Linear Temporal Logics

Describe LT Properties by LTL

Motivations

+ Itis not practical to write down P < (247)” directly
* Propositional and predicate logics are “static”

« How to express temporal properties in a structured, user-friendly and
rigorous manner

Approach
 Use linear temporal logics (LTL)

* Introduce temporal operators in addition to Boolean operators

LTL Syntax

-
A (propositional) Linear Temporal Logic (LTL) formula ¢ over a given

set of atomic propositions AP is recursively defined as
¢ :=TRUE |a| 1 Ay | = | O¢ | p1U¢,
where a is an atomic proposition and ¢, ¢; and ¢, are LTL formulas.

 Formula O¢ holds at the current moment, if $ holds in the next “step”

« Formula ¢p;U¢, holds at the current moment, if there is some future moment
for which ¢, holds and ¢4 holds at all moments until that future moment.

.

We can also define the following operators

 Boolean oper.: “or” ¢4 V ¢, = =(—¢p1 A =¢p3), “implies” ¢ = ¢, == =1V P,
« Temporal oper.: “eventually” ¢¢ = TRUEU ¢, “always” O¢ := =< ¢

LTL Semantics: Informal

atomic prop: a

next step: Oa

untill;: aUb

eventually: ¢a

always: Oa

<o0a

O¢Ca

a arbitrary arbitrary

arbitrary a

aN-b aNn-b aN-=b

arbitrary

arbitrary arbitrary

arbitrary arbitrary

) 4

arbitrary

o
»

-—0—@

arbitrary arbitrary

a a

arbitrary

-O—0O—0

»
>

) 4

arbitrary

a

) 4

a
.

-@—@

arbitrary arbitrary

arbitrary a

arbitrary

-O0—0—0

arbitrary

»

) 4

) 4

) 4

IR

arbitrary

-O0—@

()
/

@ @ @ @O O-

T

(keep a for ever)

(a occurs infinitely)

LTL Semantics: Formal

« LTL formulas are used to evaluate infinite words over 24?
e Leto = AOA1A2 e € (ZAP)w, define O'[i] = AjAj+1Aj+2
* Infinite word o satisfies formula ¢, denoted by o = ¢, is defined by

(' o E True \

e oFa | ff aEAO (i.e.,AO |:a)

s oEpiANP, iIff oE¢;andoE ¢,

c ok ¢ Iff o ¢

« a=0¢ iff o[1-]=A14,45 = ¢
\. o= Up, iff Fj=0:0[j-]=Fpand VO <i<j:o[i-] '=¢1j

+ The set of all words satisfying ¢ is Word(¢) = {o € (24P)":0 = ¢}, i €.,
ok ¢iff o € Word(¢)

LTL Example: Mutual Exclusion

« The safety property stating that P; and P, never simultaneously have
access to their critical sections

LI(—crity vV —crit,)

 The liveness requirement stating that each process P; is infinitely
often in its critical section

(OCcrity) A (OOcrit,)

« The strong fairness requirement stating that infinitely waiting process
will eventually enter its critical section infinitely often:

(OCwait; » Oocrity) A (OOwait, » OOcrit,)

LTL Example: Traffic Light

 The traffic light is infinitely often green
1o green

« Oncered, the light cannot become green immediately
O(red - -Ogreen)

« Oncered, the light always becomes green eventually after being
yellow for some time

L(red —» O(red U (yellow A O(yellow U green)))

LTL Semantics on LTSs
4)

« LTL formula ¢ evaluates infinite words over 24F

« LTS T generates a set of infinite words (traces) from initial states

« Astate x € X in T satisfies ¢, denoted by x = ¢, if all traces
generated from x satisfy ¢

« We say LTL T satisfies ¢, denoted by T E ¢, if all its initial stats

satisfy ¢, i.e., Trace(T) € Word(¢)
\ J

e T EOa

[\
@'@ @ « T O(anb)sincex; EO(aAb)butx; # O(aAb)

{a,b} {a, b} {a} T = O(=b - O(a A b))
LTS T « T¥bU (an-b)since{a, b} ¥ bU (aA—b)

How to check whether T = ¢ or not?

LTL Example: Mutually Exclusive Processes

e TE D(Tl - OCl)') Yes!

- T EeDOOC, No! Consider trace ({N1,N2}{N1,T2}{N4, C,})?

« TEDOOT, » 0O0C,? Yes!

Co-Safe LTL Syntax

7

A (propositional) Co-Safe Linear Temporal Logic (scLTL) formula ¢
over a given set of atomic proposition AP is recursively defined as

¢ :=TRUE |a|—al|l P Az | P1V P2 | O | P1U¢;

where a is an atomic proposition and ¢, ¢; and ¢, are LTL formulas.

\,

 Negation can only be used for atomic propositions not a general formula
« “Always” cannot be expressed since ¢ := -O—¢ is not well defined
« We can only use temporal operators O,U and ¢

 Any infinite word satisfying scLTL ¢ has a finite “good” prefix such that any
infinite continuation of this good prefix satisfies ¢

* Denote L,,..r4 as the set of finite good prefixes of scLTL formula ¢

Example: Co-Safe LTL Syntax

o
=

2

0

-2

4

-6

-8

-10

Xl X—2 X3 X-l
g e B
XlO

X9

X1

X3
X2

4 2 0 2

-10

X1

Consider an agent moving in the planar environment

Visit regions X, or X9 and then the target region X-, while avoiding X4 and
X1, and staying inside of X = [-10 2]? until the target region is reached.

¢ = ((—|X11 N —|X12 N —|0ut) UX7) N (—|X7 U (XZ VXg))

In general, there may have infinite many finite good prefixes

Computation Tree Logic

« LTL implicitly quantifies universally over paths

(T, x) E ¢ iff for every path m starting at x, we have (T,) £ ¢

« Properties that assert the existences of a path cannot be expressed,
e.g., always has the possibility to reach some states.

« |always have the opportunity to reach q-

« Cannot be expressed by LTL!

Computation Tree Logic

« LTL implicitly quantifies universally over paths
(T, x) & ¢ iff for every path m starting at x, we have (T, m) = ¢

« Properties that assert the existences of a path cannot be expressed,
e.g., always has the possibility to reach some states.

« The computation tree logic (CTL) solves this problem. The idea is to
evaluate over branching-time structures (trees) with path quantifiers:

» For All Paths: A4
» Exists a Path: E
» Every temporal operator preceded by a path quantifier

» Notation: O - G globally in the future
O w» X next time
<& w F sometime in the future

CTL Semantics: Intuitions

Globally: AG¢ is true iff ¢ is always true in the future
Necessarily Next: AX¢ is true iff ¢p Is true in every successor state

Possibly Next: EX¢ is true iff ¢ is true in some successor state

Necessarily in the Future: AF¢ is true iff ¢ is inevitably true in some
future time

Possibly in the Future: EF¢ is true iff ¢ maybe true in some future time

N DR~ o 2ps B.B

CTL Semantics: Intuitions

finally p globally p next p P until g

i AR

Stage Summary

« LTL provides an user-friendly way for writing down LT properties
« LTL = Temporal operators + Boolean operators
« LTL formulas only evaluate infinite words

« Co-safe LTL can be satisfied in finite horizon
(recall safety is something that can be violated in finite horizon)

« LTL cannot capture branching-time properties; need CTL

 CTL puts quantifiers for states to capture branching-time properties

Question

« What is AGEF¢?

> A for all paths
» E exists a path
» G globally in the future

> F sometime in the future

Review of Last Lecture

LTL = Temporal operators + Boolean operators

LTL formulas only evaluate infinite words

Co-safe LTL can be satisfied in finite horizon

LTL cannot capture branching-time properties; need CTL

CTL puts quantifiers for states to capture branching-time properties

LTL only tells how to describe a property; it does not tell how to

generate the underlying property (language) Word(¢) S (2“”’)‘"

We use Automata to generate languages describing good behaviors

