Automata-Based Verification of LTL




Property Verification

« A property is a set of infinite words (language) P < (ZAP)w

+ For an LTL formula ¢, we have Word(¢) = {o € (247)”. 0 £ ¢}

« To check whether or not T & ¢, it suffices to check whether or not
» Trace(T) € Word(¢); or
» Trace(T) n Word(—¢) = @

 How to efficiently represent Word(¢)?
» Need finite structure not to enumerate all strings (not possible)

» Approach: using Automatato generate language



Finite Words & Regular Language

Alphabet (event set) X, e.g., £ = {a, b, c}

Finite word (string): w = wyw, ...w,, Where w; € X, e.q., w = aabbc

Kleene-closure: £* is the set of all finite strings over all including e

Language: a set of strings L € X*, e.q., L = {€,a,ab, aa,aabc}
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Regular Expression
 0,{e}and {a},a € X are regular languages

« If L; and L, are regular languages, the Ly U L,, L{L, and Lj are also

» Catenation: L1L2 = {W1W2:W1 S Ll,Wz € Lz}

« L={¢a}{a b} ={¢€a}{€ a b, aa ab,ba,bb,..}={€ab,aa ab, aaaq,..}

« Remark: X can be 24P is previous examples!



Finite-State Automata

( N\
A Non-deterministic Finite-State Automata (NFA) is a tuple

A=(Q,Q09,%LF)
Q@ is afinite set of states
* Qo S Qisthe set of initial states
« XYisthe alphabet

¢ 6:Q XX - 29ijs apartial transition function
« F c Qisthe set of accepting (final/marked) states.

Q=1{1,2},Q,={1},F ={2}, 2 ={a, b},6(1,a) = (1,2}
« & can be extended to §:Q x * - 29, §(1, aab) = {1}
« Accepted Language: L(A4) = {s € £*:3q¢ € Qy,6(qo,s) N F + ¢}

L(A) = {€,a,aa,ab,aab,aaba ...}

[ Theorem: A language is regular iff it can be accepted by a NFA. ]




NFA to DFA

Deterministic Finite-State Automata (DFA): |Qol = 1 and |6(q,0)| =1
Accepted language can be simplified as L(A) = {s € £*: §(q,, s) € F}
Is NFA more powerful than DFA? No, they have the same power!

Subset construction converts a NFA to a DFA with the same language

a
s @0
A Ap .

start with Qg

for any X € Q and o € X, compute
6p(X,0) =Ug4ex 6(q, 0)

mark X if it contains a state in F

we have L(A4p) = L(A)

- Ap contains at most 2!9l states
g J




From scLTL to DFA

r

\.

For any scLTL formula ¢ over AP, there exists a DFA A, with alphabet
X = 24P that accepts all and only good prefixes of, i.e., L(Ag) = Lpref ¢
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!01:=®,{02} !01/\!02/\!03

* AP ={04,03} * AP ={01,0;,03,04}
® ¢ = 001 * ¢ = (—|03 U (01V 02)) A 003
© X= {(Z), {Ol}r {02}, {01' 02}}

Ay contains at most 2!¢! states
« Software tools: scheck?2 https://github.com/jsjolen/scheck?2



https://github.com/jsjolen/scheck2

Infinite Words & w-Regular Language

A regular language is a set of finite words

 For an alphabet X, £? is the set of all infinite words over X

 For aregular language L € X*, we define L® = {wyw, ---:w; € L}

« Example: for L = {ab, c}, we have L?® = {ababab ---,ccc ...,abcabcabc ...}

- w-Regular Language: Ll(LLinf)w UL, (Lz,inf)w U--U Ln(Ln’inf)w, where
L; and L;;,s are regular languages

+ Safety: (247)" \ Pyqpe = BadPref(Psqse)(297)"

* In fact, for any LTL formula ¢, Word(¢) is w-regular

 Question: how to generate a w-regular language?



Non-deterministic Biichi Automata

A Non-deterministic Bdchi Automata (NBA) is a tuple
A=(Q,Qp9%LF)

Q@ is afinite set of states

* Qo S Qisthe set of initial states

« XYisthe alphabet

¢ 6:Q xX - 29js apartial transition function

« F c Qisthe set of accepting (final/marked) states.

The structures of NBA and NFA are exactly the same
The difference is how to interpret the accepting condition
NBA is used to accept infinite words

An infinite word is accepted if it visits accepting states infinitely many times




Non-deterministic Biichi Automata
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Given an infinite word w = wogwywowy -+ € X¢
A run for wis an infinite sequence of states gyq1g- ... such that
qo € Qo and Vi = i: q;41 € 6(q;, ;)
Arun p = qpq19> .- 1S said to be accepting if states in F occurs infinitely
many times, i.e., Inf(p) N F = @
Accepted language of NBA A4 is

L?(A) = {w € X¥: there exists an accepting run for w in A}

« word c¢® only has one run q§

« word ab® has accepting run qoqq%

« Word (cabb)® has accepting run (q1919293)?®
« This NBA actually accepts w-regular language

{c}"{ab}({b}" U {b}{c}"{ab})®
where {b}* = {b}* \ {€} = {b, bb, bbb, ...}




From LTL to NBA

r

.

A language is w-regular iff it can be accepted by a NBA

For any LTL formula ¢ over AP, there exists an NBA A4 with alphabet

X = 24P such that £2(4,4) = Word(¢)

J

b= {b}r {Cl, b}

True

NBA for O(a —» ©b) NBA foroOa

A, contains at most |¢|2/! states

Software tools: ItI2ba http://www.lsv.fr/~gastin/ItI2ba/



http://www.lsv.fr/~gastin/ltl2ba/

More Examples for LTL to NBA

0,|o;|0
= 0,]0,]05|0,4

&S

0,/03]0,4

0,]0,]05]0,

(@) ¢ = Qo (b) ¢ =0Ulo;  (c) ¢3 = Oloy (d) ¢4 =000,

) ¢5s = O(Qo1 ANQ0o2) () ¢ = 001 A-T002 (2) ¢7 = 0001 = 000z Pictures from the book of Belta



Model Checking for Regular Safety

P,.s. 1S a safety property if each o € P45, has afinite bad prefix

P,.sc 1s regular safety is its bad prefixes is a regular language

 Suppose that NFA A4,,,4 accepts the bad prefixes, then
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T ¥ P
if and only if Trace(T) € P
if and only if  Trace(T) n ((247)” \ P) = 0
if and only if  L(x{)L(x3)...L(x,) € Trace/ (T) N L,y
if and only if Trace/(T) N L (Apyq) # @

» The last condition can be checked by “synchronizing” T and A,,;!



Model Checking for Regular Safety

4 A
Let T = (X,U,—>, Xy, AP, L) be aLTS and 4 = (Q, Qo, 8, 247, F) be an NFA.
Then the product of T and A is a new tuple

T®A=(Qg Qw9 UFg)

* Qg =XXQ

L(xo)
* Qo = {(x0,9):x9 € Xg A3qg € Qp.q0 — q}
O F®=XXF

* 8g:Qg x U - 29 s defined by:
/ / u ! L(x,) !
> 8g((x@),u) ={(x'q) € Qg:x~>x"and g— q'}

.

Key Observation:

» T @ A accepts finite traces both generated by T and accepted by 4

L(xg) L(xq) L(xz) L(xy)
> (x0,91)(x1,92) * (X, Gni1) @ Qo —q1 — q2 — " —— qn 11




Example: LTS-NFA Product

l'red A\ ! yellow

LTS T for traffic light DFA Ay, for “each red is preceded by yellow”

Model Checking for Regular Safety

Given: T and NFA Ap,4

red,
/'[ ( q0) ]—\ « Build the productT® A

[(yellow q1) (flash do) ] « If L(T ® A) = @, then return “safe”
K[(green Clo)]‘/ e IfL(TRA) + 0, i..e.,there i§a
reachable accepting state in T @ A,
then return “not safe”
T @ A as the product \ y




Model Checking for LTL

+  Suppose we have an w-regular property P c (24P)"

« Nowwehavean LTST = (X,U,-,X,, AP, L) and we want to check
whether or notT £ P

« Based the previous discussions, we have

If and only if
If and only if
If and only if
If and only if

Tw#P
Trace(T) € P

Trace(T) N ((ZAP)w \ P) # 0
Trace(T) N P¢ = @
Trace(T) N L2(AC) + @

O (24P)”\ Pis also w-regular

O without loss of generality, we can assume L?(A€) = P¢

O If P=Word(¢), then P¢ = Word(—~¢)and we can build 4_!




Product between LTS and NBA

-

~N
Let T = (X,U,—>,X,,AP,L) be aLTS and 4 = (Q, Q,, 8,247, F) be an NBA.
Then the product of T and A is a new tuple
TR A= (Q®,Q0®,5®, U»F®)
* Qe =XxQ
L(x0)
* Qog ={(x0,9):x9 € X9 A3qp € Qp.-q0 — q}
- Fg=XXF
* 8g:Qg x U - 29 s defined by:
!/ / u / L(x,) /
> 8g((x,q),u) ={(x'.q") € Qg:x—>x'and g — q'} )

Exactly the same as the case of NFA!



LTL Model Checking Algorithm

Suppose that we have an LTS T and an LTL formula ¢

We have T ¥ ¢ © Trace(T) € Word(¢p) © Trace(T) N Word(—¢) + @

Let A_, be an NBA such that £9(4_4) = Word(—¢). Then
Trace(T) N Word(—¢) + 0 & L“’(T 0% A—«I)) * 0

The above is equivalent to the existences an accepting state in T ® A_4 that

can be reached infinitely often, i.e., in a cycle!

Model Checking for LTL

Given: T and LTL Formula ¢

- Build the NBA A_j that accepts Word(—¢)

* Build the product T ® A_g

« Find all strongly connected components (SCC) of T ® A_

« Check if there exists a SCC that contains a state in Fg and at least a transition

 If so, return “T ¥ ¢”’; otherwise, return “T = ¢”




Example: LTL Model Checking

{red} {green}

LTS T for traffic light

sccy,

(

(X0, 90)

1

(X1, 90)

True -—green True

greengreen

NBA A for -(OCgreen) = OO-green

TR A

There arethree SCCsinT® A

S$CC, contains Fg but does not have transition
S$CC4,5CC3 have transitions but have no Fg
No infinite accepting word can be generated

Therefore, T £ OO green




Case of scLTL

 For any scLTL formula ¢, thereis a DFA A = (Q, q,, 8, 2, F) that accepts all
good prefixes, i.e., L(A) = Lyrerg

« Non-satisfaction means

» Never reach an accepting state, i.e., loop in non-accepting; or
» Outside of the transitions of 4

 Build 4,,,, to “complete” the transition and compute T Q A.,m

« IfTQ® A.,m cOntains a cycle in which there is no accepting state, then T ¥ ¢

!01/\!02/\!03

Build A.om = (QF€, qo, 6%, 2, F)

03
"""""""" ?”B-\‘
0o,Vo D, . ¢ =Qu{Bad
True o, 1V 0y ‘\:, Q¢ = Q U {Bad}
True « If 6(q,w)!, then 6°(q,w) = 8(q,w)

01V 0,V 0y, If §(q,w)-!, then 6°(q,w) = Bad
« AP ={01,0,,03,04} \ J
o ¢ = (—|03 U (01V 02)) N\ 003




Discussions

 NFA accepts finite words, I.e., generates regular language
 NFA can DFA are equivalent according to the subset construction
« NBA accepts infinite words, i.e., generates w-regular language
 Regular safety is essentially non-reachability

« Co-Safe LTL is essentially safety + finite reachability

« Safety can be converted to non-reachability by adding state Bad
« General LTL is essentially persistence

« Are NBA and DBA equivalent? No!



NBA v.s. DBA

NBA is strictly more powerful than DBA, i.e., there exists w-regular
language that cannot be accepted by a DBA.

\

« Deterministic Buchi Automata (DBA): |Qo|l = 1 and |6(q,0)| =1
« “eventually for every” cannot be captured by DBA

 Consider w-regular language L = {a, b}*{a}®

« We need to nondeterministically decide from which instant the
proposition a is continuously true

"'_"_" "W{CI&%}]—’[{CIO; CIZ}]_’[{CIO»CIL‘IZ}]
R a

» Automata obtained by the subset constriction
NBA for L = {a, b}*{a}® > Defining accepting states is problematic!




Rabin Automata

* In many problems we do need deterministic mechanism, but the
expressiveness of DFA is limited

« Using different accepting condition: Rabin acceptance
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A Deterministic Rabin Automata (DRA) is a tuple
A=(0,q9, X Acc)

Qs afinite set of states, g € Q is the initial state, X is the alphabet
e §:Q XX - Qis apartial deterministic transition function
e Acc={(Ly,Ky),...,(L,, K;))} € 29 x 29 is the acceptance condition.

\

« Arun p =qyq19; -..1s accepting if there exists a pair (L,K) € Acc s.t.

[Inf(p) NL = @] A[Inf(p) N K # O]
 Accepted language of DBA A is
L?(A) = {w € £®: the run induced by w is accepting in A}



Rabin Automata

P > DRA for “o[a”
.a (q1) > Acc = {(ao (a1))
/ ./ » Looping between g, and q4is rejected
b a

« The class of languages accepted by DRA is the same as that of NBA
« Forany LTL formula ¢ over AP, there exists a DRA A4 with alphabet
X = 24P such that £%(A44) = Word(¢)

219|-log|¢|

- Cost: we may need 2 states and 2!?! pairs

 Tools: Itl2dstar https://www.ltI2dstar.de/



https://www.ltl2dstar.de/

Rabin Automata: More Examples

Acc = {({So}, {Sl})} Acc = {({51}' {SZ})} Acc = {({SO}; {51,52}), (®' {Sl})}

04

(a) ¢3 = Olloy (b) ¢ =UO01 A—LG0s (©) ¢7 =001 = Udos

Pictures from the book of Belta



Another Definition of Product

-
Alternative Definition

Let T = (X,U,—, Xy, AP, L) be a LTS and 4 = (Q, Qo, 6, 24%, F) be an NBA.
Then the product of T and A is a new tuple

T®A=(Qg Qg 03 UFg)

o Q®=XXQ'QO®=XOXQOJF®=XXF

* 8g:Qg x U - 2% s defined by:
!/ / u / L(x) /
> 8g((x ), u)={(x,q) € Qg:x~>x'and g —q'}

.

(
Previous Definition

L(xo)
* Qog = {(x0,9):x9 € X9 A3qp € Qp.q0 — q}
* 8g:Qg x U - 29 s defined by:

/ ! i / L(x,) !
» 6g((x,q),u) ={(x',q') € Qg:x—>x"and g — q'}

.




Example: LTS-NBA Product

True -—green True

(red} {green)} A ‘ A
greengreen

LTS T for traffic light NBA A for -(OCgreen) = O0-green

(X0, 90)

(%1, CIO)] [(x1» ‘h)]

f;\
(X0, q2)

T ® A by Definition 1 H

(x1,92)

)

T @ A by Definition 2




Stage Summary

 Any regular language can be accepted by an NFA

 Any w-regular language can be accepted by an NBA

 NFA and DFA are equivalent but NBA and DBA are not equivalent

« Any LTL formula can be translated to an NBA (DBA is not enough)

« Any LTL formula can be translated to DRA (if we need determinsm)

« Biuchiis smaller but need to pay nondeterminism

« Rabin can resolve nondeterminism but need to pay larger state-space
« Good prefixes of scLTL can be accepted by DFA

« Model checking by synchronizing the LTS and the automaton for LTL



Review of Last Course

We use automata to generate language of interest
Good prefixes of scLTL can be accepted by Deterministic FA
Any LTL formula can be translated to an Non-deterministic BA
Any LTL formula can be translated to Deterministic Rabin Automaton
Model checking by synchronizing the LTS and the automaton for LTL
» Regular safety: non-reachability of bad states
» ScLTL: finite reachability of accepting states

» LTL: persistency of accepting states



