# **Automata-Based Verification of LTL**





## **Property Verification**

- A property is a set of infinite words (language)  $P \subseteq (2^{AP})^{\omega}$
- For an LTL formula  $\phi$ , we have  $Word(\phi) = \{\sigma \in (2^{AP})^{\omega} : \sigma \vDash \phi\}$
- To check whether or not  $T \vDash \phi$ , it suffices to check whether or not
  - $\succ$  *Trace*(*T*) ⊆ *Word*( $\phi$ ); or
  - $\succ Trace(T) \cap Word(\neg \phi) = \emptyset$
- How to efficiently represent  $Word(\phi)$ ?
  - Need finite structure not to enumerate all strings (not possible)
  - Approach: using Automata to generate language

#### Finite Words & Regular Language

- Alphabet (event set)  $\Sigma$ , e.g.,  $\Sigma = \{a, b, c\}$
- Finite word (string):  $w = w_1 w_2 \dots w_n$  where  $w_i \in \Sigma$ , e.g., w = aabbc
- Kleene-closure:  $\Sigma^*$  is the set of all finite strings over all including  $\epsilon$
- Language: a set of strings  $L \subseteq \Sigma^*$ , e.g.,  $L = \{\epsilon, a, ab, aa, aabc\}$

#### **Regular Expression**

- $\emptyset, \{\epsilon\}$  and  $\{a\}, a \in \Sigma$  are regular languages
- If  $L_1$  and  $L_2$  are regular languages, the  $L_1 \cup L_2$ ,  $L_1L_2$  and  $L_1^*$  are also

▶ Catenation:  $L_1L_2 = \{w_1w_2 : w_1 \in L_1, w_2 \in L_2\}$ 

- $L = \{\epsilon, a\}\{a, b\}^* = \{\epsilon, a\}\{\epsilon, a, b, aa, ab, ba, bb, ...\} = \{\epsilon, a, b, aa, ab, aaa, ...\}$
- Remark: Σ can be 2<sup>AP</sup> is previous examples!

### **Finite-State Automata**

A Non-deterministic Finite-State Automata (NFA) is a tuple

 $A = (Q, Q_0, \delta, \Sigma, F)$ 

- *Q* is a finite set of states
- $Q_0 \subseteq Q$  is the set of initial states
- Σ is the alphabet

а

- $\delta: Q \times \Sigma \to 2^Q$  is a partial transition function
- $F \subseteq Q$  is the set of accepting (final/marked) states.

• 
$$Q = \{1, 2\}, Q_0 = \{1\}, F = \{2\}, \Sigma = \{a, b\}, \delta(1, a) = \{1, 2\}$$

- $\delta$  can be extended to  $\delta: Q \times \Sigma^* \to 2^Q$ ,  $\delta(1, aab) = \{1\}$
- Accepted Language:  $\mathcal{L}(A) = \{s \in \Sigma^* : \exists q_0 \in Q_0, \delta(q_0, s) \cap F \neq \emptyset\}$
- $\mathcal{L}(A) = \{\epsilon, a, aa, ab, aab, aaba \dots\}$

**Theorem:** A language is regular iff it can be accepted by a NFA.

#### NFA to DFA

- Deterministic Finite-State Automata (DFA):  $|Q_0| = 1$  and  $|\delta(q, \sigma)| = 1$
- Accepted language can be simplified as  $\mathcal{L}(A) = \{s \in \Sigma^* : \delta(q_0, s) \in F\}$
- Is NFA more powerful than DFA? No, they have the same power!
- Subset construction converts a NFA to a DFA with the same language



#### **Subset Construction**

- start with  $Q_0$
- for any  $X \subseteq Q$  and  $\sigma \in \Sigma$ , compute

 $\delta_D(X,\sigma) = \cup_{q \in X} \delta(q,\sigma)$ 

- mark *X* if it contains a state in *F*
- we have  $\mathcal{L}(A_D) = \mathcal{L}(A)$
- $A_D$  contains at most  $2^{|Q|}$  states

#### From scLTL to DFA

For any scLTL formula  $\phi$  over *AP*, there exists a DFA  $A_{\phi}$  with alphabet  $\Sigma = 2^{AP}$  that accepts all and only good prefixes of, i.e.,  $\mathcal{L}(A_{\phi}) = \mathcal{L}_{pref,\phi}$ 



- $AP = \{o_1, o_2\}$
- $\phi = \diamond o_1$
- $\Sigma = \{ \emptyset, \{o_1\}, \{o_2\}, \{o_1, o_2\} \}$
- $AP = \{o_1, o_2, o_3, o_4\}$ •  $\phi = (\neg o_3 U (o_1 \lor o_2)) \land \diamondsuit o_3$
- $A_{\phi}$  contains at most  $2^{|\phi|}$  states
- Software tools: scheck2 <a href="https://github.com/jsjolen/scheck2">https://github.com/jsjolen/scheck2</a>

#### **Infinite Words & ω-Regular Language**

- A regular language is a set of finite words
- For an alphabet  $\Sigma$ ,  $\Sigma^{\omega}$  is the set of all infinite words over  $\Sigma$
- For a regular language  $L \subseteq \Sigma^*$ , we define  $L^{\omega} = \{w_1 w_2 \cdots : w_i \in L\}$
- Example: for  $L = \{ab, c\}$ , we have  $L^{\omega} = \{ababab \cdots, ccc \dots, abcabcabc \dots\}$
- $\omega$ -Regular Language:  $L_1(L_{1,inf})^{\omega} \cup L_2(L_{2,inf})^{\omega} \cup \cdots \cup L_n(L_{n,inf})^{\omega}$ , where  $L_i$  and  $L_{i,inf}$  are regular languages
- Safety:  $(2^{AP})^{\omega} \setminus P_{safe} = BadPref(P_{safe})(2^{AP})^{\omega}$
- In fact, for any LTL formula  $\phi$ ,  $Word(\phi)$  is  $\omega$ -regular
- Question: how to generate a  $\omega$ -regular language?

## Non-deterministic Büchi Automata

A Non-deterministic Büchi Automata (NBA) is a tuple

 $A = (\boldsymbol{Q}, \boldsymbol{Q}_0, \boldsymbol{\delta}, \boldsymbol{\Sigma}, \boldsymbol{F})$ 

- Q is a finite set of states
- $Q_0 \subseteq Q$  is the set of initial states
- Σ is the alphabet
- $\delta: Q \times \Sigma \to 2^Q$  is a partial transition function
- $F \subseteq Q$  is the set of accepting (final/marked) states.
- > The structures of NBA and NFA are exactly the same
- > The difference is how to interpret the accepting condition
- > NBA is used to accept infinite words
- > An infinite word is accepted if it visits accepting states infinitely many times

### Non-deterministic Büchi Automata

- Given an infinite word  $w = w_0 w_1 w_2 w_3 \dots \in \Sigma^{\omega}$
- A run for w is an infinite sequence of states  $q_0q_1q_2$  ... such that

 $q_0 \in Q_0$  and  $\forall i \ge i : q_{i+1} \in \delta(q_i, w_i)$ 

- A run  $\rho = q_0 q_1 q_2$  ... is said to be accepting if states in *F* occurs infinitely many times, i.e.,  $Inf(\rho) \cap F \neq \emptyset$
- Accepted language of NBA A is

 $\mathcal{L}^{\omega}(A) = \{ w \in \Sigma^{\omega} : \text{there exists an accepting run for } w \text{ in } A \}$ 



- word  $c^{\omega}$  only has one run  $q_0^{\omega}$
- word  $ab^{\omega}$  has accepting run  $q_0q_1q_2^{\omega}$
- Word  $(cabb)^{\omega}$  has accepting run  $(q_1q_1q_2q_3)^{\omega}$
- This NBA actually accepts ω-regular language
   {c}\*{ab}({b}^+ ∪ {b}{c}\*{ab})<sup>ω</sup>
   where {b}^+ = {b}\* \ {ε} = {b, bb, bbb, ... }

#### From LTL to NBA

- A language is  $\omega$ -regular iff it can be accepted by a NBA
- For any LTL formula  $\phi$  over *AP*, there exists an NBA  $A_{\phi}$  with alphabet  $\Sigma = 2^{AP}$  such that  $\mathcal{L}^{\omega}(A_{\phi}) = Word(\phi)$

$$b = \{b\}, \{a, b\}$$

$$q_{0}$$

$$a \land ! b = \{a\}$$

$$q_{1}$$

$$b = \emptyset, \{b\}, \{a, b\}$$

$$b = \emptyset, \{a\}$$



NBA for  $\Box(a \rightarrow \Diamond b)$ 

NBA for  $\Box a$ 

- $A_{\phi}$  contains at most  $|\phi| 2^{|\phi|}$  states
- Software tools: Itl2ba <u>http://www.lsv.fr/~gastin/ltl2ba/</u>

## **More Examples for LTL to NBA**



Pictures from the book of Belta

## **Model Checking for Regular Safety**

- $P_{safe}$  is a safety property if each  $\sigma \notin P_{safe}$  has a finite bad prefix
- *P<sub>safe</sub>* is regular safety is its bad prefixes is a regular language
- Suppose that NFA A<sub>bad</sub> accepts the bad prefixes, then

|                | $T \not\models P$                                                                        |
|----------------|------------------------------------------------------------------------------------------|
| if and only if | $Trace(T) \nsubseteq P$                                                                  |
| if and only if | $Trace(T) \cap \left( \left( 2^{AP} \right)^{\omega} \setminus P \right) \neq \emptyset$ |
| if and only if | $L(x_1)L(x_2) \dots L(x_n) \in Trace^f(T) \cap L_{bad}$                                  |
| if and only if | $Trace^{f}(T) \cap \mathcal{L}\left(A_{bad}\right) \neq \emptyset$                       |

> The last condition can be checked by "synchronizing" T and  $A_{bad}$ !

## **Model Checking for Regular Safety**

Let  $T = (X, U, \rightarrow, X_0, AP, L)$  be a LTS and  $A = (Q, Q_0, \delta, 2^{AP}, F)$  be an NFA. Then the product of *T* and *A* is a new tuple

 $T \otimes A = (\boldsymbol{Q}_{\otimes}, \boldsymbol{Q}_{\boldsymbol{0}\otimes}, \boldsymbol{\delta}_{\otimes}, \boldsymbol{U}, \boldsymbol{F}_{\otimes})$ 

•  $\boldsymbol{Q}_{\otimes} = \boldsymbol{X} \times \boldsymbol{Q}$ 

- $Q_{0\otimes} = \{(x_0, q) : x_0 \in X_0 \land \exists q_0 \in Q_0, q_0 \xrightarrow{L(x_0)} q\}$
- $F_{\otimes} = X \times F$

• 
$$\delta_{\otimes}: Q_{\otimes} \times U \to 2^{Q_{\otimes}}$$
 is defined by:  
 $\succ \delta_{\otimes}((x,q),u) = \{(x',q') \in Q_{\otimes}: x \xrightarrow{u} x' \text{ and } q \xrightarrow{L(x')} q'\}$ 

#### **Key Observation:**

 $\succ$  T  $\otimes$  A accepts finite traces both generated by T and accepted by A

 $\succ (x_0, q_1)(x_1, q_2) \cdots (x_n, q_{n+1}) \Rightarrow q_0 \xrightarrow{L(x_0)} q_1 \xrightarrow{L(x_1)} q_2 \xrightarrow{L(x_2)} \cdots \xrightarrow{L(x_n)} q_{n+1}$ 

## **Example: LTS-NFA Product**





DFA  $A_{bad}$  for "each red is preceded by yellow"



 $T\otimes A$  as the product

#### Model Checking for Regular Safety

Given: T and NFA A<sub>bad</sub>

- Build the product  $T \otimes A$
- If  $\mathcal{L}(T \otimes A) = \emptyset$ , then return "safe"
- If L(T ⊗ A) ≠ Ø, i.e., there is a reachable accepting state in T ⊗ A, then return "not safe"

# **Model Checking for LTL**

- Suppose we have an  $\omega$ -regular property  $P \subseteq (2^{AP})^{\omega}$
- Now we have an LTS  $T = (X, U, \rightarrow, X_0, AP, L)$  and we want to check whether or not  $T \models P$
- Based the previous discussions, we have

|--|

| if and only if | $Trace(T) \not\subseteq P$                                                               |
|----------------|------------------------------------------------------------------------------------------|
| if and only if | $Trace(T) \cap \left( \left( 2^{AP} \right)^{\omega} \setminus P \right) \neq \emptyset$ |
| if and only if | $Trace(T) \cap P^c \neq \emptyset$                                                       |
| if and only if | $Trace(T) \cap \mathcal{L}^{\omega}(A^c) \neq \emptyset$                                 |

 $\Box$   $(2^{AP})^{\omega} \setminus P$  is also  $\omega$ -regular

**u** without loss of generality, we can assume  $\mathcal{L}^{\omega}(A^{c}) = P^{c}$ 

□ If  $P = Word(\phi)$ , then  $P^c = Word(\neg \phi)$  and we can build  $A_{\neg \phi}$ !

#### **Product between LTS and NBA**

Let  $T = (X, U, \rightarrow, X_0, AP, L)$  be a LTS and  $A = (Q, Q_0, \delta, 2^{AP}, F)$  be an NBA. Then the product of *T* and *A* is a new tuple

 $\boldsymbol{T} \otimes \boldsymbol{A} = (\boldsymbol{Q}_{\otimes}, \boldsymbol{Q}_{\boldsymbol{0}\otimes}, \boldsymbol{\delta}_{\otimes}, \boldsymbol{U}, \boldsymbol{F}_{\otimes})$ 

•  $\boldsymbol{Q}_{\otimes} = \boldsymbol{X} \times \boldsymbol{Q}$ 

- $Q_{0\otimes} = \{(x_0, q) : x_0 \in X_0 \land \exists q_0 \in Q_0, q_0 \xrightarrow{L(x_0)} q\}$
- $F_{\otimes} = X \times F$
- $\delta_{\otimes}: Q_{\otimes} \times U \to 2^{Q_{\otimes}}$  is defined by:

$$\succ \delta_{\bigotimes}((x,q),u) = \{(x',q') \in Q_{\bigotimes} : x \xrightarrow{u} x' \text{ and } q \xrightarrow{L(x')} q'\}$$

#### Exactly the same as the case of NFA!

## LTL Model Checking Algorithm

- Suppose that we have an LTS T and an LTL formula  $\phi$
- We have  $T \nvDash \phi \Leftrightarrow Trace(T) \nsubseteq Word(\phi) \Leftrightarrow Trace(T) \cap Word(\neg \phi) \neq \emptyset$
- Let  $A_{\neg\phi}$  be an NBA such that  $\mathcal{L}^{\omega}(A_{\neg\phi}) = Word(\neg\phi)$ . Then  $Trace(T) \cap Word(\neg\phi) \neq \emptyset \Leftrightarrow \mathcal{L}^{\omega}(T \otimes A_{\neg\phi}) \neq \emptyset$
- The above is equivalent to the existences an accepting state in  $T \otimes A_{\neg \phi}$  that can be reached infinitely often, i.e., in a cycle!

#### **Model Checking for LTL**

Given: *T* and LTL Formula  $\phi$ 

- Build the NBA  $A_{\neg \phi}$  that accepts  $Word(\neg \phi)$
- Build the product  $T \otimes A_{\neg \phi}$
- Find all strongly connected components (SCC) of  $T \otimes A_{\neg \phi}$
- Check if there exists a SCC that contains a state in  $F_{\otimes}$  and at least a transition
- If so, return " $T \nvDash \phi$ "; otherwise, return " $T \vDash \phi$ "

## **Example: LTL Model Checking**



LTS T for traffic light



**NBA** *A* for  $\neg(\Box \diamondsuit green) = \diamondsuit \Box \neg green$ 



• There are three SCCs in  $T \otimes A$ 

- $SCC_2$  contains  $F_{\otimes}$  but does not have transition
- $SCC_1$ ,  $SCC_3$  have transitions but have no  $F_{\otimes}$
- No infinite accepting word can be generated
- Therefore,  $T \vDash \Box \diamondsuit green$

## Case of scLTL

- For any scLTL formula  $\phi$ , there is a DFA  $A = (Q, q_0, \delta, \Sigma, F)$  that accepts all good prefixes, i.e.,  $\mathcal{L}(A) = \mathcal{L}_{pref,\phi}$
- Non-satisfaction means
  - Never reach an accepting state, i.e., loop in non-accepting; or
  - Outside of the transitions of A
- Build  $A_{com}$  to "complete" the transition and compute  $T \otimes A_{com}$
- If  $T \otimes A_{com}$  contains a cycle in which there is no accepting state, then  $T \nvDash \phi$



- $AP = \{o_1, o_2, o_3, o_4\}$ •  $d = (o_1, o_2, o_3, o_4)$
- $\phi = (\neg o_3 U (o_1 \lor o_2)) \land \diamondsuit o_3$

Build 
$$A_{com} = (Q^c, q_0, \delta^c, \Sigma, F)$$

- $Q^c = Q \cup \{Bad\}$
- If  $\delta(q, w)$ !, then  $\delta^c(q, w) = \delta(q, w)$

• If 
$$\delta(q, w) \neg !$$
, then  $\delta^c(q, w) = Bad$ 

#### **Discussions**

- NFA accepts finite words, i.e., generates regular language
- NFA can DFA are equivalent according to the subset construction
- NBA accepts infinite words, i.e., generates  $\omega$ -regular language
- Regular safety is essentially non-reachability
- Co-Safe LTL is essentially safety + finite reachability
- Safety can be converted to non-reachability by adding state *Bad*
- General LTL is essentially persistence
- Are NBA and DBA equivalent? No!

#### NBA v.s. DBA

NBA is strictly more powerful than DBA, i.e., there exists  $\omega$ -regular language that cannot be accepted by a DBA.

- Deterministic Büchi Automata (DBA):  $|Q_0| = 1$  and  $|\delta(q, \sigma)| = 1$
- "eventually for every" cannot be captured by DBA
- Consider  $\omega$ -regular language  $L = \{a, b\}^* \{a\}^\omega$
- We need to nondeterministically decide from which instant the proposition *a* is continuously true



NBA for  $L = \{a, b\}^* \{a\}^\omega$ 



Automata obtained by the subset constriction

Defining accepting states is problematic!

#### **Rabin Automata**

- In many problems we do need deterministic mechanism, but the expressiveness of DFA is limited
- Using different accepting condition: Rabin acceptance

A Deterministic Rabin Automata (DRA) is a tuple  $A = (Q, q_0, \delta, \Sigma, Acc)$ 

- Q is a finite set of states,  $q_0 \in Q$  is the initial state,  $\Sigma$  is the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$  is a partial deterministic transition function
- $Acc = \{(L_1, K_1), \dots, (L_n, K_n)\} \subseteq 2^Q \times 2^Q$  is the acceptance condition.
- A run  $\rho = q_0 q_1 q_2$  ... is accepting if there exists a pair  $(L, K) \in Acc$  s.t.

 $[Inf(\rho) \cap L = \emptyset] \wedge [Inf(\rho) \cap K \neq \emptyset]$ 

• Accepted language of DBA A is

 $\mathcal{L}^{\omega}(A) = \{ w \in \Sigma^{\omega} : \text{the run induced by } w \text{ is accepting in } A \}$ 

### **Rabin Automata**



- > DRA for " $\Diamond \Box a$ "
- $► Acc = \{(\{q_0\}, \{q_1\}))\}$
- > Looping between  $q_0$  and  $q_1$  is rejected

- The class of languages accepted by DRA is the same as that of NBA
- For any LTL formula  $\phi$  over AP, there exists a DRA  $A_{\phi}$  with alphabet  $\Sigma = 2^{AP}$  such that  $\mathcal{L}^{\omega}(A_{\phi}) = Word(\phi)$
- Cost: we may need  $2^{2^{|\phi| \cdot \log|\phi|}}$  states and  $2^{|\phi|}$  pairs
- Tools: Itl2dstar <u>https://www.Itl2dstar.de/</u>

#### **Rabin Automata: More Examples**



Pictures from the book of Belta

## **Another Definition of Product**

#### **Alternative Definition**

Let  $T = (X, U, \rightarrow, X_0, AP, L)$  be a LTS and  $A = (Q, Q_0, \delta, 2^{AP}, F)$  be an NBA. Then the product of T and A is a new tuple

 $T \otimes A = (\boldsymbol{Q}_{\otimes}, \boldsymbol{Q}_{\boldsymbol{0}\otimes}, \boldsymbol{\delta}_{\otimes}, \boldsymbol{U}, \boldsymbol{F}_{\otimes})$ 

•  $\boldsymbol{Q}_{\otimes} = \boldsymbol{X} \times \boldsymbol{Q}$ ,  $\boldsymbol{Q}_{\mathbf{0} \otimes} = \boldsymbol{X}_{\mathbf{0}} \times \boldsymbol{Q}_{\mathbf{0}}$ ,  $\boldsymbol{F}_{\otimes} = \boldsymbol{X} \times \boldsymbol{F}$ 

• 
$$\delta_{\otimes}: Q_{\otimes} \times U \to 2^{Q_{\otimes}}$$
 is defined by:  
 $\succ \delta_{\otimes}((x,q),u) = \{(x',q') \in Q_{\otimes}: x \xrightarrow{u} x' \text{ and } q \xrightarrow{L(x)} q'\}$ 

#### **Previous Definition**

- $Q_{0\otimes} = \{(x_0, q) : x_0 \in X_0 \land \exists q_0 \in Q_0, q_0 \xrightarrow{L(x_0)} q\}$
- $\delta_{\otimes}: Q_{\otimes} \times U \to 2^{Q_{\otimes}}$  is defined by:  $\succ \delta_{\otimes}((x,q),u) = \{(x',q') \in Q_{\otimes}: x \xrightarrow{u} x' \text{ and } q \xrightarrow{L(x')} q'\}$

## **Example: LTS-NBA Product**



LTS T for traffic light



**NBA** *A* for  $\neg(\Box \diamondsuit green) = \diamondsuit \Box \neg green$ 





# **Stage Summary**

- Any regular language can be accepted by an NFA
- Any  $\omega$ -regular language can be accepted by an NBA
- NFA and DFA are equivalent but NBA and DBA are not equivalent
- Any LTL formula can be translated to an NBA (DBA is not enough)
- Any LTL formula can be translated to DRA (if we need determinsm)
- Büchi is smaller but need to pay nondeterminism
- Rabin can resolve nondeterminism but need to pay larger state-space
- Good prefixes of scLTL can be accepted by DFA
- Model checking by synchronizing the LTS and the automaton for LTL

### **Review of Last Course**

- We use automata to generate language of interest
- Good prefixes of scLTL can be accepted by Deterministic FA
- Any LTL formula can be translated to an Non-deterministic BA
- Any LTL formula can be translated to Deterministic Rabin Automaton
- Model checking by synchronizing the LTS and the automaton for LTL
  - Regular safety: non-reachability of bad states
  - scLTL: finite reachability of accepting states
  - > LTL: persistency of accepting states