δ(k) = max{Nmax − k, 0},
where Nmax is a finite value. That is, Δ(k) is the cost incurred
if the visit of a secret state is revealed for the first time after k
steps. Our approach, in principal, can be applied to any form of
cost function as long as it decreases to zero in a finite number
of steps.

Example 7: Let us consider system G in Fig. 4 with Σo =
Σuc = {o1, o2} and XS = {2}. Note that all events in string
o1o2o1o2 are uncontrollable and there does not exist another

string in G having the same projection. Therefore, we cannot
enforce infinite-step opacity qualitatively, i.e., no matter what
the supervisor does, the intruder will know for sure that the
system was at secret state 2 for the instant when o1o2o1o2 is
observed. However, the supervisor can control how late the
secret is revealed.

For example, let us consider supervisor S1 that always en-
ables all events. Then, for P (o1o2o1o2) = o1o2o1o2, we have
REV(o1, o1o2o1o2) = {o1o2o1o2} and REV(α′, o1o2o1o2) = ∅
for α′ �= o1. Therefore, we have

Cost(o1o2o1o2) =
∑

α′≤o1o2o1o2

Cost(α′, o1o2o1o2)

= Cost(o1, o1o2o1o2) = Δ(|o1o2o1o2| − |o1|) = Nmax − 3

Similarly, we can compute Cost(o1o2o2o1) =
Cost(o1, o1o2o2o1) = Δ(|o1o2o2| − |o1|) = Nmax − 2, which
is the worst-case cost in S1/G, i.e., Cost(S1/G) = Nmax − 2.

If we consider supervisor S2 that disables a initially, then we
have REV(o1, o1o2o1o2) = {o1, o1o2, o1o2o1, o1o2o1o2} and
REV(o1, o1o2o2o1) = {o1, o1o2, o1o2o2, o1o2o2o1}. There-
fore, Cost(o1o2o1o2)=Cost(o1o2o2o1)=Cost(o1)=Nmax,
which is the worst-case cost inS2/G, i.e., Cost(S2/G) = Nmax.

B. Augmented Information State

To solve the quantitative synthesis problem, the previous pro-
posed information state is not sufficient as the time information is
lost, i.e., we only remember all possible delayed-state estimates
without specifying when they are visited. Therefore, we further
augment this information to the previous proposed information
states, which leads to the augmented information states defined
by

Ia := 2X × 22
X×X×{0,1,...,Nmax−1}.

Each augmented information state ı ∈ Ia is in the form of
ı = (Ca(ı), Da(ı)). The first component Ca(ı) ∈ 2X is still a
current-state estimate. Each element in the second component
Da(ı) is in the form of

(ρ, k) = ({(x1, x
′
1), (x2, x

′
2), . . . , (xn, x

′
n)}, k) ∈ Da(ı),

where the first and the second parts represent, respectively, a
delayed-state estimate and when it is visited, and we define

ρ̂ = {x1, x2, . . . , xn} = {x ∈ X : (x, x′) ∈ ρ}.

Note that we only augment the timing information for Nmax

steps as we consider a cost function that decreases to zero in
Nmax steps. For an augmented information state ı∈Ia, define

SR(ı) = {(ρ, k) ∈ Da(ı) : ρ̂ ⊆ XS} (17)

as those secret-revealing delayed-state estimates.
Similarly, suppose that the system’s augmented information

state is ı = (Ca(ı), Da(ı)). Then, upon the occurrence of an
observable event σ ∈ Σo and a new control decision γ ∈ Γ, the
augmented information state ı is updated to ı′ = (Ca(ı

′), Da(ı
′))

as follows:

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4968 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Augmented information state updating rule⎧⎪⎪⎨⎪⎪⎩
Ca(ı

′) = URγ(NXσ(Ca(ı)))

Da(ı
′) =

{
(ŨRγ(ÑXσ(ρ)), k + 1) :

(ρ, k) ∈ Da(ı)\SR(ı), k + 1 < Nmax

}
∪{(�γ(Ca(ı

′)), 0)}.

(18)

Compared with the information state updating rule in (8),
the augmented information state updating rule in (18) has the
following differences.

1) The timing information is also tracked, which increases a
time unit upon the occurrence of each observable event.

2) We only update the delayed-state estimates in the last
Nmax − 2 steps with which the secrets have not yet been
revealed. This is because the cost decreases to zero within
Nmax steps and we only consider the cost incurred for the
first secret-revelation-instant.

Still, let α = σ1σ2 . . . σn ∈ P (L(S/G)) be an observable
string. We denote by Ia(α) the augmented information state
reached by α, which is defined according to (9) using
the augmented updating rule in (18) with initial state ı0 =
(URS(ε)({x0}), {(�S(ε)(URS(ε)({x0})), 0)}). Similar to the
previous information state, the augmented information state has
the following properties.

Proposition 2: Let S be a supervisor, α ∈ P (L(S/G)) be an
observable string, and Ia(α) be the augmented information state
reached. Then, we have the following:

1) Ca(Ia(α)) = X̂S/G(α);
2) Da(Ia(α)) ={

(ρα′,α, |α | −|α′ |) : α′ ≤ α, |α | −|α′ |< Nmax,
[∀α′ ≤ β < α : Rev(α′, β) = ∅]

}
.

Proof: The proof is very similar to that of Proposition 1,
hence, a detailed proof is omitted. The only differences are: 1)
the augmented updating rule has a counter that remembers the
number of steps between α′ and α, and 2) only those delayed-
state estimates that are not secret revealing are updated, i.e.,
REV(α′, β) should be empty set for any strict prefix β before α,
otherwise, the delayed-state estimate will be dropped according
to the updating rule. �

With the help of Proposition 2, now we can relate the proposed
augmented information state with the cost function as follows.
Note that a secret-revelation cost occurs at the instant when
the secret is revealed for the first time. This is captured by
SR(Ia(α)) and for any (ρ, k) ∈ SR(Ia(α)) such that ρ̂ ⊆ XS ,
this secret revelation is only counted once as it will not be
updated according to the augmented updating rule. Therefore,
we can define a state-based cost function

ΔI : Ia → {0, 1, . . . , N ′
max}

assigning each augmented information state ı ∈ Ia a cost by

ΔI(ı) =

{∑
(ρ,k)∈SR(ı) Δ(k), if SR(ı) �= ∅

0, if SR(ı) = ∅. (19)

Note that the cost of each information state is upper bounded by
N ′

max ≤ 1 + 2 + · · ·+Nmax = 1
2Nmax(Nmax + 1), which cor-

responds to the extreme case where each of the previous Nmax

steps visits a secret state and they are all revealed for the first
time at the current instant.

The following result shows that, for any observable stringα ∈
P (L(S/G)), the total secret-revelation cost incurred Cost(α)
is equal to the summation of the costs of all information states
reached along α.

Theorem 3: Let S be a supervisor, α ∈ P (L(S/G)) be an
observable string, and for each prefix α′ ≤ α, Ia(α′) be the
augmented information state reached by α′. Then, we have

Cost(α) =
∑
α′≤α

ΔI(Ia(α′)). (20)

Proof: Suppose α = σ1σ2 . . . σn ∈ P (L(S/G)) be an ob-
servable string. Let i1 < i2 < · · · < ik be the indices such that
REV(σ1 . . . σip , α) �= ∅ ∀p = 1, . . . , k. Then, for each ip, we de-
note by jp the first instant when the secret at instant σ1 . . . σip re-
vealed, i.e.,σ1 . . . σjp is the shortest string in REV(σ1 . . . σip , α).
Then, by the definition of Cost(α), we have

Cost(α) =
∑
α′≤α

Cost(α′, α) =
∑

p=1,...,k

Δ(jp − ip).

Then, let ı0, ı1, . . . , ın be all augmented information states
reached along α. Then, by (18) and Proposition 2, each p =
1, . . . , n only contributes a cost of Δ(jp − ip) via ΔI at infor-
mation state ıjp . Therefore, we have∑

α′≤α

ΔI(Ia(α′)) =
∑
α′≤α

∑
(ρ,k)∈SR(Ia(α′))

Δ(k)

=
∑

i=1,...,n

ΔI(ıi) =
∑

p=1,...,k

Δ(jp − ip).

This completes the proof. �
Example 8: Let us consider system G in Fig. 4 and Nmax =

5. Suppose that supervisor S enables a initially, i.e., S(ε) =
{o1, o2, a}. Then, we have

Ia(ε) = (URS(ε)({x0}), {(�S(ε)(URS(ε)({x0})), 0)})
= ({0, 1}, {({(0, 0), (0, 1), (1, 1)}, 0)}).

When event o1 is observed, if the decision of the supervisor
is S(o1) = {o1, o2}, then the augmented information state is
updated to Ia(o1), where

Ca(Ia(o1)) = URS(o1)(NXo1(Ca(Ia(ε)))) = {2, 3},

Da(Ia(o1))=
{

(ŨRS(o1)(ÑXo1(ρ)), k + 1) :
(ρ, k) ∈ Da(Ia(ε)) \ SR(Ia(ε)), k + 1 < 5

}
∪ {(�S(o1)(Ca(Ia(o1))), 0)}

=

{
({(0, 2), (0, 3), (1, 3)}, 1),

({(2, 2), (3, 3)}, 0)

}
.

Again, if the supervisor further makes control decision
S(o1o2) = {o1, o2, a} when event o2 is observed, then, the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4969

augmented information state is updated to Ia(o1o2), where

Ca(Ia(o1o2)) = URS(o1o2)(NXo2(Ca(Ia(o1)))) = {4, 5},
Da(Ia(o1o2))

=

{
(ŨRS(o1o2)(ÑXo2(ρ)), k + 1) :

(ρ, k) ∈ Da(Ia(o1))\SR(Ia(o1))), k + 1 < 5

}
∪ {(�S(o1o2)(Ca(Ia(o1o2))), 0)}

=

{
({(0, 4), (0, 5)}, 2), ({(2, 4), (2, 5)}, 1),

({(4, 4), (4, 5), (5, 5)}, 0)

}
.

Note that there is a secret-revealing delayed-state estimate
in Ia(o1o2). Specifically, for (ρ, k) = ({(2, 4), (2, 5)}, 1) ∈
Da(Ia(o1o2)), we have ρ̂ = {2} ⊆ XS . Therefore, we have
SR(Ia(o1o2)) = {({(2, 4), (2, 5)}, 1)} and the cost of aug-
mented information state is ΔI(Ia(o1o2)) = Δ(1) = Nmax −
1 = 4.

C. Quantitative Synthesis Algorithm

Theorem 3 suggests the basic idea for solving the quantitative
synthesis problem. One can consider the privacy-enforcing con-
trol problem as an optimal control problem for accumulated total
cost. Similar to the safety control problem over the information
state space for the qualitative synthesis, we can solve the quan-
titative optimal control problem over the augmented state space
defined by the augmented bipartite transition system (A-BTS),
which is the same of the BTS but incorporating the augmented
information- state updating rule.

Definition 3: An A-BTS T w.r.t. G is a 7-tuple

T =
(
QT

Y , Q
T
Z , h

T
YZ , h

T
ZY ,Σo,Γ, y

T
0

)
(21)

where the following holds:
1) QT

Y ⊆ Ia is the set of Y -states. Therefore, a Y -state y ∈
QT

Y is in the form of y = (Ca(y), Da(y));
2) QT

Z ⊆ Ia × Γ is the set of Z-states. For each z ∈
QT

Z , and Ia(z) and Γ(z) denote, respectively, the aug-
mented information state and the control decision, so
that z = (Ia(z),Γ(z)). For simplicity, we write z =
(Ca(z), Da(z),Γ(z));

3) hT
YZ : QT

Y × Γ → QT
Z is the partial transition function

from Y -states to Z-states satisfying the following con-
straint: for any hT

YZ(y, γ) = z, we have⎧⎪⎪⎨⎪⎪⎩
Ca(z) = URγ(Ca(y))

Da(z) = {(ŨRγ(ρ), k) : (ρ, k)∈Da(y)}
∪{(�γ(Ca(z)), 0)}

Γ(z) = γ

(22)

4) hT
ZY : QT

Z × Σ → QT
Y is the partial transition function

from Z-states to Y -states satisfying the following con-
straint: for any hT

ZY (z, σ) = y, we have σ ∈ Γ(z) ∩ Σo

and⎧⎨⎩
Ca(y) = NXσ(Ca(z))

Da(y) =

{
(ÑXσ(ρ), k + 1) :

(ρ, k)∈Da(z)\SR(z), k + 1<Nmax

}
(23)

5) Σo is the set of observable events of G;
6) Γ is the set of admissible control decisions of G;
7) yT0 := ({x0}, {∅}) ∈ QT

Y is the initial Y -state.
To solve the quantitative synthesis problem, one can still

think it as a two-player game between the supervisor and the
environment. The goal of the supervisor is to minimize the total
cost incurred, while the environment wants to maximize the cost.
Still, we construct the largest A-BTS w.r.t. G that enumerates
all the feasible transitions satisfying the constraints of hT

YZ and
hT
ZY and denote such an all-feasible A-BTS byTtotal, which is the

arena of the game. For each state q ∈ QTtotal
Y ∪QTtotal

Z , we denote
by POST(q) the set of all its successor states.

In order to synthesize an optimal strategy, we need to compute
the best worst-case cost one can guarantee starting from each
state, which is referred to as the value of the state. Specifically,
the value of each state can be computed by the following value
iterations:

Vk+1(q)=

{
minq′∈POST(q) Vk(q

′), if q ∈ QTtotal
Y

maxq′∈POST(q) Vk(q
′) + ΔI(Ia(q)), if q ∈ QTtotal

Z
(24)

and the initial value function is

∀q ∈ QTtotal
Y ∪QTtotal

Z : V0(q) = 0.

The above is the standard value iteration technique that has
been extensively investigated in the literature, either in the
context of optimal total-cost control problem [53], [54] or in
the context of resource games [55], [56]. Intuitively, for each
Y -state, since we are able to pick one control decision, the
value of this state is the minimum of the values of all its
successor states. However, for each Z-state, since we need to
consider all possible observations, the value of this state is the
maximum of the values of all its successor states. Note that,
by our construction, the secret-revelation cost occurs at each
Z-state z such that SR(Ia(z)) �= ∅; this is why the instant cost
is also added to Z-states at each iteration.

Although the value iteration will converge to the value func-
tion denoted byV ∗, it may take infinite steps as the value of some
states may be infinite. This is because there may exist a cycle in
the A-BTS structure such that: 1) an instant cost will incur in the
cycle, and 2) one cannot avoid this cycle by choosing control de-
cisions at Y -states. This case corresponds to the scenario where
the system repeatedly visits secret states and reveals the secret. In
this case, the values of states in the cycle will keep increasing for
each round of iteration, i.e., V0(q) < V1(q) < V2(q) < · · · and
the value of state q is actually infinity, i.e.,V ∗(q) = ∞. However,
it is known that such a value for each state can be determined
only by a finite number of iterations for at most L = n2 ·N ′

max
steps [57], where n = |QTtotal

Y ∪QTtotal
Z | is the number of states in

Ttotal. Specifically, by computing value function VL, we have

V ∗(q)=

{
VL(q), if VL(q) < n ·N ′

max
∞, otherwise.

(25)

In other words, V ∗(q) is the best cost-to-go the supervisor can
guarantee at state q.

Based on the above discussion, Procedure 2 is proposed to
solve Problem 2. First, it builds Ttotal based on the A-BTS and

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4970 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Fig. 5. Example of the construction of the A-BTS Ttotal. Rectangular states correspond to Y -states and rectangular states with rounded corners
correspond to Z-states.

Procedure 2: Execution of Quantitative Supervisor S∗.

computes the value function V ∗. The optimal value of a state
represents the best worst-case cost one can guarantee starting
from this state. Therefore, the optimal value of the initial Y -
state is the best cost-to-go that the supervisor can guarantee for
the closed-loop system. If V ∗(y0) = ∞, then we cannot find a
supervisor whose cost is finite. Otherwise, V ∗(y0) is the optimal
cost one can achieve, i.e., Cost(S/G) = V ∗(y0). To execute
the supervisor, we use a variable Δrem to record the total cost
remained for the supervisor to attain the optimal value. Formally,
let V ∗ be the value function and y be a Y -state in Ttotal, and Δrem

be the cost remaining. We define

DecV ∗(y,Δrem)={γ ∈ Γ : z = hTtotal
YZ (y, γ), V ∗(z) ≤ Δrem}

as the set of all control decisions that attain the optimal value.
Clearly, 〈 DecV ∗(y,Δrem),⊆〉 is also a finite poset and we also
denote by Decmax

V ∗ (y,Δrem) the set of all maximal elements
in DecV ∗(y,Δrem). At each Y -state, the supervisor chooses a
maximal control decision from Decmax

V ∗ (y,Δrem). Once aZ-state
is reached, the cost remained is updated to Δrem −ΔI(Ia(z))
as a state cost incurred.

Theorem 4: Supervisor S∗ executed as Procedure 2 solves
Problem 2.

Remark 5: Still, in the augmented information-state updating
rule, when Ca(ı

′) ∩XS = ∅, we do not really need to add
{(�γ(Ca(ı

′)), 0)} to Da(ı
′). This is because the estimate of

such an instant will never contribute to the cost function ΔI no
matter what is observed in the future. For the sake of clarity,
we used the original completed rule in (18) for the theoretical
developments. However, for the sake of simplicity, we will adopt
this simplification in the following illustrative example. The
reader should be aware of this discrepancy.

Finally, we illustrate how to synthesize an optimal quantitative
supervisor by the following example.

Example 9: Let us consider system G in Fig. 4 and our
goal is to synthesize an optimal supervisor such the secret-
revelation cost of the closed-loop system is minimized. Sup-
pose that Nmax = 5. First, we construct the largest A-BTS
Ttotal that enumerates all possible transitions, which is partially
shown in Fig. 5. For each Z-state in Ttotal, we find those
secret-revealing delayed-state estimates and assign each of them
a state cost. Specifically, we have ΔI(s10) = 2, ΔI(s13) =
5, ΔI(s16) = 4, ΔI(s17) = 4, and ΔI(s20) = 3 and all the
other states have zero cost. For example, for state s10 =
{{8}, {({(2, 8)}, 3)}, {a}}, we have ΔI(s10) = Δ(3) = 5−
3 = 2 as SR(s10) = {({(2, 8)}, 3)}. For this example, since
there is only one secret state and the system is acyclic, we omit
all successor states from s13, s16, s17, and s20 as these states do
not contribute to the cost/value function.

Next, we iteratively update the value of each state in Ttotal by
value iterations. The value iteration procedure is given in Table
I, which converges in ten steps. Then, the value of the initial Y -
state V ∗(s1) = 2 is the optimal cost that we can achieve. Then,
we use Procedure 2 to solve Problem 2. The resulting supervisor
is shown in Fig. 6 . At the initial Y -state, we have Δrem =
V ∗(s1) = 2 and Decmax

V ∗ (s1, 2) = DecV ∗(s1, 2) = {{a}}. Then,
we choose control decision{a} and move toZ-state s2. Note that
cost Δrem remains unchanged as ΔI(s2) = 0. Then, observable
event o1 occurs and the system moves to s3. At state s3, we have

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4971

TABLE I
VALUE ITERATIONS OF TTOTAL

Fig. 6. Solution S.

Decmax
V ∗ (s3, 2) = {{a}}. By choosing control decision {a}, we

reach s4 and we still have Δrem = 2−ΔI(s4) = 2. Then, the
system moves to s5 upon the occurrence of event o2. At state s5,
we have Decmax

V ∗ (s5, 2) = {∅}, then by choosing ∅ we reach s6.
We repeat the above process, and obtain the supervisor shown in
Fig. 6, which is an optimal and maximally permissive supervisor.

The complexity analysis of the proposed quantitative supervi-
sor synthesis algorithm is similar to the qualitative counterpart.
First, we need to build the largest A-BTS Ttotal, In the worst
case, Ttotal contains 2|X|+2|X|×|X|×Nmax + 2|X|+2|X|×|X|×Nmax+|Σc|

states and 2|X|+2|X|×|X|×Nmax · 2|Σc| + 2|X|+2|X|×|X|×Nmax+|Σc| ·
|Σo| transitions. Then, we compute the value function V ∗ based
on Ttotal, whose complexity is exponential in the size of Ttotal

in the worst case. Therefore, the theoretical complexity for the
offline synthesis part is triple exponential in the size of G. How-
ever, once V ∗ is computed the online execution of Procedure 2
is still single exponential in the size of G since it essentially
requires to update the augmented information-state on-the-fly.

VII. CONCLUSION

In this article, we systematically investigate both qualita-
tive and quantitative synthesis of privacy-enforcing supervisors
based on the notion of infinite-step opacity. For the qualitative
case, we define a new class of BTSs that captures the delayed
information in the control synthesis problem over a game struc-
ture. Based on the BTS, we proposed an effective algorithm that
solves the standard infinite-step opacity control problem without
the assumption that all controllable events are observable, which

is restrictive and required by the existing work. For the quan-
titative case, we propose the notion of secret-revelation-time
as a quantitative measure for infinite-step opacity. By suitably
augmenting the timing information into the BTS, we solve the
quantitative synthesis problem as an optimal total-cost control
problem. Note that, the quantitative part essentially solves a
min–max optimization problem by considering the worst-case
cost. In the future, we also plan to consider stochastic models,
such as Markov decision processes, and to minimize the expec-
tation of the secret-revelation cost.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: The first component C(I(α)) is obtained by itera-
tively applying UR and NX operators, which gives (i) according
to [28]. Next, we prove (ii) by induction on the length of α.

Induction Basis: Suppose that |α| = 0, i.e., α = ε. Then, we
know that I(ε) = ı0. Let γ = S(ε) and we have

D(I(ε))
={�γ(URγ({x0}))}

=
{{

(x, δ(x,w))∈X×X : x∈URγ({x0}), w∈(Σuo ∩ γ)∗
}}

=
{{

(δ(s), δ(st)) ∈ X ×X : st ∈ (Σuo ∩ γ)∗
}}

={{(δ(s), δ(st)) ∈ X ×X : st∈L(S/G), P (s)=P (st)=ε}}

={ρε,ε}. (26)

That is, the induction basis holds.
Induction Step: Now, let us assume that (ii) holds for |α |= k.

Then, we want to prove the case of ασ, where σ ∈ Σo ∩ γ. In
the following equations, γ = S(α). By the updating rule in (8)
and (i), we know that

D(I(ασ)) =
{

ŨRγ(ÑXσ(ρ)) ∈ 2X×X : ρ ∈ D(I(α))
}

∪
{
�γ

(
X̂S/G(ασ)

)}
. (27)

Since |α |= k, by the induction hypothesis, we know

D(I(α)) = {ρα′,α ∈ 2X×X : α′ ≤ α}.

Recall that

ρα′,α=

{
(δ(s), δ(st)) ∈ X ×X :

st ∈ L(S/G),
P (s) = α′, P (st) = α

}
.

Therefore, we have

ŨRγ(ÑXσ(ρα′,α))

= {(x1, δ(x2, σw))∈X×X : (x1, x2)∈ρα′,α, w∈(Σuo∩γ)∗}

=

{
(δ(s), δ(stσw))

∈ X ×X
:

st ∈ L(S/G), w ∈ (Σuo ∩ γ)∗,
P (s) = α′, P (st) = α

}
=

{
(δ(s), δ(st′)) ∈ X ×X :

st′ ∈ L(S/G),
P (s) = α′, P (st′) = ασ

}

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

4972 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

= ρα′,ασ.

This further gives{
ŨRγ(ÑXσ(ρ)) ∈ 2X×X : ρ ∈ D(I(α))

}
=

{
ŨRγ(ÑXσ(ρα′,α)) ∈ 2X×X : α′ < ασ

}
=

{
ρα′,ασ ∈ 2X×X : α′ < ασ

}
. (28)

Moreover, we have

�γ (X̂S/G(ασ))

=
{
(x, δ(x,w))∈X×X : x∈X̂S/G(ασ), w∈(Σuo ∩ γ)∗

}
=

{
(δ(s), δ(sw))∈X×X :

s∈L(S/G),
w∈(Σuo ∩ γ)∗, P (s) = ασ

}
=

{
(δ(s), δ(sw))∈X×X :

sw ∈ L(S/G),
P (s) = P (sw) = ασ

}
= ρασ,ασ. (29)

Therefore, by combining (28) and (29) we have

D(I(ασ)) = {ρα′,ασ ∈ 2X×X : α′ < ασ} ∪ {ρασ,ασ}

= {ρα′,ασ ∈ 2X×X : α′ ≤ ασ}. (30)

This completes the induction step, i.e., (ii) holds. �

APPENDIX B
PROOF OF THEOREM 2

Proof: Let α ∈ P (L(S∗/G)) be any observable string in
the closed-loop system S∗/G. By Corollary 1, we know that
D1(IS∗/G(α)) = {X̂S∗/G(α

′ | α) : α′ ≤ α}. Since all secret-
revealing states have been removed from Ttotal, all information
states in T ∗ are safe, which implies that X̂S∗/G(α

′ | α) �⊆ Xs.
This means that S∗ enforces infinite-step opacity.

Next, we show that S∗ is maximal. Assume that there exists
another supervisor S ′ such that the closed-loop system S ′/G
is infinite-step opaque and L(S∗/G) ⊂ L(S ′/G). This means
that there exists a string w ∈ L(S∗/G) ⊂ L(S ′/G) such that
S∗(w) ⊂ S ′(w) and S∗(w′) = S ′(w′) ∀w′ < w. Then, Y -state
reached upon the occurrence of string w under supervisors
S ′ and S∗ is the same, which is denoted by y. Since S ′ is
a solution to Problem 1, its control decision S ′(w) should
not be removed at y during the iteration. This means that
S ′(w) ∈ DecT ∗(y), which further gives S ′(w) ∈ Decmax

T ∗ (y) and
S∗(w) �∈ Decmax

T ∗ (y). However, it contradicts to our choice in
Procedure 1 (line 7) that S∗(w) is in Decmax

T ∗ (y). Hence, no such
S ′ exists. �

APPENDIX C
PROOF OF THEOREM 4

Proof: The largest A-BTS Ttotal enumerates all feasible con-
trol decisions of G. The value iterations in Ttotal guarantees that
V ∗(y0) is the best cost-to-go starting from the initial state. Sup-
pose that there exists a supervisor S ′ such that Cost(S ′/G) <
Cost(S∗/G). Then, the value of the initial Y -state should be at

least Cost(S ′/G), which is a contradiction to the result of the
value iteration.

The proof of maximal permissiveness is similar to that
of Theorem 2. Since we choose a control decision from
Decmax

V ∗ (y,Δrem), which is the set of maximal control decisions
that attain optimal value at state y. Any other more permissive
choices will result in a supervisor whose worst-case cost is larger
than Cost(S∗/G), which will violate the optimality. �

REFERENCES

[1] J. W. Bryans, M. Koutny, L. Mazaré, and P. Ryan, “Opacity generalised
to transition systems,” Int. J. Inf. Secur., vol. 7, no. 6, pp. 421–435, 2008.

[2] B. Bérard, K. Chatterjee, and N. Sznajder, “Probabilistic opacity for
Markov decision processes,” Inf. Process. Lett., vol. 115, no. 1, pp. 52–59,
2015.

[3] C. Keroglou and C. N. Hadjicostis, “Probabilistic system opacity in
discrete event systems,” Discrete Event Dyn. Syst., vol. 28, pp. 289–314,
2018.

[4] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Verification of state-based
opacity using petri nets,” IEEE Trans. Autom. Control, vol. 62, no. 6,
pp. 2823–2837, Jun. 2017.

[5] J. Chen, M. Ibrahim, and R. Kumar, “Quantification of secrecy in partially
observed stochastic discrete event systems,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 1, pp. 185–195, Jan. 2017.

[6] K. Zhang and M. Zamani, “Infinite-step opacity of nondeterministic finite
transition systems: A bisimulation relation approach,” in Proc. IEEE 56th
Conf. Decis. Control, 2017, pp. 5615–5619.

[7] F. Basile and G. De Tommasi, “An algebraic characterization of language-
based opacity in labeled petri nets,” IFAC-PapersOnLine, vol. 51, no. 7,
pp. 329–336, 2018.

[8] M. Noori-Hosseini, B. Lennartson, and C. N. Hadjicostis, “Compositional
visible bisimulation abstraction applied to opacity verification,” IFAC-
PapersOnLine, vol. 51, no. 7, pp. 434–441, 2018.

[9] X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li, “On-line verification
of current-state opacity by Petri nets and integer linear programming,”
Automatica, vol. 94, pp. 205–213, 2018.

[10] S. Liu and M. Zamani, “Verification of approximate opacity via barrier cer-
tificates,” IEEE Control Syst. Lett., vol. 5, no. 4, pp. 1369–1374, Oct. 2021.

[11] I. Saadaoui, Z. Li, and N. Wu, “Current-state opacity modelling and
verification in partially observed petri nets,” Automatica, vol. 116, 2020,
Art. no. 108907.

[12] S. Mohajerani and S. Lafortune, “Transforming opacity verification to non-
blocking verification in modular systems,” IEEE Trans. Autom. Control,
vol. 65, no. 4, pp. 1739–1746, Apr. 2020.

[13] D. Lefebvre and C. N. Hadjicostis, “Privacy and safety analysis of timed
stochastic discrete event systems using Markovian trajectory-observers,”
Discrete Event Dyn. Syst., vol. 30, pp. 413–440, 2020.

[14] S. Mohajerani, Y. Ji, and S. Lafortune, “Compositional and abstraction-
based approach for synthesis of edit functions for opacity enforcement,”
IEEE Trans. Autom. Control, vol. 65, no. 8, pp. 3349–3364, Aug. 2020.

[15] F. Lin, W. Chen, W. Wang, and F. Wang, “Information control in networked
discrete event systems and its application to battery management systems,”
Discrete Event Dynamic Syst., vol. 30, pp. 243–268, 2020.

[16] R. Jacob, J.-J. Lesage, and J.-M. Faure, “Overview of discrete event sys-
tems opacity: Models, validation, and quantification,” Annu. Rev. Control,
vol. 41, pp. 135–146, 2016.

[17] S. Lafortune, F. Lin, and C. N. Hadjicostis, “On the history of diagnos-
ability and opacity in discrete event systems,” Annu. Rev. Control, vol. 45,
pp. 257–266, 2018.

[18] F. Lin, “Opacity of discrete event systems and its applications,” Automat-
ica, vol. 47, no. 3, pp. 496–503, 2011.

[19] A. Saboori and C. N. Hadjicostis, “Verification of infinite-step opacity and
complexity considerations,” IEEE Trans. Autom. Control, vol. 57, no. 5,
pp. 1265–1269, May 2012.

[20] Y. Falcone and H. Marchand, “Enforcement and validation (at runtime)
of various notions of opacity,” Discrete Event Dyn. Syst., vol. 25, no. 4,
pp. 531–570, 2015.

[21] X. Yin and S. Lafortune, “A new approach for the verification of infinite-
step and K-step opacity using two-way observers,” Automatica, vol. 80,
pp. 162–171, 2017.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

XIE et al.: OPTIMAL SYNTHESIS OF OPACITY-ENFORCING SUPERVISORS FOR QUALITATIVE AND QUANTITATIVE SPECIFICATIONS 4973

[22] H. Lan, Y. Tong, and C. Seatzu, “Verification of infinite-step opacity using
labeled Petri nets,” in Proc. IFAC World Congr., 2020, pp. 1729–1734.

[23] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and P.
Darondeau, “Concurrent secrets,” Discrete Event Dyn. Syst., vol. 17, no. 4,
pp. 425–446, 2007.

[24] S. Takai and Y. Oka, “A formula for the supremal controllable and opaque
sublanguage arising in supervisory control,” SICE J. Control, Meas. Syst.
Integration, vol. 1, no. 4, pp. 307–311, 2008.

[25] M. Ben-Kalefa and F. Lin, “Supervisory control for opacity of discrete
event systems,” in Proc. IEEE 49th Annu. Allerton Conf. Commun.,
Control, Comput., 2011, pp. 1113–1119.

[26] P. Darondeau, H. Marchand, and L. Ricker, “Enforcing opacity of regular
predicates on modal transition systems,” Discrete Event Dyn. Syst., vol. 25,
no. 1/2, pp. 251–270, 2014.

[27] A. Partovi, T. Jung, and L. Hai, “Opacity of discrete event systems with
active intruder,” 2020, arXiv:2007.14960.

[28] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[29] Y. Tong, Z. Li, C. Seatzu, and A. Giua, “Current-state opacity enforcement
in discrete event systems under incomparable observations,” Discrete
Event Dyn. Syst., vol. 28, no. 2, pp. 161–182, 2018.

[30] J. Dubreil, P. Darondeau, and H. Marchand, “Supervisory control for
opacity,” IEEE Trans. Autom. Control, vol. 55, no. 5, pp. 1089–1100,
May 2010.

[31] G. Zinck, L. Ricker, H. Marchand, and L. Hélouët, “Enforcing opacity in
modular systems,” in Proc. IFAC World Congr., 2020, pp. 2157–2164.

[32] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Des., vol. 40, no. 1,
pp. 88–115, 2012.

[33] B. Zhang, S. Shu, and F. Lin, “Maximum information release while
ensuring opacity in discrete event systems,” IEEE Trans. Automat. Sci.
Eng., vol. 12, no. 4, pp. 1067–1079, Jul. 2015.

[34] B. Behinaein, F. Lin, and K. Rudie, “Optimal information release for mixed
opacity in discrete-event systems,” IEEE Trans. Automat. Sci. Eng., vol. 16,
no. 4, pp. 1960–1970, Oct. 2019.

[35] X. Yin and S. Li, “Synthesis of dynamic masks for infinite-step opacity,”
IEEE Trans. Autom. Control, vol. 65, no. 4, pp. 1429–1441, Apr. 2020.

[36] B. Wu, J. Dai, and H. Lin, “Synthesis of insertion functions to enforce
decentralized and joint opacity properties of discrete-event systems,” in
Proc. Amer. Control Conf., 2018, pp. 3026–3031.

[37] B. Wu and H. Lin, “Privacy verification and enforcement via belief
abstraction,” IEEE Control Syst. Lett., vol. 2, no. 4, pp. 815–820, Oct. 2018.

[38] Y. Ji, Y.-C. Wu, and S. Lafortune, “Enforcement of opacity by public and
private insertion functions,” Automatica, vol. 93, pp. 369–378, 2018.

[39] Y. Ji, X. Yin, and S. Lafortune, “Enforcing opacity by insertion func-
tions under multiple energy constraints,” Automatica, vol. 108, 2019,
Art. no. 108476.

[40] R. Liu, L. Mei, and J. Lu, “K-memory-embedded insertion mechanism for
opacity enforcement,” Syst. Control Lett., vol. 145, 2020, Art. no. 104785.

[41] Y. Xie, X. Yin, and S. Li, “Opacity enforcing supervisory control us-
ing non-deterministic supervisors,” in Proc. IFAC World Congr., 2020,
pp. 1763–1769.

[42] A. Saboori and C. N. Hadjicostis, “Opacity-enforcing supervisory strate-
gies via state estimator constructions,” IEEE Trans. Autom. Control,
vol. 57, no. 5, pp. 1155–1165, May 2012.

[43] A. Saboori and C. N. Hadjicostis, “Current-state opacity formulations in
probabilistic finite automata,” IEEE Trans. Autom. Control, vol. 59, no. 1,
pp. 120–133, Jan. 2014.

[44] X. Yin, Z. Li, W. Wang, and S. Li, “Infinite-step opacity andK-step opacity
of stochastic discrete-event systems,” Automatica, vol. 99, pp. 266–274,
2019.

[45] W. Deng, D. Qiu, and J. Yang, “Fuzzy infinite-step opacity measure of
discrete event systems and its applications,” IEEE Trans. Fuzzy Syst.,
vol. 30, no. 3, pp. 885–892, Mar. 2022.

[46] S. Liu, X. Yin, and M. Zamani, “On a notion of approximate opacity for
discrete-time stochastic control systems,” in Proc. Amer. Control Conf.,
2020, pp. 5413–5418.

[47] D. Lefebvre and C. N. Hadjicostis, “Exposure and revelation times as
a measure of opacity in timed stochastic discrete event systems,” IEEE
Trans. Autom. Control, vol. 66, no. 12, pp. 5802–5815, Dec. 2021.

[48] Y. Xie and X. Yin, “Supervisory control of discrete-event sys-
tems for infinite-step opacity,” in Proc. Amer. Control Conf., 2020,
pp. 3665–3671.

[49] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
2nd ed. Berlin, Germany: Springer, 2008.

[50] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially-observed discrete-event systems,” IEEE Trans. Autom.
Control, vol. 61, no. 5, pp. 1239–1254, May 2016.

[51] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions of
opacity in centralized and coordinated architectures,” Discrete Event Dyn.
Syst., vol. 23, no. 3, pp. 307–339, 2013.

[52] A. Saboori and C. N. Hadjicostis, “Verification of k-step opacity and
analysis of its complexity,” IEEE Trans. Autom. Sci. Eng., vol. 8, no. 3,
pp. 549–559, Jul. 2011.

[53] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

[54] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena Scientific, 1995.

[55] A. Chakrabarti, L. De Alfaro, T. A. Henzinger, and M. Stoelinga, “Re-
source interfaces,” in Proc. Int. Workshop Embedded Softw., 2003, pp. 117–
133.

[56] U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman, “Tempo-
ral specifications with accumulative values,” ACM Trans. Comput. Log.,
vol. 15, no. 4, pp. 1–25, 2014.

[57] Y.-C. Wu and S. Lafortune, “Synthesis of optimal insertion functions
for opacity enforcement,” IEEE Trans. Autom. Control, vol. 61, no. 3,
pp. 571–584, Mar. 2016.

Yifan Xie (Student Member, IEEE) was born
in Hubei, China, in 1999. She received the
B.Eng. degree in automation from Beihang Uni-
versity, Beijing, China, in 2019, and the M.S. de-
gree in control engineering from the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, in 2022. She is currently work-
ing toward the Ph.D. degree in mechanical en-
gineering with the Institute for Systems Theory
and Automatic Control, University of Stuttgart,
Stuttgart, Germany, and with the International

Max Plank Research School for Intelligent System.
Her current research interests include data-driven control, model pre-

dictive control, formal methods, and discrete-event systems.

Shaoyuan Li (Senior Member, IEEE) was born
in Hebei, China, in 1965. He received the B.S.
and M.S. degrees in automation from the Hebei
University of Technology, Tianjin, China, in 1987
and 1992, respectively, and the Ph.D. degree
in automatic control theory and application from
Nankai University, Tianjin, in 1997.

Since 1997, he has been with the Depart-
ment of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai, China, where he is currently
a Professor. His current research interests in-

clude model predictive control, dynamic system optimization, and cyber-
physical systems.

Xiang Yin (Member, IEEE) was born in Anhui,
China, in 1991. He received the B.Eng. degree
from Zhejiang University, Hangzhou, China, in
2012, and the M.S. and Ph.D. degrees from
the University of Michigan, Ann Arbor, MI, USA,
in 2013 and 2017, respectively, all in electrical
engineering.

Since 2017, he has been with the Department
of Automation, Shanghai Jiao Tong University,
Shanghai, China, where he is currently an As-
sociate Professor. His research interests include

formal methods, discrete-event systems, and cyber-physical systems.
Dr. Yin is the Chair of the IEEE CSS Technical Committee on Discrete

Event Systems, an Associate Editor for the Journal of Discrete Event Dy-
namic Systems: Theory and Applications, and a Member of IEEE CSS
Conference Editorial Board. He was the recipient of IEEE Conference
on Decision and Control Best Student Paper Award Finalist in 2016.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 06:55:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

