
Automata-Based Verification of LTL

Page . 2

Xiang Yin SJTU-XMU 2021

Property Verification

• A property is a set of infinite words (language) 𝑷 ⊆ 𝟐𝑨𝑷
𝝎

• For an LTL formula 𝝓, we have 𝑾𝒐𝒓𝒅 𝝓 = {𝝈 ∈ 𝟐𝑨𝑷
𝝎
: 𝝈 ⊨ 𝝓}

• To check whether or not 𝑻 ⊨ 𝝓, it suffices to check whether or not

➢ 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊆ 𝑾𝒐𝒓𝒅(𝝓); or

➢ 𝑻𝒓𝒂𝒄𝒆 𝑻 ∩𝑾𝒐𝒓𝒅 ¬𝝓 = ∅

• How to efficiently represent 𝑾𝒐𝒓𝒅(𝝓)?

➢ Need finite structure not to enumerate all strings (not possible)

➢ Approach: using Automata to generate language

Page . 3

Xiang Yin SJTU-XMU 2021

Finite Words & Regular Language

• Alphabet (event set) 𝚺, e.g., 𝚺 = 𝒂, 𝒃, 𝒄

• Finite word (string): 𝒘 = 𝒘𝟏𝒘𝟐…𝒘𝒏 where 𝒘𝒊 ∈ 𝚺, e.g., 𝒘 = 𝒂𝒂𝒃𝒃𝒄

• Kleene-closure: 𝚺∗ is the set of all finite strings over all including 𝛜

• Language: a set of strings 𝑳 ⊆ 𝚺∗, e.g., 𝑳 = {𝝐, 𝒂, 𝒂𝒃, 𝒂𝒂, 𝒂𝒂𝒃𝒄}

Regular Expression

• ∅, {𝝐} and 𝒂 , 𝒂 ∈ 𝚺 are regular languages

• If 𝑳𝟏 and 𝑳𝟐 are regular languages, the 𝑳𝟏 ∪ 𝑳𝟐, 𝑳𝟏𝑳𝟐 and 𝑳𝟏
∗ are also

➢ Catenation: 𝑳𝟏𝑳𝟐 = {𝒘𝟏𝒘𝟐: 𝒘𝟏 ∈ 𝑳𝟏, 𝒘𝟐 ∈ 𝑳𝟐}

• 𝑳 = 𝝐, 𝒂 𝒂, 𝒃 ∗ = 𝝐, 𝒂 𝝐, 𝒂, 𝒃, 𝒂𝒂, 𝒂𝒃, 𝒃𝒂, 𝒃𝒃, … = {𝝐, 𝒂, 𝒃, 𝒂𝒂, 𝒂𝒃, 𝒂𝒂𝒂,… }

• Remark: 𝚺 can be 𝟐𝑨𝑷 is previous examples!

Page . 4

Xiang Yin SJTU-XMU 2021

Finite-State Automata

A Non-deterministic Finite-State Automata (NFA) is a tuple

𝑨 = (𝑸,𝑸𝟎, 𝜹, 𝚺, 𝑭)

• 𝑸 is a finite set of states

• 𝑸𝟎 ⊆ 𝑸 is the set of initial states

• 𝚺 is the alphabet

• 𝜹:𝑸 × 𝚺 → 𝟐𝑸 is a partial transition function

• 𝑭 ⊆ 𝑸 is the set of accepting (final/marked) states.

𝒂
𝟏 𝟐

𝒃

• 𝑸 = 𝟏, 𝟐 , 𝑸𝟎 = 𝟏 , 𝑭 = 𝟐 , 𝚺 = 𝒂, 𝒃 , 𝜹 𝟏, 𝒂 = {𝟏, 𝟐}

• 𝜹 can be extended to 𝜹:𝑸 × 𝚺∗ → 𝟐𝑸, 𝜹 𝟏, 𝒂𝒂𝒃 = {𝟏}

• Accepted Language: 𝓛 𝑨 = 𝒔 ∈ 𝚺∗:∃𝒒𝟎 ∈ 𝑸𝟎, 𝜹 𝒒𝟎, 𝒔 ∩ 𝑭 ≠ ∅

• 𝓛 𝑨 = {𝝐, 𝒂, 𝒂𝒂, 𝒂𝒃, 𝒂𝒂𝒃, 𝒂𝒂𝒃𝒂… }

𝒂

Theorem: A language is regular iff it can be accepted by a NFA.

Page . 5

Xiang Yin SJTU-XMU 2021

NFA to DFA

• Deterministic Finite-State Automata (DFA): 𝑸𝟎 = 𝟏 and |𝜹(𝒒, 𝝈)| = 𝟏

• Accepted language can be simplified as 𝓛 𝑨 = {𝒔 ∈ 𝚺∗: 𝜹 𝒒𝟎, 𝒔 ∈ 𝑭}

• Is NFA more powerful than DFA? No, they have the same power!

• Subset construction converts a NFA to a DFA with the same language

• start with 𝑸𝟎

• for any 𝑿 ⊆ 𝑸 and 𝝈 ∈ 𝚺, compute

𝜹𝑫 𝑿, 𝝈 =∪𝒒∈𝑿 𝜹(𝒒, 𝝈)

• mark 𝑿 if it contains a state in 𝑭

• we have 𝓛 𝑨𝑫 = 𝓛 𝑨

• 𝑨𝑫 contains at most 𝟐|𝑸| states

Subset Construction

𝑨 𝑨𝑫

𝑨 𝑨𝑫

Page . 6

Xiang Yin SJTU-XMU 2021

From scLTL to DFA

For any scLTL formula 𝝓 over 𝑨𝑷, there exists a DFA 𝑨𝝓 with alphabet

𝚺 = 𝟐𝑨𝑷 that accepts all and only good prefixes of, i.e., 𝓛 𝑨𝝓 = 𝓛𝒑𝒓𝒆𝒇,𝝓

• 𝑨𝑷 = 𝒐𝟏, 𝒐𝟐
• 𝝓 = ◇𝒐𝟏
• 𝚺 = {∅, 𝒐𝟏 , 𝒐𝟐 , {𝒐𝟏, 𝒐𝟐}}

𝒒𝟎

𝒒𝟏

! 𝒐𝟏: = ∅, 𝒐𝟐

𝑻𝒓𝒖𝒆:= 𝚺

𝒐𝟏: = 𝒐𝟏 , {𝒐𝟏, 𝒐𝟐}

𝒒𝟎

𝒒𝟏

𝒒𝟐

• 𝑨𝑷 = 𝒐𝟏, 𝒐𝟐, 𝒐𝟑, 𝒐𝟒
• 𝝓 = (¬𝒐𝟑 𝑼 (𝒐𝟏∨ 𝒐𝟐)) ∧ ◇𝒐𝟑

! 𝒐𝟏 ∧ ! 𝒐𝟐 ∧ ! 𝒐𝟑

𝒐𝟏 ∨ 𝒐𝟐
𝒐𝟑𝑻𝒓𝒖𝒆

𝒐𝟏 ∨ 𝒐𝟐 ∨ 𝒐𝟒

• 𝑨𝝓 contains at most 𝟐|𝝓| states

• Software tools: scheck2 https://github.com/jsjolen/scheck2

https://github.com/jsjolen/scheck2

Page . 7

Xiang Yin SJTU-XMU 2021

Infinite Words & 𝝎-Regular Language

• A regular language is a set of finite words

• For an alphabet 𝚺, 𝚺𝝎 is the set of all infinite words over 𝚺

• For a regular language 𝑳 ⊆ 𝚺∗, we define 𝑳𝝎 = {𝒘𝟏𝒘𝟐⋯:𝒘𝒊 ∈ 𝑳}

• Example: for 𝑳 = {𝒂𝒃, 𝒄}, we have 𝑳𝝎 = {𝒂𝒃𝒂𝒃𝒂𝒃⋯ , 𝒄𝒄𝒄… , 𝒂𝒃𝒄𝒂𝒃𝒄𝒂𝒃𝒄… }

• 𝝎-Regular Language: 𝑳𝟏 𝑳𝟏,𝒊𝒏𝒇
𝝎
∪ 𝑳𝟐 𝑳𝟐,𝒊𝒏𝒇

𝝎
∪⋯∪ 𝑳𝒏 𝑳𝒏,𝒊𝒏𝒇

𝝎
, where

𝑳𝒊 and 𝑳𝒊,𝒊𝒏𝒇 are regular languages

• Safety: 𝟐𝑨𝑷
𝝎
∖ 𝑷𝒔𝒂𝒇𝒆 = 𝑩𝒂𝒅𝑷𝒓𝒆𝒇(𝑷𝒔𝒂𝒇𝒆) 𝟐

𝑨𝑷 𝝎

• In fact, for any LTL formula 𝝓, 𝑾𝒐𝒓𝒅(𝝓) is 𝝎-regular

• Question: how to generate a 𝝎-regular language?

Page . 8

Xiang Yin SJTU-XMU 2021

Non-deterministic Büchi Automata

A Non-deterministic Büchi Automata (NBA) is a tuple

𝑨 = (𝑸,𝑸𝟎, 𝜹, 𝚺, 𝑭)

• 𝑸 is a finite set of states

• 𝑸𝟎 ⊆ 𝑸 is the set of initial states

• 𝚺 is the alphabet

• 𝜹:𝑸 × 𝚺 → 𝟐𝑸 is a partial transition function

• 𝑭 ⊆ 𝑸 is the set of accepting (final/marked) states.

➢ The structures of NBA and NFA are exactly the same

➢ The difference is how to interpret the accepting condition

➢ NBA is used to accept infinite words

➢ An infinite word is accepted if it visits accepting states infinitely many times

Page . 9

Xiang Yin SJTU-XMU 2021

Non-deterministic Büchi Automata

• Given an infinite word 𝒘 = 𝒘𝟎𝒘𝟏𝒘𝟐𝒘𝟑⋯ ∈ 𝚺𝝎

• A run for 𝒘 is an infinite sequence of states 𝒒𝟎𝒒𝟏𝒒𝟐… such that

𝒒𝟎 ∈ 𝑸𝟎 and ∀𝒊 ≥ 𝒊: 𝒒𝒊+𝟏 ∈ 𝜹(𝒒𝒊, 𝒘𝒊)

• A run 𝝆 = 𝒒𝟎𝒒𝟏𝒒𝟐… is said to be accepting if states in 𝑭 occurs infinitely

many times, i.e., 𝑰𝒏𝒇 𝝆 ∩ 𝑭 ≠ ∅

• Accepted language of NBA 𝑨 is

𝓛𝝎 𝑨 = {𝒘 ∈ 𝚺𝝎: there exists an accepting run for 𝒘 in 𝑨}

𝒒𝟎 𝒒𝟐
𝒂

NBA 𝑨

𝒒𝟏
𝒃

𝒃

𝒃𝒄

• word 𝒄𝝎 only has one run 𝒒𝟎
𝝎

• word 𝒂𝒃𝝎 has accepting run 𝒒𝟎𝒒𝟏𝒒𝟐
𝝎

• Word 𝒄𝒂𝒃𝒃 𝝎 has accepting run 𝒒𝟏𝒒𝟏𝒒𝟐𝒒𝟑
𝝎

• This NBA actually accepts 𝝎-regular language

𝒄 ∗ 𝒂𝒃 𝒃 + ∪ 𝒃 𝒄 ∗{𝒂𝒃} 𝝎

𝐰𝐡𝐞𝐫𝐞 𝒃 + = 𝒃 ∗ ∖ 𝝐 = {𝒃, 𝒃𝒃, 𝒃𝒃𝒃,… }

Page . 10

𝒒𝟏

NBA for (𝒂 → ◇𝒃)

• 𝑨𝝓 contains at most |𝝓|𝟐|𝝓| states

• Software tools: ltl2ba http://www.lsv.fr/~gastin/ltl2ba/

Xiang Yin SJTU-XMU 2021

From LTL to NBA

• A language is 𝝎-regular iff it can be accepted by a NBA

• For any LTL formula 𝝓 over 𝑨𝑷, there exists an NBA 𝑨𝝓 with alphabet

𝚺 = 𝟐𝑨𝑷 such that 𝓛𝝎 𝑨𝝓 = 𝑾𝒐𝒓𝒅(𝝓)

𝒒𝟎
𝒂 ∧ ! 𝒃 = {𝒂}

𝒃 = 𝒃 , {𝒂, 𝒃}

! 𝒃 = ∅, {𝒂}
! 𝒂 ∨ 𝒃 = ∅, 𝒃 , {𝒂, 𝒃}

𝒒𝟐𝒒𝟏
! 𝒂

𝑻𝒓𝒖𝒆

𝒒𝟎
𝒂

𝑻𝒓𝒖𝒆 𝒂

NBA for◇𝒂

http://www.lsv.fr/~gastin/ltl2ba/

Page . 11

Xiang Yin SJTU-XMU 2021

More Examples for LTL to NBA

Pictures from the book of Belta

Page . 12

Xiang Yin SJTU-XMU 2021

Model Checking for Regular Safety

• 𝑷𝒔𝒂𝒇𝒆 is a safety property if each 𝝈 ∉ 𝑷𝒔𝒂𝒇𝒆 has a finite bad prefix

• 𝑷𝒔𝒂𝒇𝒆 is regular safety is its bad prefixes is a regular language

• Suppose that NFA 𝑨𝒃𝒂𝒅 accepts the bad prefixes, then

𝑻 ⊭ 𝑷

𝑻𝒓𝒂𝒄𝒆(𝑻) ⊈ 𝑷

𝑻𝒓𝒂𝒄𝒆 𝑻 ∩ 𝟐𝑨𝑷
𝝎
∖ 𝑷 ≠ ∅

𝑳 𝒙𝟏 𝑳 𝒙𝟐 …𝑳 𝒙𝒏 ∈ 𝑻𝒓𝒂𝒄𝒆𝒇 𝑻 ∩ 𝑳𝒃𝒂𝒅

𝑻𝒓𝒂𝒄𝒆𝒇 𝑻 ∩ 𝓛 𝑨𝒃𝒂𝒅 ≠ ∅

if and only if

if and only if

if and only if

if and only if

➢ The last condition can be checked by “synchronizing” 𝑻 and 𝑨𝒃𝒂𝒅 !

Page . 13

Xiang Yin SJTU-XMU 2021

Model Checking for Regular Safety

Let 𝑻 = (𝑿,𝑼,→, 𝑿𝟎, 𝑨𝑷, 𝑳) be a LTS and 𝑨 = (𝑸,𝑸𝟎, 𝜹, 𝟐
𝐀𝐏, 𝑭) be an NFA.

Then the product of 𝑻 and 𝑨 is a new tuple

𝑻⊗𝑨 = (𝑸⊗, 𝑸𝟎⊗, 𝜹⊗, 𝑼, 𝑭⊗)

• 𝑸⊗ = 𝑿 × 𝑸

• 𝑸𝟎⊗ = { 𝒙𝟎, 𝒒 : 𝒙𝟎 ∈ 𝑿𝟎 ∧ ∃𝒒𝟎 ∈ 𝑸𝟎. 𝒒𝟎
𝑳(𝒙𝟎)

𝒒}

• 𝑭⊗ = 𝑿 × 𝑭

• 𝜹⊗: 𝑸⊗ × 𝑼 → 𝟐𝑸⊗ is defined by:

➢ 𝜹⊗ 𝒙, 𝒒 , 𝒖 = { 𝒙′, 𝒒′ ∈ 𝑸⊗: 𝒙→
𝒖
𝒙′ and 𝒒

𝑳(𝒙′)
𝒒′}

Key Observation:

➢ 𝑻⊗𝑨 accepts finite traces both generated by 𝑻 and accepted by 𝑨

➢ 𝒙𝟎, 𝒒𝟏 𝒙𝟏, 𝒒𝟐 ⋯ 𝒙𝒏, 𝒒𝒏+𝟏 ⇒ 𝒒𝟎
𝑳 𝒙𝟎

𝒒𝟏
𝑳 𝒙𝟏

𝒒𝟐
𝑳 𝒙𝟐

⋯
𝑳 𝒙𝒏

𝒒𝒏+𝟏

Page . 14

Xiang Yin SJTU-XMU 2021

Example: LTS-NFA Product

𝒒𝟎
𝒓𝒆𝒅

LTS 𝑻 for traffic light

𝑻⊗𝑨 as the product

𝒚𝒆𝒍𝒍𝒐𝒘

𝒓𝒆𝒅

𝒈𝒓𝒆𝒆𝒏

𝒇𝒍𝒂𝒔𝒉 𝒒𝟐𝒒𝟏

𝑻𝒓𝒖𝒆
! 𝒓𝒆𝒅 ∧ ! 𝒚𝒆𝒍𝒍𝒐𝒘

𝒚𝒆𝒍𝒍𝒐𝒘 ∧ ! 𝒓𝒆𝒅
𝒚𝒆𝒍𝒍𝒐𝒘

! 𝒚𝒆𝒍𝒍𝒐𝒘

DFA 𝑨𝒃𝒂𝒅 for “each red is preceded by yellow”

(𝒚𝒆𝒍𝒍𝒐𝒘, 𝒒𝟏)

(𝒓𝒆𝒅, 𝒒𝟎)

(𝒈𝒓𝒆𝒆𝒏, 𝒒𝟎)

(𝒇𝒍𝒂𝒔𝒉, 𝒒𝟎)

Given: 𝑻 and NFA 𝑨𝒃𝒂𝒅

• Build the product 𝑻⊗ 𝑨

• If 𝓛 𝑻⊗ 𝑨 = ∅, then return “safe”

• If 𝓛 𝑻⊗ 𝑨 ≠ ∅, i.e., there is a

reachable accepting state in 𝑻⊗ 𝑨,

then return “not safe”

Model Checking for Regular Safety

Page . 15

Xiang Yin SJTU-XMU 2021

Model Checking for LTL

• Suppose we have an 𝝎-regular property 𝑷 ⊆ 𝟐𝑨𝑷
𝝎

• Now we have an LTS 𝑻 = (𝑿,𝑼,→,𝑿𝟎, 𝑨𝑷, 𝑳) and we want to check

whether or not 𝑻 ⊨ 𝑷

• Based the previous discussions, we have

𝑻 ⊭ 𝑷

𝑻𝒓𝒂𝒄𝒆(𝑻) ⊈ 𝑷

𝑻𝒓𝒂𝒄𝒆 𝑻 ∩ 𝟐𝑨𝑷
𝝎
∖ 𝑷 ≠ ∅

𝑻𝒓𝒂𝒄𝒆 𝑻 ∩ 𝑷𝒄 ≠ ∅

𝑻𝒓𝒂𝒄𝒆 𝑻 ∩ 𝓛𝝎 𝑨𝒄 ≠ ∅

if and only if

if and only if

if and only if

if and only if

 𝟐𝑨𝑷
𝝎
∖ 𝑷 is also 𝝎-regular

 without loss of generality, we can assume 𝓛𝝎 𝑨𝒄 = 𝑷𝒄

 If 𝑷 = 𝑾𝒐𝒓𝒅(𝝓), then 𝑷𝒄 = 𝑾𝒐𝒓𝒅(¬𝝓)and we can build 𝑨¬𝝓!

Page . 16

Xiang Yin SJTU-XMU 2021

Product between LTS and NBA

Let 𝑻 = (𝑿,𝑼,→, 𝑿𝟎, 𝑨𝑷, 𝑳) be a LTS and 𝑨 = (𝑸,𝑸𝟎, 𝜹, 𝟐
𝑨𝑷, 𝑭) be an NBA.

Then the product of 𝑻 and 𝑨 is a new tuple

𝑻⊗𝑨 = (𝑸⊗, 𝑸𝟎⊗, 𝜹⊗, 𝑼, 𝑭⊗)

• 𝑸⊗ = 𝑿 × 𝑸

• 𝑸𝟎⊗ = { 𝒙𝟎, 𝒒 : 𝒙𝟎 ∈ 𝑿𝟎 ∧ ∃𝒒𝟎 ∈ 𝑸𝟎. 𝒒𝟎
𝑳(𝒙𝟎)

𝒒}

• 𝑭⊗ = 𝑿 × 𝑭

• 𝜹⊗: 𝑸⊗ × 𝑼 → 𝟐𝑸⊗ is defined by:

➢ 𝜹⊗ 𝒙, 𝒒 , 𝒖 = { 𝒙′, 𝒒′ ∈ 𝑸⊗: 𝒙→
𝒖
𝒙′ and 𝒒

𝑳(𝒙′)
𝒒′}

Exactly the same as the case of NFA!

Page . 17

Xiang Yin SJTU-XMU 2021

LTL Model Checking Algorithm

• Suppose that we have an LTS 𝑻 and an LTL formula 𝝓

• We have 𝑻 ⊭ 𝝓 ⇔ 𝑻𝒓𝒂𝒄𝒆 𝑻 ⊈ 𝑾𝒐𝒓𝒅 𝝓 ⇔ 𝑻𝒓𝒂𝒄𝒆 𝑻 ∩𝑾𝒐𝒓𝒅 ¬𝝓 ≠ ∅

• Let 𝑨¬𝝓 be an NBA such that 𝓛𝝎 𝑨¬𝝓 = 𝑾𝒐𝒓𝒅 ¬𝝓 . Then

𝑻𝒓𝒂𝒄𝒆 𝑻 ∩𝑾𝒐𝒓𝒅 ¬𝝓 ≠ ∅ ⇔ 𝓛𝝎 𝑻⊗𝑨¬𝝓 ≠ ∅

• The above is equivalent to the existences an accepting state in 𝑻⊗𝑨¬𝝓 that

can be reached infinitely often, i.e., in a cycle!

Given: 𝑻 and LTL Formula 𝝓

• Build the NBA 𝑨¬𝝓 that accepts 𝑾𝒐𝒓𝒅 ¬𝝓

• Build the product 𝑻⊗ 𝑨¬𝝓

• Find all strongly connected components (SCC) of 𝑻⊗ 𝑨¬𝝓

• Check if there exists a SCC that contains a state in 𝑭⊗ and at least a transition

• If so, return “𝑻 ⊭ 𝝓”; otherwise, return “𝑻 ⊨ 𝝓”

Model Checking for LTL

Page . 18

Xiang Yin SJTU-XMU 2021

Example: LTL Model Checking

{𝒓𝒆𝒅}

𝒙𝟎 𝒙𝟏

{𝒈𝒓𝒆𝒆𝒏}

𝒒𝟎 𝒒𝟏 𝒒𝟐

𝑻𝒓𝒖𝒆 𝑻𝒓𝒖𝒆¬𝒈𝒓𝒆𝒆𝒏

¬𝒈𝒓𝒆𝒆𝒏 𝒈𝒓𝒆𝒆𝒏

LTS 𝑻 for traffic light NBA 𝑨 for ¬ ◇𝒈𝒓𝒆𝒆𝒏 = ◇¬𝒈𝒓𝒆𝒆𝒏

(𝒙𝟏, 𝒒𝟐)

(𝒙𝟎, 𝒒𝟐)

𝑻⊗𝑨

(𝒙𝟎, 𝒒𝟏)

(𝒙𝟏, 𝒒𝟎)

(𝒙𝟎, 𝒒𝟎) • There are three SCCs in 𝑻⊗𝑨

• 𝑺𝑪𝑪𝟐 contains 𝑭⊗ but does not have transition

• 𝑺𝑪𝑪𝟏, 𝑺𝑪𝑪𝟑 have transitions but have no 𝑭⊗

• No infinite accepting word can be generated

• Therefore, 𝑻 ⊨ ◇𝒈𝒓𝒆𝒆𝒏

𝑺𝑪𝑪𝟏 𝑺𝑪𝑪𝟐

𝑺𝑪𝑪𝟑

Page . 19

Xiang Yin SJTU-XMU 2021

Case of scLTL

• For any scLTL formula 𝝓, there is a DFA 𝑨 = (𝑸, 𝒒𝟎, 𝜹, 𝜮, 𝑭) that accepts all

good prefixes, i.e., 𝓛 𝑨 = 𝓛𝒑𝒓𝒆𝒇,𝝓

• Non-satisfaction means

• 𝑸𝒄 = 𝑸 ∪ 𝑩𝒂𝒅

• If 𝜹(𝒒,𝒘)!, then 𝜹𝒄 𝒒,𝒘 = 𝜹(𝒒,𝒘)

• If 𝜹 𝒒,𝒘 ¬!, then 𝜹𝒄 𝒒,𝒘 = 𝑩𝒂𝒅

Build 𝑨𝒄𝒐𝒎 = (𝑸𝒄, 𝒒𝟎, 𝜹
𝒄, 𝜮, 𝑭)

➢ Never reach an accepting state, i.e., loop in non-accepting; or

➢ Outside of the transitions of 𝑨

• Build 𝑨𝒄𝒐𝒎 to “complete” the transition and compute 𝑻⊗ 𝑨𝒄𝒐𝒎

• If 𝑻⊗ 𝑨𝒄𝒐𝒎 contains a cycle in which there is no accepting state, then 𝑻 ⊭ 𝝓

𝒒𝟎

𝒒𝟏

𝒒𝟐

• 𝑨𝑷 = 𝒐𝟏, 𝒐𝟐, 𝒐𝟑, 𝒐𝟒
• 𝝓 = (¬𝒐𝟑 𝑼 (𝒐𝟏∨ 𝒐𝟐)) ∧ ◇𝒐𝟑

! 𝒐𝟏 ∧ ! 𝒐𝟐 ∧ ! 𝒐𝟑

𝒐𝟏 ∨ 𝒐𝟐
𝒐𝟑𝑻𝒓𝒖𝒆

𝒐𝟏 ∨ 𝒐𝟐 ∨ 𝒐𝟒

𝑩

𝑻𝒓𝒖𝒆

𝒐𝟑

Page . 20

Xiang Yin SJTU-XMU 2021

Discussions

• NFA accepts finite words, i.e., generates regular language

• NFA can DFA are equivalent according to the subset construction

• NBA accepts infinite words, i.e., generates 𝝎-regular language

• Regular safety is essentially non-reachability

• Co-Safe LTL is essentially safety + finite reachability

• Safety can be converted to non-reachability by adding state 𝑩𝒂𝒅

• General LTL is essentially persistence

• Are NBA and DBA equivalent? No!

Page . 21

Xiang Yin SJTU-XMU 2021

NBA v.s. DBA

NBA is strictly more powerful than DBA, i.e., there exists 𝝎-regular

language that cannot be accepted by a DBA.

• Deterministic Büchi Automata (DBA): 𝑸𝟎 = 𝟏 and |𝜹(𝒒, 𝝈)| = 𝟏

• “eventually for every” cannot be captured by DBA

• Consider 𝝎-regular language 𝑳 = 𝒂, 𝒃 ∗ 𝒂 𝝎

• We need to nondeterministically decide from which instant the

proposition 𝒂 is continuously true

𝒒𝟐𝒒𝟏
𝒃

𝒂, 𝒃

𝒒𝟎
𝒂

𝒂, 𝒃 𝒂

NBA for 𝑳 = 𝒂, 𝒃 ∗ 𝒂 𝝎

{𝒒𝟎} {𝒒𝟎, 𝒒𝟏}
𝒂

𝒃 𝒂

𝒃 𝒂
{𝒒𝟎, 𝒒𝟏, 𝒒𝟐}{𝒒𝟎, 𝒒𝟐}

𝒃 𝒂

𝒃

➢ Automata obtained by the subset constriction

➢ Defining accepting states is problematic!

Page . 22

Xiang Yin SJTU-XMU 2021

Rabin Automata

• In many problems we do need deterministic mechanism, but the

expressiveness of DFA is limited

• Using different accepting condition: Rabin acceptance

A Deterministic Rabin Automata (DRA) is a tuple

𝑨 = (𝑸, 𝒒𝟎, 𝜹, 𝚺, 𝑨𝒄𝒄)

• 𝑸 is a finite set of states, 𝒒𝟎 ∈ 𝑸 is the initial state, 𝚺 is the alphabet

• 𝜹:𝑸 × 𝚺 → 𝑸 is a partial deterministic transition function

• 𝑨𝒄𝒄 = { 𝑳𝟏, 𝑲𝟏 , … , (𝑳𝒏, 𝑲𝒏)} ⊆ 𝟐𝑸 × 𝟐𝑸 is the acceptance condition.

• A run 𝝆 = 𝒒𝟎𝒒𝟏𝒒𝟐… is accepting if there exists a pair 𝑳,𝑲 ∈ 𝑨𝒄𝒄 s.t.

𝑰𝒏𝒇 𝝆 ∩ 𝑳 = ∅ ∧ [𝑰𝒏𝒇 𝝆 ∩ 𝑲 ≠ ∅]

• Accepted language of DBA 𝑨 is

𝓛𝝎 𝑨 = {𝒘 ∈ 𝚺𝝎: the run induced by 𝒘 is accepting in 𝑨}

Page . 23

Xiang Yin SJTU-XMU 2021

Rabin Automata

• The class of languages accepted by DRA is the same as that of NBA

• For any LTL formula 𝝓 over 𝑨𝑷, there exists a DRA 𝑨𝝓 with alphabet

𝚺 = 𝟐𝑨𝑷 such that 𝓛𝝎 𝑨𝝓 = 𝑾𝒐𝒓𝒅(𝝓)

• Cost: we may need 𝟐𝟐
𝝓 ⋅𝐥𝐨𝐠|𝝓|

states and 𝟐|𝝓| pairs

• Tools: ltl2dstar https://www.ltl2dstar.de/

𝒒𝟏

𝒃

𝒂

𝒒𝟎 𝒂

𝒃

➢ DRA for “◇𝒂”

➢ 𝑨𝒄𝒄 = { 𝒒𝟎 , {𝒒𝟏})}

➢ Looping between 𝒒𝟎 and 𝒒𝟏is rejected

https://www.ltl2dstar.de/

Page . 24

Xiang Yin SJTU-XMU 2021

Rabin Automata: More Examples

𝑨𝒄𝒄 = {(𝒔𝟎 , 𝒔𝟏)} 𝑨𝒄𝒄 = {(𝒔𝟏 , 𝒔𝟐)} 𝑨𝒄𝒄 = { 𝒔𝟎 , 𝒔𝟏, 𝒔𝟐 , (∅, 𝒔𝟏)}

Pictures from the book of Belta

Page . 25

Xiang Yin SJTU-XMU 2021

Another Definition of Product

Let 𝑻 = (𝑿,𝑼,→, 𝑿𝟎, 𝑨𝑷, 𝑳) be a LTS and 𝑨 = (𝑸,𝑸𝟎, 𝜹, 𝟐
𝐀𝐏, 𝑭) be an NBA.

Then the product of 𝑻 and 𝑨 is a new tuple

𝑻⊗𝑨 = (𝑸⊗, 𝑸𝟎⊗, 𝜹⊗, 𝑼, 𝑭⊗)

• 𝑸⊗ = 𝑿 × 𝑸 ,𝑸𝟎⊗ = 𝑿𝟎 × 𝑸𝟎, 𝑭⊗ = 𝑿 × 𝑭

• 𝜹⊗: 𝑸⊗ × 𝑼 → 𝟐𝑸⊗ is defined by:

➢ 𝜹⊗ 𝒙, 𝒒 , 𝒖 = { 𝒙′, 𝒒′ ∈ 𝑸⊗: 𝒙→
𝒖
𝒙′ and 𝒒

𝑳(𝒙)
𝒒′}

• 𝑸𝟎⊗ = { 𝒙𝟎, 𝒒 : 𝒙𝟎 ∈ 𝑿𝟎 ∧ ∃𝒒𝟎 ∈ 𝑸𝟎. 𝒒𝟎
𝑳(𝒙𝟎)

𝒒}

• 𝜹⊗: 𝑸⊗ × 𝑼 → 𝟐𝑸⊗ is defined by:

➢ 𝜹⊗ 𝒙, 𝒒 , 𝒖 = { 𝒙′, 𝒒′ ∈ 𝑸⊗: 𝒙→
𝒖
𝒙′ and 𝒒

𝑳(𝒙′)
𝒒′}

Previous Definition

Alternative Definition

Page . 26

Xiang Yin SJTU-XMU 2021

Example: LTS-NBA Product

{𝒓𝒆𝒅}

𝒙𝟎 𝒙𝟏

{𝒈𝒓𝒆𝒆𝒏}

𝒒𝟎 𝒒𝟏 𝒒𝟐

𝑻𝒓𝒖𝒆 𝑻𝒓𝒖𝒆¬𝒈𝒓𝒆𝒆𝒏

¬𝒈𝒓𝒆𝒆𝒏 𝒈𝒓𝒆𝒆𝒏

LTS 𝑻 for traffic light NBA 𝑨 for ¬ ◇𝒈𝒓𝒆𝒆𝒏 = ◇¬𝒈𝒓𝒆𝒆𝒏

(𝒙𝟎, 𝒒𝟎)

(𝒙𝟏, 𝒒𝟎) (𝒙𝟏, 𝒒𝟏)

(𝒙𝟎, 𝒒𝟐)

(𝒙𝟏, 𝒒𝟐)

𝑻⊗𝑨 by Definition 2

(𝒙𝟏, 𝒒𝟐)

(𝒙𝟎, 𝒒𝟐)

(𝒙𝟎, 𝒒𝟏)

(𝒙𝟏, 𝒒𝟎)

(𝒙𝟎, 𝒒𝟎)

𝑻⊗𝑨 by Definition 1

Page . 27

Xiang Yin SJTU-XMU 2021

Stage Summary

• Any regular language can be accepted by an NFA

• Any 𝝎-regular language can be accepted by an NBA

• NFA and DFA are equivalent but NBA and DBA are not equivalent

• Any LTL formula can be translated to an NBA (DBA is not enough)

• Any LTL formula can be translated to DRA (if we need determinsm)

• Büchi is smaller but need to pay nondeterminism

• Rabin can resolve nondeterminism but need to pay larger state-space

• Good prefixes of scLTL can be accepted by DFA

• Model checking by synchronizing the LTS and the automaton for LTL

Page . 28

Xiang Yin SJTU-XMU 2021

Review of Last Course

• We use automata to generate language of interest

• Good prefixes of scLTL can be accepted by Deterministic FA

• Any LTL formula can be translated to an Non-deterministic BA

• Any LTL formula can be translated to Deterministic Rabin Automaton

• Model checking by synchronizing the LTS and the automaton for LTL

➢ Regular safety: non-reachability of bad states

➢ scLTL: finite reachability of accepting states

➢ LTL: persistency of accepting states

