
1436 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Temporal Logic Task Planning for Autonomous
Systems With Active Acquisition of Information

Shuaiyi Li , Mengjie Wei , Shaoyuan Li , Senior Member, IEEE, and Xiang Yin , Member, IEEE

Abstract—High-level task planning is one of the central prob-
lems in autonomous systems such as unmanned ground vehicles
(UGV). In this context, the agent makes decisions online to ensure
the satisfaction of complex tasks under dynamic environment. In
practice, control decisions are made based on the information
acquired by sensors that can be turned on/off. Therefore, in the
task planning problem, one needs to synthesize control and sensing
decisions jointly in order to achieve the tasks. In this paper, we
formulate and solve a control-sensing co-synthesis problem for
linear temporal logic (LTL) tasks. The objective is to synthesize an
active-sensing controller such that a given LTL formula accepted
by a deterministic Büchi automaton can always be satisfied with a
provably correct formal guarantee. To solve this problem, we pro-
pose a new approach integrating offline computations with online
executions. Based on the winning regions pre-computed offline, the
autonomous system can generate both control and sensing decisions
online to drive the system. We show that the proposed approach is
both sound and complete. The scalability and effectiveness of the
proposed method are evaluated by both numerical experiments and
hardware implementations in UGV task planning.

Index Terms—Autonomous systems, formal methods, task
planning, UGVs.

I. INTRODUCTION

A. Motivation

AUTONOMOUS systems, including unmanned ground
vehicles (UGVs) [1] and unmanned aerial vehicles

(UAVs) [2], have garnered increasing attentions in both
academia and industry over the past years, owing to their suc-
cessful application in diverse fields such as smart manufacturing,
environmental surveillance, and beyond. These systems have
demonstrated the capacity to operate intelligently and indepen-
dently. Consequently, researchers have directed their attention
toward addressing two critical problems in the development of
autonomous systems: motion planning and task planning. In
the context of motion planning, the primary objective is to find
feasible trajectories for the vehicle to navigate, which has been
investigated very extensively in the literature [3], [4], [5], [6].

Manuscript received 10 August 2023; revised 22 September 2023 and 16
October 2023; accepted 21 October 2023. Date of publication 24 October 2023;
date of current version 23 February 2024. This work was supported by the
National Natural Science Foundation of China under Grants 62061136004,
61803259, and 61833012. (Corresponding author: Xiang Yin.)

The authors are with the Department of Automation, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: lishuaiyi@sjtu.edu.cn;
mj.wei@sjtu.edu.cn; syli@sjtu.edu.cn; yinxiang@sjtu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIV.2023.3327312.

Digital Object Identifier 10.1109/TIV.2023.3327312

Meanwhile, high-level task planning for autonomous systems
has gained considerable interest more recently as it enables
sophisticated decision-making and advanced functionalities in
intelligent vehicles.

Linear temporal logic (LTL) offers a highly expressive and
user-friendly approach for specifying high-level formal require-
ments and has found extensive application in autonomous sys-
tem task planning [7]. Through the inductive use of temporal and
Boolean operators, it enables the precise description of complex
formal tasks, such as visiting two target regions infinitely often
while avoiding reaching some dangerous regions. In recent
years, LTL-based high-level task planning has been studied very
extensively and has demonstrated successful implementation in
UGVs [8] and UAVs [9]. For example, in [10], [11], [12], LTL
task planning for multi-agent systems is investigated. In [13],
[14], [15], Petri nets are used to mitigate the computational com-
plexity in LTL planning problem. In [16], [17], the authors use
reinforcement learning to solve the LTL task planning problem
for unknown environments.

In the task planning problem, the autonomous system must
make informed decisions based on its own information, acquired
through sensors that can be dynamically activated or deactivated
online. For instance, consider a UGV entering an unexplored
region. It needs to intelligently choose whether to activate a
camera to perceive its surroundings or activate the GPS to
gather essential data for determining appropriate control actions.
This integrated approach, combining both sensing and control
strategies, is known as an active-sensing control. Therefore, for
LTL planning in a general setting with information uncertainty,
the challenge lies in effectively solving the joint synthesis of both
sensing and control strategies, ensuring that the agent fulfills its
tasks optimally.

B. Our Results

In this work, we formulate and solve a control-sensing co-
synthesis problem for linear temporal logic (LTL) tasks. Specif-
ically, we consider an active-sensing control mechanism, where
the autonomous system needs to determine sensing decisions
(what to observe) and control decisions (what to execute) alter-
natively based on the real-time information received on-the-fly.
The objective is to synthesize an active-sensing controller such
that a formal task requirement specified by a given LTL formula
can always be satisfied despite transition non-determinism and
information uncertainty. Particularly, we consider a fragment
of LTL formulae that can be accepted by deterministic Büchi

2379-8858 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0008-0896-9189
https://orcid.org/0009-0008-1743-0265
https://orcid.org/0000-0003-3427-2912
https://orcid.org/0000-0003-1944-1570
mailto:lishuaiyi@sjtu.edu.cn
mailto:mj.wei@sjtu.edu.cn
mailto:syli@sjtu.edu.cn
mailto:yinxiang@sjtu.edu.cn
https://doi.org/10.1109/TIV.2023.3327312

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1437

automata (DBA). This fragment is restrictive but still expressive
enough to capture many task requirements.

To solve this problem, we propose a new approach integrating
offline computations with online executions. Specifically, at the
offline computation stage, we first construct the belief transition
system that captures the knowledge evolution of the controller
through sensing actions and control inputs. Then starting from
each state in the belief transition system, we augment additional
information regarding the satisfaction of the tasks and iteratively
compute the winning region. Based on the winning region
computed offline, at the online stage, we propose an algorithm
that effectively determines both sensing and control decisions
on-the-fly. We prove that the proposed algorithm is both sound
and complete.

The worst-case complexity for the offline computation is
exponential in the number of system states. However, it is
well-known that such an exponential complexity is unavoidable
for synthesis problems under partial observation. However, our
numerical experiments show that the actual performance of our
algorithm is much better than the exponential upper-bound.
Furthermore, once the offline computation is done, the online
execution for each step only requires a simple search over the
computed structure. Finally, we have also implemented our
method in a real-world UGV task planning system to demon-
strate its effectiveness.

C. Related Works

Controller synthesis under partial observations has been ex-
tensively studied in the context of discrete event systems (DES).
Notably, various algorithms have been proposed in [18], [19],
[20], [21] for synthesizing partial-observation supervisory con-
trollers to fulfill non-blockingness requirements. Additionally,
in [22], [23], [24], sensor activation algorithms are developed to
acquire sufficient information for control or diagnosis purposes.
However, it is important to note that the non-blockingness
requirement in DES literature is different from the LTL task
considered in our work. The former represents a branching time
property, while the latter is a linear time property [25]. Moreover,
existing works in DES literature solely focus on the synthesis
of control policies or sensing policies independently, and to the
best of our knowledge, no investigation has been made into the
control-sensing co-synthesis problem.

Our work is also closely related to the field of reactive con-
troller synthesis with game graphs under imperfect information,
as demonstrated in [26], [27], [28]. Specifically, when active
sensing is not considered, i.e., the observation capability is
fixed, our problem can be reduced to an ω-regular objective
synthesis problem with imperfect information. Previous work
by [29] has made partial progress in addressing this type of
problem. However, a significant difference exists between our
work and [29]. In [29], the assumption is made that all states
with the same observation possess the same properties, allowing
the application of existing full observation control synthesis
algorithms to the partial observation setting. In contrast, our
work does not make this restrictive assumption. As a result,
novel techniques are required to effectively solve our problem.

In the context of LTL task planning for autonomous systems,
there have been plentiful works investigating the scalable plan-
ning methods under perfect information; see, e.g. [30], [31],
[32]. However, in our work, we consider the case of imperfect
information and agent needs to react to the environment based
on its observation. Recently, some studies have focused on
addressing the planning problem in scenarios where the envi-
ronment is either unknown or only partially known, requiring
active sensing capabilities; see, e.g., [33], [34], [35], [36], [37].
Among these, [34] bears the closest relevance to our work.
Particularly, [34] investigates the control-sensing co-synthesis
problem for LTL specifications accepted by DBA. A key ad-
vantage of [34] lies in its efficient approach to synthesizing a
winning strategy without the need to construct the entire belief
space. However, it should be noted that the algorithm proposed
in [34] may not guarantee completeness, as it can potentially lead
to situations where the autonomous system becomes blocked,
and no further control actions can be taken. On the contrary,
our algorithm is both sound and complete, providing strong
guarantees that no such blocked states can be reached when
achieving the LTL tasks.

D. Organization

The paper is structured as follows. Section II provides a brief
introduction to some necessary preliminaries. In Section III, we
formulate the LTL task planning problem with active informa-
tion acquisition. In Section IV, we construct the belief transition
system and discuss the difficulties involved in this problem.
Our main solution is presented in Section V, which involves
both offline computation and online execution. In Section VI,
we present illustrative simulations, numerical experiments, and
hardware experiments in UGV planning. Finally, we conclude
the paper in Section VII.

II. PRELIMINARY

A. System Model

The mobility of the autonomous system (or agent) is modeled
as a labeled transition system (LTS), which is a 6-tuple

T = 〈X,Act,Δ, X0,AP , L〉,

where
� X is a finite set of system states representing the physical

locations of the agent;
� Act is a finite set of control actions or controller inputs;
� Δ : X ×Act→ 2X is the non-deterministic transition

function, where x′ ∈ Δ(x, a) means that the system may
move from state x to x′ by taking action a ∈ Act;

� X0 ⊆ X is the set of possible initial states;
� AP is the set of atomic propositions representing some

basic properties of interest;
� L : X → 2AP is the labeling function that assigns each

state a set of atomic propositions, which hold at that state.
Let A be a set. We denote by Aω and A∗ the set of all

infinite sequences and finite sequences over A, respectively. For
states x, x′ ∈ X and action a ∈ Act, we also write as x

a−→ x′

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

1438 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

if x′ ∈ Δ(x, a) and as x→ x′ if x
a−→ x′ for some a. Then a

path generated by LTS T is an infinite sequence of states τ =
x0x1x2 · · · ∈ Xω such that x0 ∈ X0 and xi → xi+1, ∀i ≥ 0. A
finite path generated by LTS T is a finite prefix of some (infinite)
path generated by LTS T . We denote by Path(T) and Path∗(T)
the set of all paths and finite paths generated by T . The trace
of path τ ∈ Path(T) is Trace(τ) = L(x0)L(x1)L(x2) · · · ∈
(2AP)ω .

Remark 1: Here, we make some remarks regarding the LTS
model considered in this work. First, since our work focuses on
the high-level task planning problem, the LTS model is essen-
tially an abstracted mobility model representing the high-level
behaviors of the UGV (e.g. from regions to regions). Once a
high-level plan is determined by our model, then a low-level
hybrid controller can be deployed to navigate in physical world.
This two-level architecture is widely used in task planning of
UGV so that researchers can better focus on the high-level
decision synthesis based on the present discrete (symbolic) LTS
models; see, e.g., [10], [37]. Second, we note that the transition
functionΔ is non-deterministic in general. In practice, transition
non-determinism may be due to unknown disturbances or un-
controllable parts in real-world environments. Also, abstraction
errors between the high-level model and the low-level dynamics
may also lead to transition non-determinism.

B. Linear Temporal Logic

The control objectives of the autonomous system are de-
scribed by Linear Temporal Logic (LTL) formulae with the
following syntax

φ ::= True | a | ¬φ | φ1 ∧ φ2 | ©φ | φ1Uφ2,

where a ∈ AP is an atomic proposition; ¬ and ∧ are Boolean
operators “negation” and “conjunction”, respectively; © and
U are temporal operators “next” and “until”, respectively. We
can also define other temporal or Boolean operators such as
“eventually” by ♦φ := True U φ, “always” by �φ := ¬♦¬φ,
“disjunction” by φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2), and “implication”
by φ1 → φ2 := ¬φ1 ∨ φ2.

LTL formulae are evaluated on infinite words (infinite se-
quences over 2AP). For an infinite word σ ∈ (2AP)ω , we denote
by σ � φ if it satisfies LTL formula φ. For example, σ � �φ1

means that φ1 always holds at any instant along σ, while
σ � ♦φ1 means that φ1 holds for some instant along σ. The
reader is referred to [38] for more details on the semantics of
LTL. We denote by Word(φ) = {σ ∈ (2AP)ω : σ � φ} the set
of all infinite words satisfying φ.

In this work, we consider a fragment of LTL formula φ that
can be accepted by a deterministic Büchi automaton (DBA); see,
e.g. [38]. It is important to notice that, this assumption is restric-
tive since it does not include formulae such as ♦�. However,
it is still expressive enough for many practical specifications.
Formally, a DBA is a 5-tuple

A = 〈S,Σ, ξ, s0, SF 〉,

where S is a finite set of states, Σ = 2AP is the finite alphabet,
ξ : S × Σ→ S is the deterministic transition function, s0 is the

unique initial state, and SF ⊆ S is the set of accepting states.
For an infinite word ρ = σ1σ2 · · · ∈ Σω , the induced infinite
run is the unique infinite sequence of states π = s0s1 · · · ∈ Sω

inA such that si+1 = ξ(si, σi+1). An infinite run π is said to be
accepted if and only if inf(π) ∩ SF �= ∅, where inf(π) is the set of
states that occurs infinite times in π. An infinite word ρ is said to
be accepted if its induced run is accepted. Given an LTL formula
φ, we denote by Aφ the DBA such that L(Aφ) = Word(φ),
where L(Aφ) is the set of all accepted words of Aφ.

III. PROBLEM FORMULATION

A. Controllers With Active Acquisition of Information

In many cases, the movement of the autonomous system
may generate some undesirable behaviors that violate the LTL
task. Therefore, a controller is designed to plan for the system
so that its behavior will satisfy the specification. In practice,
the controller may not always be able to access the full state
information of the system or the environment. In this paper,
we consider an active information acquisition setting, where
the controller needs to take sensing action to obtain additional
information.

Formally, the sensing module is described by a function

O : X × Sens→ Obs,

where Sens is a finite set of sensing actions and Obs is a finite
set of observation symbols. Intuitively, for any x ∈ X and γ ∈
Sens, o = O(x, γ) ∈ Obs means that if the agent takes sensing
action γ at state x, then it will observe symbol o. Therefore, for
each pair of sensing action γ ∈ Sens and observation o ∈ Obs,
they induce an equivalent class on X defined by

[X]γ,o = {x ∈ X | O(x, γ) = o}.

Note that the observation function is independent from the
labeling function L in general. The former captures the external
measurements of the system, while the latter captures the internal
properties of our interest.

The above defined sensing module is very general and sub-
sumes many existing observation models. For example, for
the setting of static/passive partial observation, the agent can
always obtain some information at each state without taking
sensing actions. In this case, Sens is a singleton, or can be
omitted asO : X → Obs. Furthermore, when Obs = X andO
is a bijection, the static observation further reduces to the case
of full state observation, i.e., the agent always knows its current
location precisely.

Remark 2: It is worth remarking that, in our sensing model,
a sensing action γ ∈ Sens does not necessarily correspond to
an actual sensor physically. Instead, it can be a combinational
deployment strategy for multiple sensors. Therefore, at each
instant, the UGV will issue a unique sensing action, which may
correspond to using multiple sensors. For example, suppose
that a UGV is equipped with three actual sensors s0, s1, s2:
one passive sensor s0 that is always activated, and two active
sensors s1 and s2, which can be turned on/off actively online.
Then without further restriction on the number of sensors the

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1439

UGV can use at each instant, the UGV has four sensing ac-
tions Sens = {{s0}, {s0, s1}, {s0, s2}, {s0, s1, s2}}. Further-
more, in practice, the number of sensors the UGV can use at each
instant may be limited due to energy constraints. Such sensor
constraint can also be captured by our general sensing model.
Specifically, in the above example with three actual sensors
s0, s1 and s2, if we further require that “the UGV can use at
most two actual sensors at each instant including the passive
sensor”, then the sensing action space will be further constrained
to Sens = {{s0}, {s0, s1}, {s0, s2}}, where {s0, s1, s2} is no
longer a feasible sensing action. If we change our requirement
to “the UGV cannot simultaneously activate sensors s0 and
s1”, then the sensing action space will be further constrained
to Sens = {{s0}, {s0, s2}}, since {s0, s1} is also no longer a
feasible sensing action. Therefore, in our framework, constraints
on physical sensors actually are handled at the modeling stage
when constructing the sensing model O : X × Sens→ Obs.
Later on, there is no need for the synthesis algorithm to take these
constraints into account anymore since all infeasible actions
have been excluded.

Given an active sensing module O : X × Sens→ Obs, an
active-sensing-based controller works as follows:
� Initially, the controller needs to make a sensing decision

and observes an initial symbol;
� Based on the first sensing decision and its outcome ob-

servation, the controller makes the first control decision
and upon which the agent moves to a new state (maybe
non-deterministically) according to the transition function;

� Once the movement is complete, the controller needs first
to make a new sensing decision at the new state encountered
in order to obtain a new observation, and then to update its
control decision based on the new observation;

� The above process is repeated indefinitely.
To capture the above active-sensing-based control setting, we

define the history information of the controller as an alternating
sequence of sensing action, observation symbol and control
input of the following form

γ0o0a0γ1o1a1 · · · ∈ (Sens ·Obs ·Act)∗.

Then an active-sensing controller is defined as a tuple

C = 〈Ca, Cs〉,

where
� Ca : Sens ·Obs · (Act · Sens ·Obs)∗ → Act is the con-

trol module that determines the current control input; and
� Cs : (Sens ·Obs ·Act)∗ → Sens is the active sensing

module that determines the current sensing decision.
Then given an active sensing moduleO and an active-sensing

controller C, we denote by TC the closed-loop system under
control of C and by Path(TC) the set of all paths generated by
TC . Formally, we say a path τ = x0x1x2 · · · is generated by
TC with history information γ0o0a0γ1o1a1 · · · ∈ (Sens ·Obs ·
Act)ω , if for any i = 0, 1, . . . , we have (i) xi+1 ∈ Δ(xi, ai);
(ii) oi = O(xi, γi); (iii) γi = Cs(γ0 . . . ai−1); and (iv) ai =
Ca(γ0 . . . oi).

B. Problem Formulation

Since system T is non-deterministic, the actual movement
of the UGV at each instant is determined by both the control
input and the environment, which is not perfectly known by
the UGV due to the imperfect observation. Specifically, at each
state x ∈ X , the controller chooses an action a ∈ Act that is
defined at x, and the environment determines which successor
x′ ∈ Δ(x, a) the agent will actually move into. We assume that
the UGV knows its mobility perfectly. That is, it knows the
possibility of transitions at each state as well as the labeling
function. However, since there is no prior assumption on the
environment’s behavior, the controller needs react to the en-
vironment based on its observation in order to guarantee the
accomplishment of the LTL task. Therefore, our objective is to
synthesize an active-sensing controller that determines both the
control input and the sensing decision at each time instant such
that a given LTL task is fulfilled for sure for all possible traces.
Formally, we aim to solve the following problem.

Problem 1: Given labeled transition system T , observation
function O and LTL formula φ, synthesize an active-sensing
controller C = 〈Ca, Cs〉 such that Trace(TC) ⊆Word(φ).

Remark 3: The above formulated problem is essentially a
robust control synthesis problem in the sense we require that the
LTL task is fulfilled for any possible traces in Trace(TC). The
motivation for this robust synthesis setting is twofold. First, since
we do not have the information of probability distribution on
transitions, Δ is purely non-deterministic and therefore, one has
to consider all possible outcomes under control. Second, in many
applications, either the adversarial nature of the environment
or the inherent safety-critical requirement of the system also
leads to the robust control setting by requiring all traces are
satisfactory.

IV. BELIEF-BASED INFORMATION STRUCTURES

AND CHALLENGES

In this section, we first define the belief transition system,
which serves as the basis of our solution. Then we discuss some
particular challenges in our problem.

A. Product Systems

In order to incorporate the completion status of LTL task φ
into the labeled transition system T , we first define the product
system between T and Aφ.

Definition 1 (Product Systems): Given LTS T = 〈X,Act,Δ,
X0,AP , L〉 and DBA Aφ = 〈S,Σ, ξ, s0, SF 〉 that accepts all
words satisfying φ, the product system is a new LTS

T̃ = T × Aφ =
(
X̃, Act, Δ̃, X̃0,AP , L̃

)
,

where X̃ = X × S is the set of (product) states, Act is the
same set of control inputs, Δ̃ : X̃ ×Act→ 2X̃ is the non-
deterministic transition function defined by: for any two states
x̃ = (x, s), x̃′ = (x′, s′) ∈ X̃ and control input a ∈ Act, we
have

x̃′ ∈ Δ̃(x̃, a) iff x′ ∈ Δ(x, a) ∧ ξ(s, L(x′)) = s′,

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

1440 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

X̃0 = X0 × {s0} is the set of initial states, and L̃ : X̃ → 2AP

is the labeling function defined by: for any x̃ = (x, s) ∈ X̃ , we
have L̃(x̃) = L(x).

In the product system T̃ , we define F = {(x, s) ∈ X̃ | s ∈
SF } as the set of accepting states in which the second compo-
nents are accepting. We also extend the observation function to
O : X̃ × Sens→ Obs by: for any x̃ = (x, s) ∈ X̃, γ ∈ Sens,
we have O(x̃, γ) = O(x, γ).

B. Belief Transition Systems

In the partial observation setting, the controller does not pre-
cisely know the current state of the system due to the observation
equivalence. Hence, it can only maintain a set of possible current
states based on the observation results of the control inputs and
the sensing actions applied in history. This set of possible states
is referred to as a belief state reflecting controller’s knowledge of
the system and can be updated based on the sensing and control
actions.

Also, an active-sensing controller essentially takes a joint-
action, which is a tuple containing both the control input and
the sensing decision. Then the belief of the system evolves when
each join-action is issued or when each observation is received.
This is captured by the following belief transition system.

Definition 2 (Belief Transition Systems): Given product sys-
tem T̃ , observation function O : X × Sens→ Obs, the belief
transition system is defined as a 6-tuple

B = 〈Q,U,ΩB , Q0〉

� Q = {(qx, qs) ∈ 2X̃×Sens | ∀x̃, x̃′ ∈qx,O(x̃, qs)=
O(x̃′, qs)} is the set of belief states, where for each
q = (qx, qs), qx ∈ 2X̃ represents the set of possible
(product) states and qs ∈ Sens represents the current
sensing decision.

� U = Act× Sens is the set of joint actions, which are
control-sensing pairs;

� ΩB : Q× U → 2Q is the non-deterministic transition
function defined by: for any q = (qx, qs), q

′ = (q′x, q
′
s) ∈

Q and u = (a, γ) ∈ U , we have q′ ∈ ΩB(q, u) iff
i) q′s = γ; and

ii) q′x = (∪x̃∈qxΔ̃(x̃, a)) ∩ [X̃]γ,o for some o ∈ Obs.
� Q0 = {(qx, qs) ∈ Q | ∃o∈Obs s.t. qx = X̃0 ∩ [X̃]qs,o}

is the set of all possible initial belief states.
By construction, for each belief state q = (qx, qs), all product

states in qx have the same observation under sensing decision
qs ∈ Sens. Therefore, we denote by H(q) ∈ Obs the observa-
tion of belief state q, which is the unique observation such that

∀x̃ ∈ qx : H(q) = O(x̃, qs).

C. Challenges in Control Synthesis

The interaction between the controller and the environment
can usually be formulated by a two-player game between the
controller and the environment, where the controller’s objective
is to enforce system’s path to satisfy certain properties to win
the game, which is to infinitely visit accepting states in this case,

Fig. 1. Two examples of belief transition systems.

and the environment’s objective is to prevent the controller from
winning the game; see, e.g., [39]. By taking the information un-
certainty into account, we capture the game between controller
and environment along with information evolution by the belief
transition system.

It has been shown in the literature that, if two states with
the same observation always have the same property of being
accepting states, then one can solve the control synthesis prob-
lem as a full observation Büchi game over the belief transition
system. However, the following examples show that, without
this assumption, which does not make much sense for our
case of active sensing, the control synthesis problem becomes
particularly challenging.

The first example shows that, it is problematic to define
“accepting states” in the belief transition system.

Example 1 (Non-Existence of Accepting State): Let us con-
sider a belief transition system B1 presented in Fig. 1(a). For
simplicity, we assume that there is a unique sensing action,
which corresponds to the case of passive sensing. Therefore,
we omit the sensing action in each belief state and joint action.
States x̃1, . . . , x̃6 are already assumed to be product states for
some LTL tasks. The initial states are {x̃1, x̃2} and the accepting
states are {x̃4, x̃5}. The control input set is U = {a, b} and
the observation set is O = {o1, o2}. We consider a (passive)
observation function defined by

H(qi) = o1, i = 0 and H(qi) = o2, i ∈ {1, 2}
The belief states are those dashed rectangles in the figure.

If one attempts to solve a complete observation Büchi game
over B1, i.e., ensure infinite visits of accepting states, then the
question naturally arises as to “how to define accepting states in
B1”. There appear to be two options:

i) a belief state is accepting if all states in it are accepting;
ii) a belief state is accepting if some state in it is accepting.
If we adopt the first definition, then there is no accepting state

in B1, and hence, no solution exists. If we adopt the second
definition, then belief states q1 = {x̃3, x̃4} and q2 = {x̃5, x̃6}
are both accepting. Then by solving the full observation Büchi
game over B1, the controller can always take action a at q0 =
{x̃1, x̃2} to visit q2 infinitely often. However, this is not a correct

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1441

solution since the underlying system may loop via (x̃2x̃6)
ω in

which no accepting state exists.
The following result further shows that, in fact, a belief state-

based control strategy is even not sufficient, and one may require
additional memory to realize the controller.

Example 2 (Non-Existence of Belief-Based Strategy): We
still consider the system in the above example. We can easily
check that there is no belief-based control strategy to achieve
the objective. For example, we have shown that fixing control
decision a at belief state q0 is not correct; and the same for fixing
control decision b. However, we can make control decision a
and b alternatively at belief state q0 such that: if the system is
actually at x̃1, then it will get chance to reach accepting state
x̃5, and if the system is actually at x̃2, then it will get chance
to reach accepting state x̃4. This ensures the infinite visit of
accepting states although we still cannot precisely identify the
current state.

In the last example, we show that, in fact, simply relying on
the information of the belief structure is not sufficient to solve the
problem. To this end, we show that it is possible that two systems
have exactly the same belief structures, one has a solution but
the other has no solution.

Example 3 (Information of Inter-Connections): We consider
a belief transition system B2 that is slightly different from B1 by
changing transitions x̃4 → x̃1 and x̃5 → x̃2 into x̃3 → x̃2 and
x̃6 → x̃1, as shown in Fig. 1(b). Obviously, B1 and B2 have the
same transition structure between belief states. For this example,
however, if the controller attempts to monitor every possible path
and alternately enforce future visits to accepting states, it will
soon discover that this process will never converge. For example,
initialized at q0, if the controller “guesses” that the system is
at state x̃2 aims to visit accepting state x̃4 by control input b,
then it is possible that the system actually moves from x̃1 to x̃3.
Furthermore, state x̃3 may return to both states x̃1 and x̃2 with the
same observation. Therefore, the controller need to guess again
which actual state is at belief state q0. In fact, no matter what
control strategy we use, the loop of x̃1 → x̃3 → x̃2 → x̃6 → x̃1

can never be avoided. Hence, we can conclude that there is no
controller that can ensure the infinite visits of accepting states
without the precise state information. Therefore, this example
shows that the inter-connection information of states within
belief structure is also crucial for control policy synthesis.

V. SYNTHESIS PROCEDURES

In this work, we propose an approach to synthesize control and
sensing strategies jointly. Specifically, our approach contains
two steps: offline computation and online execution.
� In the offline stage, we solve a reachability game for each

belief state by augmenting the belief space to ensure the
visit of accepting states in the presence of information
uncertainty. We repeat this process iteratively until all
belief states have the ability to reach accepting states and
maintain the ability globally.

� In the online stage, the controller maintains the current be-
lief state. During each decision round, the controller applies
a reachability strategy from the initial belief state. Once all

states in the augmented belief space become accepting, the
initial belief state is updated for another decision round.
This allows us to synthesize a controller that can handle
information uncertainty and ensure the satisfaction of the
desired specifications.

Next, we detail our synthesis procedures.

A. Augmented Transition Systems

In the belief transition system, a belief state can only cap-
ture all possible current (product) states, and can only indicate
whether each current state is accepting or not. However, this
information is not sufficient to determine a control strategy, as
we have shown in the previous examples. To overcome this
limitation, we augment each belief state by tracking not only
the system state but also whether or not an accepting state has
been visited within a “decision round” initiated from a belief
state q ∈ Q. This leads us to define the augmented transition
systems, which provides a more comprehensive representation
of the system’s behavior and enables us to synthesize a more
effective control strategy.

Definition 3 (Augmented Transition Systems): Given belief
transition system B, and a belief state q = (qx, qs) ∈ Q, the
augmented transition system is defined as a 5-tuple

Mq = 〈Mq, U,Ωq,mq0,MqF 〉
� Mq ⊆ 2X̃×{0,1} × Sens is the set of augmented states;
� U is the same set of joint actions;
� Ωq : Mq × U → 2Mq is the non-deterministic transition

function defined by: for any m = (mx,ms) ∈Mq \
MqF ,m

′ = (m′x,m
′
s) ∈Mq andu = (a, γ) ∈ U , we have

m′ ∈ Ωq(m,u) if for some o ∈ O, m′s = γ,

m′x =

{
(x̃′, b′) :

∃(x̃, b) ∈ mx, x̃
′ ∈ Δ̃(x̃, a) ∩ [x̃]γ,o,

b′ = 0 iff (b = 0 ∧ x̃′ /∈ F)

}

and for any m ∈MqF , we define Ωq(m,u) = ∅, ∀u ∈ U ;
� mq0 = (mq0,x,mq0,s) is the initial augmented state, where
mq0,s = qs and

mq0,x = {(x̃, b) : x̃ ∈ qx, b = 0}.
� MqF = {m ∈Mq | ∀(x̃, b) ∈ mx, b = 1} is the set of ac-

cepting augmented states inMq .
Intuitively,Mq augments B by adding a binary counter b ∈
{0, 1} for each possible state in order to track whether or not
accepting states have been visited along the path from initial
belief q. Therefore, once all binary counters become 1 in the
augmented state, we know for sure that all states have visited
an accepting state in the decision round, and we terminate the
expansion. For each augmented state m ∈Mq , we denote

X(m) = {x̃ ∈ X̃ | (x̃, b) ∈ mx}

as the corresponding belief state of augmented statemby erasing
the binary variables.

The following result formally states the property of the aug-
mented transition system.

Lemma 1: Given a belief transition system B, a belief state
q ∈ Q and its corresponding augmented transition systemMq

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

1442 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Fig. 2. Examples of augmented transition systems.

and let ω = X(mq0)X(mq1) . . . X(mqk) be a finite path in
the Mq such that mqk ∈MqF . Then for any finite paths τ =
x̃0x̃1 · · · x̃k with history information γ0o0a0γ1o1a1 · · · γkok, if
o0 · · · ok = H(ω), then τ must have visited accepting states.

Proof: We prove Lemma 1 by contradiction. Assume there
exists a path τ = x̃0x̃1 . . . x̃k with o0 · · · ok = H(ω) such that
x̃i /∈ F for ∀i. We denote δx(m) and δs(m) as the set of pos-
sible product states and sensing action, respectively. For ∀0 ≤
i ≤ k − 1, clearly, we have x̃i ∈ δx(mqi) because o0 · · · ok =
H(ω). Given action u, if mqi+1

∈ Ωq(mqi , u), x̃i+1 ∈ Ω(x̃i, u)
and (x̃i, b) ∈ mqi,x with b = 0, x̃i+1 /∈ F . Then, according to
the definition of Ωq , there exists a pair (x̃i+1, b

′) ∈ mqi+1,x

such that b′ = 0. So, if x̃i /∈ F, ∀0 ≤ i ≤ k − 1 and ∃(x̃0, b) ∈
mq0,x, b = 0, then ∃(x̃k, b

′) ∈ mqk,x, such that b = 0, which
is contradict to mqk ∈MqF . So, there does not exist a path
τ = x̃0x̃1 . . . x̃k with o0 · · · ok = H(ω) such that x̃i /∈ F, ∀i and
Lemma 1 is proved. �

The following example illustrate the structure of augmented
transition system.

Example 4: In Fig. 2 , we present the augmented transition
systems for belief transition systems in Fig. 1 from different be-
lief states. For example,Mq0 in Fig. 2(a) shows the augmented
transition systems for belief transition system B1 from state
q0 = {x̃1, x̃2}. Intuitively, the augmented transition systems
starts from {(x̃1, 0), (x̃2, 0)} since no accepting state has been
visited. The structure will terminate at states {(x̃5, 1), (x̃6, 1)}
and {(x̃3, 1), (x̃4, 1)} since all binary variables in the states are
1, which means that although we do not know the precise state,
we still know for sure that each state has visited an accepting
state from q0. However, augmented transition system forB2 from
q0 shown in Fig. 2(b) does not contain any accepting augmented
states. This implies that it is impossible for belief state q0 to
reach a belief state where every possible underlying actual path
has visited accepting states.

B. Offline Computation of Winning Regions

Suppose that our current belief state regarding the system is
q ∈ Q. To achieve a successful decision round, we need to apply
a control strategy inMq such that accepting statesMqF can be
visited for sure. This is essentially a reachability game in which
a target region needs to be reached within finite steps.

Formally, let ı ⊆Mq be a set of belief states inMq one wants
to reach. We define the controlled predecessor of ı by

CPre(ı) = {m ∈Mq | ∃u ∈ U s.t. Ωq(m,u) ⊆ ı}.

The k-step attractor Attr(i)(ı) of ı is defined inductively by

Attr(0)(ı) = ı

Attr(k+1)(ı) = Attr(k)(ı) ∪ CPre(Attr(k)(ı)).

Then the attractor of ı is defined by

Attr(ı) =
⋃
k≥0

Attr(k)(ı).

Clearly, for each belief state q ∈ Q, if mq0 �∈ Attr(MqF),
then q should be considered as an “illegal” belief state since
we cannot ensure the finite reachability of accepting state. Fur-
thermore, recall that our overall objective is to visit accepting
states infinitely often. Therefore, once we have determined that
q is an illegal belief state and delete it, this may further affect
the legality of each belief state q′, which was legal. Therefore,
we need to iteratively determine the legality of belief states
by solving reachability games on a dynamically maintained
augmented space.

To this end, given a belief state q ∈ Q, augmented transition
systemMq and a set of belief states R ⊆ Q, which is referred to
as reference region, we define Mq(R) = {m ∈Mq | X(m) ∈
R} as the set of corresponding augmented states inMq . Then

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1443

we define validation function val(q,R) as follows:

val(q,R) =

{
True, if mq0 ∈ Attr(MqF ∩Mq(R))

False, otherwise

The validation function provides the result of whether the
reachability game from the initial state mq0 to the accepting
states MqF in the given reference region R has a solution. In
other words, this function measures whether the controller can
start from belief state q and surely reach a belief state such that
during this process all the possible paths have visited accepting
states projected in reference region R.

Based on this reachability game in augmented transition
system, the winning region Qwin can be computed iteratively
by

R0 = Q

Ri+1 = {q ∈ Ri | val(q,Ri) = True}
Qwin = lim

i→∞
Ri (1)

Intuitively, the reference region is initially set to be all belief
states and then shrinks iteratively. In each iteration, the validation
function is examined on each belief state with current reference
region Ri. Belief states from which the controller cannot de-
terministically visit accepting states will be deleted. Since the
reference region is changed, the validation of each state also
needs to be updated by solving reachability games again. The
final result of winning region is the limit of the above reference
region sequence. Once the process converges, starting from any
belief state q ∈ Qwin, the controller can induce a finite sequence
ending at another q′ ∈ Qwin such that all the possible finite paths
contain accepting state during this process, and maintain this
ability for the next round.

C. Online Execution of Controller

Based on the pre-computed winning regions, we can now
decode an active-sensing controller. The main online execution
process works as follows to generate control and sensing outputs
according to observation results indefinitely.
� Initially, the controller performs a sensing action to obtain

some initial information. Formally, we define the winning
initial sensing set by

Γ = {γ ∈ Sens : ∀o ∈ O, (X̃0 ∩ [x̃]γ,o, γ) ∈ Qwin}.

If Γ = ∅, then any initial sensing action may result in a
belief state outside of the winning region, which means
that the joint strategy does not exist. Otherwise, we can
design a sure winning control strategy beginning with any
sensing action in Γ.

� Then starting from an arbitrary given state in q ∈ Qwin,
the controller tries to enforce all possible product states
towards accepting states inMq by applying a (state-based)
sure reachability strategy denoted by Φq , where each ele-
ment is a pair of augmented state and its corresponding
control decision. This is referred to as a decision round.

Algorithm 1: Control Strategy.
Input: belief transition system B, winning region Qwin,
augmented transition systems {Mq}q∈Qwin

Output: Control input u = (a, γ)
1: Apply γ ∈ Γ, and receive an initial observation o
2: q ← (X̃0 ∩ [x̃]γ,o, γ)
3:M←Mq , Φ← Φq , m← m0

4: find (m,u) ∈ Φ
5: while apply u and receive new observation o do
6: q ← q′, q′ ∈ ΩB(q, u),H(q′) = o.
7: m← m′,m′ ∈ Ω(m,u), X(m′) = q,
8: if m ∈MF then
9: M←Mq , Φ← Φq , m← m0

10: find (m,u) ∈ Φ,
11: else
12: find (m,u) ∈ Φ,
13: end
14: end

� After the generation of a finite belief path ending in Qwin

with every possible path has visited accepting states, a new
decision round will be initialized at current belief state.

The above process is formally summarized by Algorithm 1.
Specifically, the initialization is conducted in line 1–3, where
the controller chooses an initial sensing decision γ, observes the
first observation o, and uses this information to form its first
belief q. We useM = 〈M,U,Ω,m0,MF 〉 and Φ to record cur-
rent augmented transition system and its reachability strategy.
Then the controller will keep applying joint decision u = (a, γ)
according to Φ. If no accepting state in MF is reached, then
the strategy Φ remains unchanged. However, if an accepting
state is reached, then it means that a decision round has been
finished. Therefore, we need to update the augmented transition
state by initializing from the current belief q and also to update
the reachability strategy based on the corresponding Φq .

Finally, for each q ∈ Qwin, the corresponding reachability
strategyΦq can be generated based on each augmented transition
system Mq by Algorithm 2. Given an augmented transition
system Mq , for an arbitrary m ∈Mq, assuming it is in the
(i+ 1)-step attractor of accepting augmented states, then the
reachability strategy Φqis to enforce its visit towards the i-step
attractor. Note that, the augmented transition systems only pro-
vide a transition structure with visiting situations, and do not
incorporate the winning region information. Simply reaching
towards MqF may result in leaving the winning region and
thus losing the game. Therefore, accepting augmented state
set should be as MqF ∩Mq(Qwin), which ensures that the
transition stays within the winning region. Once the strategy
at each step is generated in augmented transition systems, it can
be projected and implemented back in belief transition systems.

D. Correctness Proofs and Complexity Analysis

Finally, we prove the correctness of our approach and analyze
the complexity of our algorithm. First, we prove the soundness

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

1444 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Algorithm 2: Computation of Φq .

Input:Mq, Qwin

Output: Φq

1: Φq ← ∅
2: for every m ∈Mq do
3: find i such that
4: m ∈ Attr(i+1)(MqF ∩Mq(Qwin)) \

Attr(i)(MqF ∩Mq(Qwin))
5: pick an action-sense pair u such that
6: Ωq(m,u) ⊆ Attr(i)(MqF ∩Mq(Qwin))
7: Φq ← Φq ∪ (m,u)
8: end

of our approach, i.e., if Algorithm 1 runs indefinitely, then the
resulting active-sensing controller indeed solves the problem.

Proposition 1 (Soundness): Given a label transition system
T , the product system T̃ , and its corresponding belief structure
B, if Γ �= ∅, then we have Trace(TC) ⊆Word(φ) under the
online control strategy C defined by Algorithm 1.

Proof: The term Trace(TC) ⊆Word(φ) can be transformed
into the following equivalent term that for each infinite path
τ̃ ∈ Path(T̃C) we have inf(τ̃) ∩ F �= ∅, where T̃C = TC ×Aφ.
Since the standard reachability game algorithm is applied, from
any initial state the controller can deterministically visit an
accepting state in finite steps. So, from any belief state q ∈ Qwin,
its corresponding mq0 will visit an augmented state m ∈MqF

with∀(x, b) ∈ mx, b = 1 in finite steps under controller C. Also,
according to Lemma 1, the above implies that every finite path
having the same observation with the belief path starting from
q and ending at q′ = X(m) has visited accepting states. The
process will be conducted infinitely, so the infinite paths induced
by C satisfy the accepting condition. �

Next, we show the completeness of our algorithm.
Proposition 2 (Completeness): Given a label transition sys-

tem T , the product system T̃ , and its corresponding belief
structure B, if there exists a control strategy C such that
inf(τ̃) ∩ F �= ∅, ∀τ̃ ∈ Path(T̃C), then Γ �= ∅.

Proof: Without losing generality, assume there exists a strat-
egy C such that inf(τ̃) ∩ F �= ∅, ∀τ̃ ∈ Path(T̃C), which is not
necessarily our proposed strategy, but we can still project its
induced path on belief transition systems and augmented tran-
sition systems. We denote the belief transition system under
control as BC , and the set of all possible belief states appear in
Path(BC) as Q̂. We have inf(Path(T̃C)) ∩ F �= ∅, so from any
belief state q ∈ Q̂, the controller can deterministically enforce
every possible future path of visiting accepting states in finite
steps. This means that for ∀q ∈ Q̂, we have val(q, Q̂) = True.
Also, it can be easily inferred that if the Reachability Game
towards set A has a solution, then it also has a solution for
any A′ ⊇ A. So, if val(q,A) = True, then for any A′ ⊇ A,
we have val(q,A′) = True. If we make an assumption that
Q̂ � Qwin, and for any q′ ∈ Q̂ \Qwin, there exists an itera-
tion term j such that val(q′, Rj) = False, j ≥ 0 during the
computation of Qwin. We consider the biggest corresponding
iteration item among all the states in Q̂, denoted by J . Clearly,

Q̂ ⊆ RJ and J ≥ j, and because ∀q ∈ Q̂,val(q, Q̂) = True,
we have val(q′, RJ) = True, which is contradict to the as-
sumption of val(q′, Rj) = False. So, for any strategy C that
satisfies inf(τ̃) ∩ F �= ∅, ∀τ̃ ∈ Path(T̃C), we have Q̂ ⊆ Qwin.
Also, because Q̂ ⊆ Qwin, the result belief states of the initial
sensing action γ̂ in strategy Ĉ must also be inside Qwin, that
is (X̃0 ∩ [x̃]γ̂,o, γ̂) ∈ Qwin for ∀o ∈ O. So Γ �= ∅ and at least
contains an element of γ̂, which completes the proof. �

Finally, we analyze the complexity of our approach. First, the
number of product states is at most |X̃| = |X| · |S|, which is
linear in both the original transition system and the DBA, The
belief transition system is exponentially large than the product
system and contains at most n = |Sens| · 2|X̃| states. Similarly,
each augmented transition system also contains at most n′ =
|Sens| · 22|X̃| states and m′ = |Sens|2|Act| actions. Since the
complexity for solving the reachability game is linear in both the
number of states and the number of actions [39], the complexity
for each reachability analysis for augmented transition system
is O(m′n′). Furthermore, the reachability analysis needs to be
iterated for at most n times. This is because if the reference
region only excludes one belief state at each iteration, and the
worst-case isQwin = ∅, i.e., the iteration repeats n×(n+1)

2 times,
wheren is the number of belief states. Therefore, the complexity
of offline computation is O(|Sens|4|Act|24|X̃|). Note that, once
the offline computation is done, the online decision making part
is a table search; the only computation effort is to update the
belief state on-the-fly, which is linear in the size of the augmented
state space.

VI. EXPERIMENTS

In this section, we provide a set of experiments to illustrate
our theoretical results. In Section VI-A, we provide a case study
simulation to better illustrate our method. In Section VI-B, we
provide numerical experiments by increasing the system scale
and sensing actions space to show the scalability of our algorithm
for different scenarios. Finally, in Section VI-C we perform a
hardware experiment to show the real-world feasibility of our
method.

All simulations are implemented by integratingPython3.10.7
and UGV simulation platform V−REP 4.2.0 on a PC with 64
cores with 2.80 GHz processors and 16 GB of RAM. The UGV
used in the hardware experiment is a Turtlebot3-Burger mobile
UGV equipped with Raspberry Pi camera v2. All codes and
experiment videos are available at https://github.com/LiShuaiyi/
active-LTL-planning.

A. Illustrative Case Study

In this section, we illustrate the proposed active-sensing con-
trol synthesis by a case study of UGV task planning in a grid
world environment with uncertainty.

System Model: We consider an omnidirectional UGV mov-
ing in a workspace described by a 6× 6 grid-world shown in
Fig. 3(a). More specifically, the workspace represents a dark
cold storage warehouse that is divided into storage region and
outside region (see different colors in Fig. 3(d)). The storage

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LiShuaiyi/active-LTL-planning
https://github.com/LiShuaiyi/active-LTL-planning

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1445

Fig. 3. Illustrative example of UGV task planning in grid-world
environment.

region maintains a relatively lower temperature and has no
light source, while the temperature of the outside region is
higher and is installed a row of light sources. The two regions
are separated by glass automatic door. Each grid represents a
region in the UGV’s workspace, and also corresponds to a state
of the system model, denoted by X = {(x, y), 1 ≤ x, y ≤ 6}.
Specifically, at each instant, the UGV may take a control action
in Act = {left, right,up,down} to move left/right/up/down to
its adjacent region. In most of the states without gray arrows, we
assume that the UGV will execute the control action perfectly.
For example, if the robot is at state (1,1), which is bottom-left
corner state and take control action up, then it will move
to state (2,1) for sure. Furthermore, in those regions marked
with gray arrows, we assume that the movement of the UGV
is non-deterministic due to the severe pavement conditions.
Specifically,
� If the UGV is in a region marked by →, then when it

takes actions up or down, it may also non-deterministically
move to the adjacent region on its right. For example, if the
robot is at state (4, 4) and takes control action down, then
it will either move to states (3, 4) and (4, 5).

� If the UGV is in a region marked by �, then any control
action may fail for the first time such that the UGV is
unmoved. For example, if the robot is at state (4, 3) and
takes control action left, then it may either move to state
(4, 2) or stay at (4, 3). However, if it stays at (4, 3), then the
next control action will always be effectively executed.

Also, we assume that the UGV is initialized deterministically
at region E, i.e., X0 = {(3, 1)}.

Observation Model: We assume that the UGV is equipped
with three physical sensors: one passive sensor s0, which is a
thermometer that monitors the temperature difference between
different regions and is always activated, and two active sensors
s1 and s2, which can be turned on/off actively online. Sensor
s1 is an ambient light sensor that detects different level of
light intensity. Sensor s2 is an infrared sensor that detects the
infrared signal of specific electronic devices that are related to

task completion. Due to energy constraints, we assume that the
UGV can simultaneously activate two sensors including the
passive sensor s0. Therefore, the UGV essentially has three
sensing actions, i.e., Sens = {{s0}, {s0, s1}, {s0, s2}}. The
capability of each sensor is shown in Fig. 3(d), (e), and (f).
Specifically, in each figure, that states have the same color
means that the sensor cannot distinguish these states, i.e., each
sensor induces an observational equivalent class. Therefore,Obs
contains 2 + 2× 4 + 2× 2 = 14 symbols, which is the product
of the equivalent class of each sensor. For example, with the
passive sensor s0, the UGV can distinguish whether it is in the
bottom two rows or in the top four rows. Also, by activating
sensor s2, the UGV can distinguish whether it is in regions with
letters (although cannot tell which one explicitly) or in those
non-letter regions.

Simulation for Task 1: We assume that regions marked by
letters A to E are those with our particular interests. Further-
more, regions marked by black color are dangerous regions the
UGV should avoid. First, we consider a simple task for the UGV
described by the following LTL formula:

φ1 = ♦A ∧ ♦C ∧�¬dangerous.

That is, the UGV needs to visit both regions A and C without
order by avoiding the dangerous regions.

By applying our algorithm, the planned trajectory is shown
in Fig. 3(b). Specifically, since there is no transition non-
determinism before reaching region (4, 3), the UGV does not
need to turn on active sensors s1 or s2. However, at region
(4, 3), after the UGV takes control action left, it needs to
activate sensor s1 since this sensor can distinguish between
regions (4, 3) and (4, 2); the former means that actionleft fails
and the latter means that action left is successfully executed.
This information is needed since the UGV needs to determine
how many left actions it should take before applying up to
region A.

Simulation for Task 2: Still for the same system, we consider
a more complex task described by the following LTL formula:

φ2 = (¬D U C) ∧ (¬A U D) ∧ (¬B U A) ∧ ♦B
∧�♦C ∧�♦D ∧�¬dangerous

Essentially, the task consists of three parts:
i) the finite task of visiting C,D,A,B in order; and

ii) the infinite surveillance task of visitingC andD infinitely
often; and

iii) the safety task of avoiding dangerous regions.
By applying our algorithm, the planned trajectory is shown in

Fig. 3(c). Specifically, the red trajectory aims to fulfill the finite
task. Still, after the UGV takes control action left at region
(4, 3), it needs to activate sensor s1 to resolve the transition non-
determinism. Similarly, after the UGV takes control actionup at
region (4, 5), it needs to activate sensor s2 to determine whether
it has already reachedB. Once the UGV reaches regionB, it will
follow the green trajectory to go to region C, and then follow
the blue trajectory to visit between regionsC andD indefinitely.
Still, different sensors need to be activated at different regions

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

1446 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

(marked in the figure) in order to resolve information uncertainty
such that the planned trajectory can be executed.

B. Numerical Experiments

In the previous section, we analyzed that the worst-case
complexity of our synthesis method is polynomial in the number
of sensing actions and exponential in the number of states. How-
ever, this worst-case complexity is rarely achieved for physical
systems. Specifically, the exponential upper-bound comes from
the fact the belief state space is the power set of the original state
space. In practice, however, the states in the beliefs are usually
“closed” to each other, i.e., it is not practical for the UGV to
maintain a belief that it may be at two possible regions far away
from each other. To justify this argument, we perform numerical
experiments on randomly generate grid-world scenarios and
show the statistical results.

Experiment Setting: To show the scalability of our method,
we run our algorithm on randomly generated n× n grid-world
scenarios generated as follows:
� State Space: Each grid represents a region in the UGV’s

workspace, i.e., X = {(x, y) : 1 ≤ x, y ≤ n}. The initial
region of UGV is randomly chosen.

� Transition Function: At each region, the UGV can take
left/right/up/down to move left/right/up/down to its
adjacent region, which are referred to normal transitions.
In addition, to introduce transition non-determinism, we
randomly add non-deterministic transitions moving di-

agonally such as (1, 1)
up−→ (2, 2); the number of non-

deterministic transitions is 12.5% of that of normal
transitions.

� Observation Model: For the sake of simplicity, here we
directly define sensing actions without assigning physical
meanings for the underlying sensors. Specifically, the UGV
hasNs number of sensing actions. For each sensing action,
we randomly assign each region to � (n−1)

2

3 � observational
equivalent classes.

� LTL Task: We assume there are four atomic propositions.
Then we select 25% states and assign them atomic propo-
sitions randomly. The overall LTL task is generated ran-
domly with template

φ = ϕ ∧

⎛
⎝ ∧

i=1,...,k,k≤4
�♦ai

⎞
⎠ ,

where ϕ is a randomly generated task containing at most
15 operators and there are at most four randomly chosen
atomic propositions that are needed to be visited infinitely
often.

Therefore, there are two parameters controlling the generation
of the simulation: system size n and the number of sensing
actions Ns.

For each randomly generated system, we compute the prod-
uct system T̃ , belief transition system B, and the augmented
transition systemMq for each q. We denote by |Mq| and |Ωq|
the average number of states and transitions inMq among all

possible q. The offline computation involves computing B and
all Mq; the overall computation time is denoted by t1. The
online computation involves belief updates and reading decision
from Mq; we denoted by t2 the average online computation
time at each instant. For each pair of parameters n and Ns, we
randomly generate 50 systems and all statistics are considered
as the averaged values in the 50 experiments with the same
parameter.

Experimental Results: In the first set of experiments, we fix
the number of sensing actions to be Ns = 2 and increase the
size of n. The average statistics for different n are shown in
Table I. In the second set of experiments, we fix the size of the
grid-world as 6× 6 and increase the number of sensing actions
from 2 to 6, denoted by Ns. The average statistics for different
Ns are shown in Table II. For both cases, we see that the sizes of
the belief transition system and the augmented transition system
grow almost linearly when the parameter n or Ns increase. In
particular, in terms of the scalability with respect to the size of the
system, the offline computation time t1 grows much slower than
the exponential theoretical bound. Furthermore, for all cases,
the online computation time can always be done within one sec.
Therefore, our experiments show that our algorithm has good
scalability performance for practical scenarios.

C. Hardware Experiments

Finally, we perform a hardware experiment to apply our
algorithm in real-world and verify its feasibility. Note that our
approach offers discrete high-level trajectory plans between
adjacent regions, which can are executed by low-level motion
control.

System Model: We consider a pseudo-omnidirectional UGV
moving in a 5× 5 environment whose map is shown in Fig. 4(a).
There are walls in the workspace, denoted by thick black lines.
In this pseudo-omnidirectional model, the state of the system is
not only the current grid, but also the orientation of the UGV.
Therefore, the set of states is X = {(x, y, z), 1 ≤ x, y ≤ 5, z ∈
{↑, ↓,→,←}}.

At any given moment, the UGV has the option to turn
left/right in situ or move forward, denoted by action sets Act =
{turn-left, turn-right, forward}. We assume that the UGV starts
from region E without knowing its orientation, i.e., we have
X0 = {(3, 3, z) : z ∈ {↑, ↓,→,←}}. Furthermore, we assume
that all action of the UGV can be deterministically executed
expect that there exist disturbances once it reaches region E,
simulated by artificially changing the UGV’s orientation ran-
domly by human operator.

Observation Model: Some walls (denoted by lines with colors
in the middle in Fig. 4(a)) in the workspace have visual marks
representing locations. The UGV is equipped with one sensor,
a camera in the front, that can be turned on to detect the visual
mark. Therefore, without the artificial disturbance in region E,
the UGV always knows where it is, and therefore, no sensor is
needed. However, due to the disturbance in region E, the UGV
needs to activate the camera suitably at regions adjacent to A or
B to localize itself.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1447

TABLE I
SUMMARY STATISTICS FOR DIFFERENT n WITH FIXED Ns = 2

Fig. 4. Hardware experiment results.

TABLE II
SUMMARY STATISTICS FOR DIFFERENT Ns WITH FIXED n = 6

LTL Task and Experiment Result: We consider task φ3 de-
scribed as follows:

φ3 = �♦E ∧�(A→©(¬A ∧ ¬E)UB)

∧�(B →©(¬A ∧ ¬B)UE)

∧�(E →©(¬B ∧ ¬E)UA)

Intuitively, the UGV needs to visit regions E,A and B sequen-
tially for infinite number of times.

The experiment snapshots are shown in Fig. 4(b), (c). In
Fig. 4(b), the UGV begins at point E and is assigned by a
human operator to orient the region below E (unknown to the
UGV). From the UGV’s perspective, it takes control actions:
moving forward, turning right, moving forward as shown in
Fig. 4(b). At this point, the UGV remains uncertain about its
precise location, since it may also be at the other three possible

locations shown in Fig. 4(b). Then the UGV will activate the
camera and detect the mark in its front wall. This resolves its
location uncertainty and it knows that the other three locations
are not possible. Therefore, the UGV will not move forward
to go to region B in front of it. Instead, it will follow the
trajectory shown in Fig. 4(c) to first visit region A, and then
region B, and finally back to region E without the need of
further detection. The above process will be repeated indefinitely
to accomplish the infinite task. The full experiment video is
available in https://github.com/LiShuaiyi/active-LTL-planning.

VII. CONCLUSION

In this paper, we addressed the problem of joint synthesis
of control and sensing strategies for LTL tasks. To this end, we
proposed an effective approach integrating both offline computa-
tion of winning regions with online control executions. We show
that our algorithm is both sound and complete. Compared with
existing works on control synthesis with imperfect information
of LTL tasks, our result relaxes the assumption that all states
with the same observation must have the same property. The
scalability and adaptability of our approach were illustrated
by numerical experiments and real-world implements. In the
future, we plan to extend our approach to general LTL formulae
accepted by deterministic Rabin automata or non-deterministic
Büchi automata. Also, we aim to investigate the trade-off be-
tween control and sensing by introducing cost metrics.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

https://github.com/LiShuaiyi/active-LTL-planning

1448 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

REFERENCES

[1] S. Khan and J. Guivant, “Design and implementation of proximal planning
and control of an unmanned ground vehicle to operate in dynamic environ-
ments,” IEEE Trans. Intell. Veh., vol. 8, no. 2, pp. 1787–1799, Feb. 2023.

[2] D. Yin, X. Yang, H. Yu, S. Chen, and C. Wang, “An air-to-ground relay
communication planning method for UAVs swarm applications,” IEEE
Trans. Intell. Veh., vol. 8, no. 4, pp. 2983–2997, Apr. 2023.

[3] L. Chen et al., “Milestones in autonomous driving and intelligent vehicles:
Survey of surveys,” IEEE Trans. Intell. Veh., vol. 8, no. 2, pp. 1046–1056,
Feb. 2023.

[4] S. Teng et al., “Motion planning for autonomous driving: The state of
the art and future perspectives,” IEEE Trans. Intell. Veh., vol. 8, no. 6,
pp. 3692–3711, Jun. 2023.

[5] V. S. Chirala, K. Sundar, S. Venkatachalam, J. M. Smereka, and
S. Kassoumeh, “Heuristics for multi-vehicle routing problem consider-
ing human-robot interactions,” IEEE Trans. Intell. Veh., vol. 8, no. 5,
pp. 3228–3238, May 2023.

[6] Z. Wen, Y. Zhang, X. Chen, J. Wang, Y.-H. Li, and Y.-K. Huang,
“TOFG: Temporal occupancy flow graph for prediction and planning
in autonomous driving,” IEEE Trans. Intell. Veh., to be published,
doi: 10.1109/TIV.2023.3296209.

[7] E. Plaku and S. Karaman, “Motion planning with temporal-logic specifica-
tions: Progress and challenges,” AI Commun., vol. 29, no. 1, pp. 151–162,
2016.

[8] M. Guo, T. Liao, J. Wang, and Z. Li, “Hierarchical motion planning under
probabilistic temporal tasks and safe-return constraints,” IEEE Trans.
Autom. Control, vol. 68, no. 11, pp. 6727–6742, Nov. 2023.

[9] G. Silano, T. Baca, R. Penicka, D. Liuzza, and M. Saska, “Power line
inspection tasks with multi-aerial robot systems via signal temporal logic
specifications,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 4169–4176,
Apr. 2021.

[10] M. Guo and D. V. Dimarogonas, “Multi-agent plan reconfiguration under
local LTL specifications,” Int. J. Robot. Res., vol. 34, no. 2, pp. 218–235,
2015.

[11] M. Cai, S. Xiao, Z. Li, and Z. Kan, “Optimal probabilistic motion planning
with potential infeasible LTL constraints,” IEEE Trans. Autom. Control,
vol. 68, no. 1, pp. 301–316, Jan. 2023.

[12] X. Yu, X. Yin, S. Li, and Z. Li, “Security-preserving multi-agent coordi-
nation for complex temporal logic tasks,” Control Eng. Pract., vol. 123,
2022, Art. no. 105130.

[13] M. Kloetzer and C. Mahulea, “Path planning for robotic teams based on
LTL specifications and petri net models,” Discrete Event Dyn. Syst., vol. 30,
pp. 55–79, 2020.

[14] W. Shi, Z. He, W. Tang, W. Liu, and Z. Ma, “Path planning of multi-robot
systems with boolean specifications based on simulated annealing,” IEEE
Robot. Automat. Lett., vol. 7, no. 3, pp. 6091–6098, Jul. 2022.

[15] P. Lv, G. Luo, Z. Ma, S. Li, and X. Yin, “Optimal multi-robot path planning
for cyclic tasks using petri nets,” Control Eng. Pract., vol. 138, 2023,
Art. no. 105600.

[16] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Model-
free reinforcement learning for stochastic games with linear tempo-
ral logic objectives,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 10649–10655.

[17] M. Cai, E. Aasi, C. Belta, and C.-I. Vasile, “Overcoming exploration: Deep
reinforcement learning for continuous control in cluttered environments
from temporal logic specifications,” IEEE Robot. Automat. Lett., vol. 8,
no. 4, pp. 2158–2165, Apr. 2023.

[18] K. Cai, R. Zhang, and W. M. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 3, pp. 659–670, Mar. 2015.

[19] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervi-
sors for partially-observed discrete-event systems,” IEEE Trans. Autom.
Control, vol. 61, no. 5, pp. 1239–1254, May 2016.

[20] X. Yin and S. Lafortune, “A uniform approach for synthesizing property-
enforcing supervisors for partially-observed discrete-event systems,” IEEE
Trans. Autom. Control, vol. 61, no. 8, pp. 2140–2154, Aug. 2016.

[21] Y. Hu, Z. Ma, and Z. Li, “Design of supervisors for active diagnosis in
discrete event systems,” IEEE Trans. Autom. Control, vol. 65, no. 12,
pp. 5159–5172, Dec. 2020.

[22] X. Yin and S. Lafortune, “A general approach for optimizing dynamic
sensor activation for discrete event systems,” Automatica, vol. 105,
pp. 376–383, 2019.

[23] W. Wang, “Online minimization of sensor activation for supervisory
control,” Automatica, vol. 73, pp. 8–14, 2016.

[24] W. Wang, C. Gong, and D. Wang, “Optimizing sensor activation in a
language domain for fault diagnosis,” IEEE Trans. Autom. Control, vol. 64,
no. 2, pp. 743–750, Feb. 2019.

[25] R. Ehlers, S. Lafortune, S. Tripakis, and M. Y. Vardi, “Supervisory control
and reactive synthesis: A comparative introduction,” Discrete Event Dyn.
Syst., vol. 27, pp. 209–260, 2017.

[26] B. Ramasubramanian, L. Niu, A. Clark, L. Bushnell, and R. Poovendran,
“Secure control in partially observable environments to satisfy specifi-
cations,” IEEE Trans. Autom. Control, vol. 66, no. 12, pp. 5665–5679,
Dec. 2021.

[27] R. Majumdar, N. Ozay, and A.-K. Schmuck, “On abstraction-based con-
troller design with output feedback,” in Proc. 23rd Int. Conf. Hybrid Syst.:
Comput. Control, 2020, pp. 1–11.

[28] M. Khaled, K. Zhang, and M. Zamani, “A framework for output-
feedback symbolic control,” IEEE Trans. Autom. Control, vol. 68, no. 9,
pp. 5600–5607, Sep. 2023.

[29] J.-F. Raskin, T. A. Henzinger, L. Doyen, and K. Chatterjee, “Algorithms for
omega-regular games with imperfect information,” Log. Methods Comput.
Sci., vol. 3, no. 4, pp. 1–23, 2007.

[30] C. I. Vasile and C. Belta, “Sampling-based temporal logic path planning,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2013, pp. 4817–4822.

[31] D. Gujarathi and I. Saha, “MT*: Multi-robot path planning for temporal
logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2022, pp. 13692–13699.

[32] Y. Kantaros and M. M. Zavlanos, “Stylus*: A temporal logic optimal
control synthesis algorithm for large-scale multi-robot systems,” Int. J.
Robot. Res., vol. 39, no. 7, pp. 812–836, 2020.

[33] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in the
continuous space: A POMDP approach,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1288–1302, 2014.

[34] J. Fu and U. Topcu, “Synthesis of joint control and active sensing strategies
under temporal logic constraints,” IEEE Trans. Autom. Control, vol. 61,
no. 11, pp. 3464–3476, Nov. 2016.

[35] R. R. Da Silva, V. Kurtz, and H. Lin, “Active perception and control
from temporal logic specifications,” IEEE Contr. Syst. Lett., vol. 3, no. 4,
pp. 1068–1073, Oct. 2019.

[36] R. A. MacDonald and S. L. Smith, “Active sensing for motion planning
in uncertain environments via mutual information policies,” Int. J. Robot.
Res., vol. 38, no. 2/3, pp. 146–161, 2019.

[37] Y. Kantaros, S. Kalluraya, Q. Jin, and G. J. Pappas, “Perception-based
temporal logic planning in uncertain semantic maps,” IEEE Trans. Robot.,
vol. 38, no. 4, pp. 2536–2556, Aug. 2022.

[38] C. Baier and J.-P. Katoen, Principles of Model Checking. Cambridge, MA,
USA: MIT Press, 2008.

[39] C. Belta, B. Yordanov, and E. Aydin Gol, “Finite temporal logic control,” in
Formal Methods for Discrete-Time Dynamical Systems. Berlin, Germany:
Springer, 2017, pp. 81–108.

Shuaiyi Li was born in Liaoning, China, in 2001.
She received the B.Eng. degree in automation in
2021 from Shanghai Jiao Tong University, Shanghai,
China, where she is currently working toward the
master’s degree. Her research interests include formal
methods and task planning.

Mengjie Wei was born in Shanxi, China in 2001. She
received the B.Eng. degree in electrical engineering in
2023 from Shanghai Jiao Tong University, Shanghai,
China, where she is currently working toward the
M.Eng. degree. Her research interests include formal
methods and SLAM.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TIV.2023.3296209

LI et al.: TEMPORAL LOGIC TASK PLANNING FOR AUTONOMOUS SYSTEMS WITH ACTIVE ACQUISITION OF INFORMATION 1449

Shaoyuan Li (Senior Member, IEEE) was born in
Hebei, China, in 1965. He received the B.S. and
M.S. degrees in automation from the Hebei University
of Technology, Tianjin, China, in 1987 and 1992,
respectively, and the Ph.D. degree from Nankai Uni-
versity, Tianjin, in 1997. Since 1997, he has been with
the Department of Automation, Shanghai Jiao Tong
University, Shanghai, China, where he is currently a
Professor. His research interests include model pre-
dictive control, dynamic system optimization, and
cyber-physical systems. He is the Vice-President of
the Chinese Association of Automation.

Xiang Yin (Member, IEEE) was born in Anhui,
China, in 1991. He received the B.Eng. degree
in electrical engineering from Zhejiang University,
Hangzhou, China, in 2012, and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Michigan, Ann Arbor, MI, USA, in 2013, and
2017, respectively. Since 2017, he has been with
the Department of Automation, Shanghai Jiao Tong
University, Shanghai, China, where he is currently
an Associate Professor. His research interests include
formal methods, discrete-event systems and cyber-

physical systems. Dr. Yin is the Co-Chair of the IEEE CSS Technical Committee
on Discrete Event Systems, an Associate Editor for the Journal of Discrete Event
Dynamic Systems: Theory & Applications, and a Member of the IEEE CSS
Conference Editorial Board. Dr. Yin was the recipient of the IEEE Conference
on Decision and Control (CDC) Best Student Paper Award Finalist in 2016.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 01,2024 at 07:01:46 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

