
Linear Temporal Logics

Page . 2

Xiang Yin SJTU-XMU 2021

Describe LT Properties by LTL

Motivations

• It is not practical to write down 𝑷 ⊆ 𝟐𝑨𝑷
𝝎

directly

• Propositional and predicate logics are “static”

• How to express temporal properties in a structured, user-friendly and

rigorous manner

Approach

• Use linear temporal logics (LTL)

• Introduce temporal operators in addition to Boolean operators

Page . 3

Xiang Yin SJTU-XMU 2021

LTL Syntax

A (propositional) Linear Temporal Logic (LTL) formula 𝝓 over a given

set of atomic propositions 𝑨𝑷 is recursively defined as

𝝓 ∷= TRUE ∣ 𝒂 ∣ 𝝓𝟏 ∧ 𝝓𝟐 ∣ ¬𝝓 ∣ ◯𝝓 ∣ 𝝓𝟏𝑼𝝓𝟐

where 𝒂 is an atomic proposition and 𝝓,𝝓𝟏 and 𝝓𝟐 are LTL formulas.

• Formula 𝝓 holds at the current moment, if ϕ holds in the next “step”

• Formula 𝝓𝟏𝑼𝝓𝟐 holds at the current moment, if there is some future moment

for which 𝝓𝟐 holds and 𝝓𝟏 holds at all moments until that future moment.

• Boolean oper.: “or” 𝝓𝟏 ∨ 𝝓𝟐 ≔ ¬(¬𝝓𝟏 ∧ ¬𝝓𝟐), “implies” 𝝓𝟏 → 𝝓𝟐 ≔ ¬𝝓𝟏 ∨ 𝝓𝟐

• Temporal oper.: “eventually” ◇𝝓 ≔ TRUE 𝑼 𝝓, “always” 𝝓 ≔ ¬◇¬𝝓

We can also define the following operators

Page . 4

Xiang Yin SJTU-XMU 2021

LTL Semantics: Informal

atomic prop: 𝒂

next step: 𝒂

untill: 𝒂𝑼𝒃

eventually: ◇𝒂

always: 𝒂

⋯

𝒂 arbitrary arbitrary arbitrary arbitrary

⋯

𝒂arbitrary arbitrary arbitrary arbitrary

⋯

arbitrary𝒂 ∧ ¬𝒃 𝒂 ∧ ¬𝒃 𝒂 ∧ ¬𝒃 𝒃

⋯

𝒂arbitrary arbitraryarbitrary arbitrary

⋯

𝒂 𝒂 𝒂 𝒂 𝒂

◇𝒂 ⋯
𝒂 𝒂arbitrary arbitraryarbitrary

◇𝒂 ⋯

𝒂arbitrary arbitrary arbitrary𝒂

(keep 𝒂 for ever)

(𝒂 occurs infinitely)

Page . 5

Xiang Yin SJTU-XMU 2021

LTL Semantics: Formal

• LTL formulas are used to evaluate infinite words over 𝟐𝑨𝑷

• Let 𝝈 = 𝑨𝟎𝑨𝟏𝑨𝟐⋯ ∈ 𝟐𝑨𝑷
𝝎

, define 𝝈 𝒋⋯ = 𝑨𝒋𝑨𝒋+𝟏𝑨𝒋+𝟐⋯

• Infinite word 𝝈 satisfies formula 𝝓, denoted by 𝝈 ⊨ 𝝓, is defined by

• 𝝈 ⊨ True

• 𝝈 ⊨ 𝒂

• 𝝈 ⊨ 𝝓𝟏 ∧ 𝝓𝟐

• 𝝈 ⊨ ¬𝝓

• 𝝈 ⊨ ◯𝝓

• 𝝈 ⊨ 𝝓𝟏𝑼𝝓𝟐

iff

iff

iff

iff

iff

𝒂 ∈ 𝑨𝟎 (i.e., 𝑨𝟎 ⊨ 𝒂)

𝝈 ⊨ 𝝓𝟏 and 𝝈 ⊨ 𝝓𝟐

𝝈 ⊭ 𝝓

𝝈 𝟏⋯ = 𝑨𝟏𝑨𝟐𝑨𝟑⋯ ⊨ 𝝓

∃𝒋 ≥ 𝟎: 𝝈 𝒋⋯ ⊨ 𝝓𝟐 and ∀𝟎 ≤ 𝒊 < 𝒋: 𝝈 𝒊⋯ ⊨ 𝝓𝟏

• The set of all words satisfying 𝝓 is 𝑾𝒐𝒓𝒅 𝝓 = {𝝈 ∈ 𝟐𝑨𝑷
𝝎
: 𝝈 ⊨ 𝝓}, i.e.,

𝝈 ⊨ 𝝓 iff 𝝈 ∈ 𝑾𝒐𝒓𝒅(𝝓)

Page . 6

Xiang Yin SJTU-XMU 2021

LTL Example: Mutual Exclusion

• The safety property stating that 𝑷𝟏 and 𝑷𝟐 never simultaneously have

access to their critical sections

(¬𝒄𝒓𝒊𝒕𝟏 ∨ ¬𝒄𝒓𝒊𝒕𝟐)

• The liveness requirement stating that each process 𝑷𝒊 is infinitely

often in its critical section

◇𝒄𝒓𝒊𝒕𝟏 ∧ (◇𝒄𝒓𝒊𝒕𝟐)

• The strong fairness requirement stating that infinitely waiting process

will eventually enter its critical section infinitely often:

◇𝒘𝒂𝒊𝒕𝟏 → ◇𝒄𝒓𝒊𝒕𝟏 ∧ ◇𝒘𝒂𝒊𝒕𝟐 → ◇𝒄𝒓𝒊𝒕𝟐

Page . 7

Xiang Yin SJTU-XMU 2021

LTL Example: Traffic Light

• The traffic light is infinitely often green

◇𝒈𝒓𝒆𝒆𝒏

• Once red, the light cannot become green immediately

(𝒓𝒆𝒅 → ¬𝒈𝒓𝒆𝒆𝒏)

• Once red, the light always becomes green eventually after being

yellow for some time

(𝒓𝒆𝒅 → (𝒓𝒆𝒅 𝑼 (𝒚𝒆𝒍𝒍𝒐𝒘 ∧(𝒚𝒆𝒍𝒍𝒐𝒘 𝑼 𝒈𝒓𝒆𝒆𝒏)))

Page . 8

Xiang Yin SJTU-XMU 2021

LTL Semantics on LTSs

• LTL formula 𝝓 evaluates infinite words over 𝟐𝑨𝑷

• LTS 𝑻 generates a set of infinite words (traces) from initial states

• A state 𝒙 ∈ 𝑿 in 𝑻 satisfies 𝝓, denoted by 𝒙 ⊨ 𝝓, if all traces

generated from 𝒙 satisfy 𝝓

• We say LTL 𝑻 satisfies 𝝓, denoted by 𝑻 ⊨ 𝝓, if all its initial stats

satisfy 𝝓, i.e., 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝑾𝒐𝒓𝒅(𝝓)

{𝒂, 𝒃} {𝒂, 𝒃} {𝒂}

𝒙𝟏 𝒙𝟐

LTS 𝑻

• 𝑻 ⊨ 𝒂

• 𝑻 ⊭ (𝒂 ∧ 𝒃) since 𝒙𝟏 ⊨ (𝒂 ∧ 𝒃) but 𝒙𝟑 ⊭  𝒂 ∧ 𝒃

• 𝑻 ⊨ (¬𝒃 → (𝒂 ∧ ¬𝒃))

• 𝑻 ⊭ 𝒃 𝑼 (𝒂 ∧ ¬𝒃) since 𝒂, 𝒃 𝝎 ⊭ 𝒃 𝑼 (𝒂 ∧ ¬𝒃)

𝒙𝟑

How to check whether 𝑻 ⊨ 𝝓 or not?

Page . 9

Xiang Yin SJTU-XMU 2021

LTL Example: Mutually Exclusive Processes

{𝑵𝟏, 𝑵𝟐}

{𝑻𝟏, 𝑵𝟐}

{𝑪𝟏, 𝑵𝟐}

{𝑪𝟏, 𝑻𝟐}

{𝑻𝟏, 𝑻𝟐}

{𝑵𝟏, 𝑻𝟐}

{𝑻𝟏, 𝑻𝟐}

{𝑵𝟏, 𝑪𝟐}

{𝑻𝟏, 𝑪𝟐}

• 𝑻 ⊨  𝑻𝟏 → ◇𝑪𝟏 ?

• 𝑻 ⊨ ◇𝑪𝟏

• 𝑻 ⊨ ◇𝑻𝟏 → ◇𝑪𝟏?

Yes!

No! Consider trace 𝑵𝟏, 𝑵𝟐 𝑵𝟏, 𝑻𝟐 {𝑵𝟏, 𝑪𝟐}
𝝎

Yes!

Page . 10

Xiang Yin SJTU-XMU 2021

Co-Safe LTL Syntax

A (propositional) Co-Safe Linear Temporal Logic (scLTL) formula 𝝓

over a given set of atomic proposition 𝑨𝑷 is recursively defined as

𝝓 ∷= TRUE ∣ 𝒂 ∣ ¬𝒂 ∣ 𝝓𝟏 ∧ 𝝓𝟐 ∣ 𝝓𝟏 ∨ 𝝓𝟐 ∣ 𝝓 ∣ 𝝓𝟏𝑼𝝓𝟐

where 𝒂 is an atomic proposition and 𝝓,𝝓𝟏 and 𝝓𝟐 are LTL formulas.

• Negation can only be used for atomic propositions not a general formula

• “Always” cannot be expressed since 𝝓 ≔ ¬◇¬𝝓 is not well defined

• We can only use temporal operators , 𝑼 and ◇

• Any infinite word satisfying scLTL 𝝓 has a finite “good” prefix such that any

infinite continuation of this good prefix satisfies 𝝓

• Denote 𝓛𝒑𝒓𝒆𝒇,𝝓 as the set of finite good prefixes of scLTL formula 𝝓

Page . 11

Xiang Yin SJTU-XMU 2021

Example: Co-Safe LTL Syntax

• Visit regions 𝑿𝟐 or 𝑿𝟗 and then the target region 𝑿𝟕, while avoiding 𝑿𝟏𝟏 and

𝑿𝟏𝟐, and staying inside of 𝑿 = −𝟏𝟎 𝟐 𝟐 until the target region is reached.

𝝓 = (¬𝑿𝟏𝟏 ∧ ¬𝑿𝟏𝟐 ∧ ¬𝑶𝒖𝒕 𝑼 𝑿𝟕) ∧ (¬𝑿𝟕 𝑼 (𝑿𝟐 ∨ 𝑿𝟗))

• Good prefix, e.g., 𝑿𝟐𝑿𝟑𝑿𝟒𝑿𝟕 or 𝑿𝟐𝑿𝟑𝑿𝟗𝑿𝟑𝑿𝟗𝑿𝟏𝟎𝑿𝟖𝑿𝟕

• In general, there may have infinite many finite good prefixes

Consider an agent moving in the planar environment

Page . 12

Xiang Yin SJTU-XMU 2021

Computation Tree Logic

• LTL implicitly quantifies universally over paths

𝑻, 𝒙 ⊨ 𝝓 iff for every path 𝝅 starting at 𝒙, we have 𝑻, 𝝅 ⊨ 𝝓

• Properties that assert the existences of a path cannot be expressed,

e.g., always has the possibility to reach some states.

𝒒𝟎

𝒒𝟏

𝒒𝟐 • I always have the opportunity to reach 𝒒𝟐

• Cannot be expressed by LTL!

Page . 13

Xiang Yin SJTU-XMU 2021

Computation Tree Logic

• LTL implicitly quantifies universally over paths

𝑻, 𝒙 ⊨ 𝝓 iff for every path 𝝅 starting at 𝒙, we have 𝑻, 𝝅 ⊨ 𝝓

• Properties that assert the existences of a path cannot be expressed,

e.g., always has the possibility to reach some states.

• The computation tree logic (CTL) solves this problem. The idea is to

evaluate over branching-time structures (trees) with path quantifiers:

➢ For All Paths: 𝑨

➢ Exists a Path: 𝑬

➢ Every temporal operator preceded by a path quantifier

➢ Notation: ⇝ 𝑮 globally in the future

⇝ 𝑿 next time

◇⇝ 𝑭 sometime in the future

Page . 14

Xiang Yin SJTU-XMU 2021

CTL Semantics: Intuitions

• Globally: 𝑨𝑮𝝓 is true iff 𝝓 is always true in the future

• Necessarily Next: 𝑨𝑿𝝓 is true iff 𝝓 is true in every successor state

• Possibly Next: 𝑬𝑿𝝓 is true iff 𝝓 is true in some successor state

• Necessarily in the Future: 𝑨𝑭𝝓 is true iff 𝝓 is inevitably true in some

future time

• Possibly in the Future: 𝑬𝑭𝝓 is true iff 𝝓 maybe true in some future time

Page . 15

Xiang Yin SJTU-XMU 2021

CTL Semantics: Intuitions

Page . 16

Xiang Yin SJTU-XMU 2021

Stage Summary

• LTL provides an user-friendly way for writing down LT properties

• LTL = Temporal operators + Boolean operators

• LTL formulas only evaluate infinite words

• Co-safe LTL can be satisfied in finite horizon

(recall safety is something that can be violated in finite horizon)

• LTL cannot capture branching-time properties; need CTL

• CTL puts quantifiers for states to capture branching-time properties

Page . 17

Xiang Yin SJTU-XMU 2021

Question

• What is 𝑨𝑮𝑬𝑭𝝓?

➢ 𝑨 for all paths

➢ 𝑬 exists a path

➢ 𝑮 globally in the future

➢ 𝑭 sometime in the future

Page . 18

Xiang Yin SJTU-XMU 2021

Review of Last Lecture

• LTL = Temporal operators + Boolean operators

• LTL formulas only evaluate infinite words

• Co-safe LTL can be satisfied in finite horizon

• LTL cannot capture branching-time properties; need CTL

• CTL puts quantifiers for states to capture branching-time properties

• LTL only tells how to describe a property; it does not tell how to

generate the underlying property (language) 𝑾𝒐𝒓𝒅 𝝓 ⊆ 𝟐𝑨𝑷
𝝎

• We use Automata to generate languages describing good behaviors

