Linear Temporal Logics

Describe LT Properties by LTL

Motivations

- It is not practical to write down $P \subseteq (2^{AP})^{\omega}$ directly
- Propositional and predicate logics are "static"
- How to express temporal properties in a structured, user-friendly and rigorous manner

Approach

- Use linear temporal logics (LTL)
- Introduce temporal operators in addition to Boolean operators

LTL Syntax

A (propositional) Linear Temporal Logic (LTL) formula ϕ over a given set of atomic propositions *AP* is recursively defined as

 $\boldsymbol{\phi} ::= \text{TRUE} \mid \boldsymbol{a} \mid \boldsymbol{\phi}_1 \land \boldsymbol{\phi}_2 \mid \neg \boldsymbol{\phi} \mid \bigcirc \boldsymbol{\phi} \mid \boldsymbol{\phi}_1 \boldsymbol{U} \boldsymbol{\phi}_2$

where *a* is an atomic proposition and ϕ , ϕ_1 and ϕ_2 are LTL formulas.

- Formula $\bigcirc \phi$ holds at the current moment, if ϕ holds in the next "step"
- Formula $\phi_1 U \phi_2$ holds at the current moment, if there is some future moment for which ϕ_2 holds and ϕ_1 holds at all moments until that future moment.

We can also define the following operators

- Boolean oper.: "or" $\phi_1 \lor \phi_2 \coloneqq \neg (\neg \phi_1 \land \neg \phi_2)$, "implies" $\phi_1 \to \phi_2 \coloneqq \neg \phi_1 \lor \phi_2$
- Temporal oper.: "eventually" $\diamond \phi \coloneqq \text{TRUE } U \phi$, "always" $\Box \phi \coloneqq \neg \diamond \neg \phi$

LTL Semantics: Informal

LTL Semantics: Formal

- LTL formulas are used to evaluate infinite words over 2^{AP}
- Let $\sigma = A_0 A_1 A_2 \cdots \in (2^{AP})^{\omega}$, define $\sigma[j \cdots] = A_j A_{j+1} A_{j+2} \cdots$
- Infinite word σ satisfies formula ϕ , denoted by $\sigma \models \phi$, is defined by

• The set of all words satisfying ϕ is $Word(\phi) = \{\sigma \in (2^{AP})^{\omega} : \sigma \vDash \phi\}$, i.e., $\sigma \vDash \phi$ iff $\sigma \in Word(\phi)$

LTL Example: Mutual Exclusion

 The safety property stating that P₁ and P₂ never simultaneously have access to their critical sections

 $\Box(\neg crit_1 \lor \neg crit_2)$

 The liveness requirement stating that each process P_i is infinitely often in its critical section

 $(\Box \diamond crit_1) \land (\Box \diamond crit_2)$

 The strong fairness requirement stating that infinitely waiting process will eventually enter its critical section infinitely often:

 $(\Box \diamondsuit wait_1 \rightarrow \Box \diamondsuit crit_1) \land (\Box \diamondsuit wait_2 \rightarrow \Box \diamondsuit crit_2)$

LTL Example: Traffic Light

- The traffic light is infinitely often green □◊green
- Once red, the light cannot become green immediately $\Box(red \rightarrow \neg \bigcirc green)$
- Once red, the light always becomes green eventually after being yellow for some time

 $\Box(red \rightarrow \bigcirc(red \ U \ (yellow \land \bigcirc(yellow \ U \ green)))$

LTL Semantics on LTSs

- LTL formula ϕ evaluates infinite words over 2^{AP}
- LTS T generates a set of infinite words (traces) from initial states
- A state $x \in X$ in T satisfies ϕ , denoted by $x \models \phi$, if all traces generated from x satisfy ϕ
- We say LTL *T* satisfies ϕ , denoted by $T \vDash \phi$, if all its initial stats satisfy ϕ , i.e., $Trace(T) \subseteq Word(\phi)$

How to check whether $T \vDash \phi$ or not?

LTL Example: Mutually Exclusive Processes

- $T \vDash \Box(T_1 \rightarrow \diamondsuit C_1)$? Yes!
- $T \models \Box \diamondsuit C_1$ No! Consider trace $(\{N_1, N_2\}\{N_1, T_2\}\{N_1, C_2\})^{\omega}$
- $T \models \Box \diamond T_1 \rightarrow \Box \diamond C_1$? Yes!

Co-Safe LTL Syntax

A (propositional) Co-Safe Linear Temporal Logic (scLTL) formula ϕ over a given set of atomic proposition *AP* is recursively defined as $\phi ::= \text{TRUE} | a | \neg a | \phi_1 \land \phi_2 | \phi_1 \lor \phi_2 | \bigcirc \phi | \phi_1 U \phi_2$

where *a* is an atomic proposition and ϕ , ϕ_1 and ϕ_2 are LTL formulas.

- Negation can only be used for atomic propositions not a general formula
- "Always" cannot be expressed since $\Box \phi \coloneqq \neg \diamond \neg \phi$ is not well defined
- We can only use temporal operators ○, *U* and ◇
- Any infinite word satisfying scLTL ϕ has a finite "good" prefix such that any infinite continuation of this good prefix satisfies ϕ
- Denote $\mathcal{L}_{pref,\phi}$ as the set of finite good prefixes of scLTL formula ϕ

Example: Co-Safe LTL Syntax

• Visit regions X_2 or X_9 and then the target region X_7 , while avoiding X_{11} and X_{12} , and staying inside of $X = [-10 \ 2]^2$ until the target region is reached.

 $\boldsymbol{\phi} = ((\neg X_{11} \land \neg X_{12} \land \neg \boldsymbol{Out}) \ \boldsymbol{U} \ \boldsymbol{X_7}) \land (\neg X_7 \ \boldsymbol{U} \ (X_2 \lor X_9))$

- Good prefix, e.g., $X_2X_3X_4X_7$ or $X_2X_3X_9X_3X_9X_{10}X_8X_7$
- In general, there may have infinite many finite good prefixes

Computation Tree Logic

- LTL implicitly quantifies universally over paths $\langle T, x \rangle \vDash \phi$ iff for every path π starting at x, we have $\langle T, \pi \rangle \vDash \phi$
- Properties that assert the existences of a path cannot be expressed, e.g., always has the possibility to reach some states.

- I always have the opportunity to reach q_2
- Cannot be expressed by LTL!

Computation Tree Logic

- LTL implicitly quantifies universally over paths $\langle T, x \rangle \vDash \phi$ iff for every path π starting at x, we have $\langle T, \pi \rangle \vDash \phi$
- Properties that assert the existences of a path cannot be expressed, e.g., always has the possibility to reach some states.
- The computation tree logic (CTL) solves this problem. The idea is to evaluate over branching-time structures (trees) with path quantifiers:
 - For All Paths: A
 - Exists a Path: E
 - Every temporal operator preceded by a path quantifier
 - Notation: <a>A G
 G
 G
 Isolation
 G
 Isolation
 <p
 - ···· X next time
 - ♦ → F sometime in the future

CTL Semantics: Intuitions

- Globally: $AG\phi$ is true iff ϕ is always true in the future
- Necessarily Next: $AX\phi$ is true iff ϕ is true in every successor state
- **Possibly Next:** $EX\phi$ is true iff ϕ is true in some successor state
- Necessarily in the Future: $AF\phi$ is true iff ϕ is inevitably true in some future time
- Possibly in the Future: $EF\phi$ is true iff ϕ maybe true in some future time

CTL Semantics: Intuitions

Stage Summary

- LTL provides an user-friendly way for writing down LT properties
- LTL = Temporal operators + Boolean operators
- LTL formulas only evaluate infinite words
- Co-safe LTL can be satisfied in finite horizon (recall safety is something that can be violated in finite horizon)
- LTL cannot capture branching-time properties; need CTL
- CTL puts quantifiers for states to capture branching-time properties

Question

- What is *AGEF*φ?
 - > A for all paths
 - **E** exists a path
 - **G** globally in the future
 - F sometime in the future

Review of Last Lecture

- LTL = Temporal operators + Boolean operators
- LTL formulas only evaluate infinite words
- Co-safe LTL can be satisfied in finite horizon
- LTL cannot capture branching-time properties; need CTL
- CTL puts quantifiers for states to capture branching-time properties
- LTL only tells how to describe a property; it does not tell how to generate the underlying property (language) $Word(\phi) \subseteq (2^{AP})^{\omega}$
- We use Automata to generate languages describing good behaviors