
Game-Based LTL Control Synthesis

Page . 2

Xiang Yin SJTU-XMU 2021

Role of Inputs

• Control input is not important in the verification problem since we want to

check the satisfaction for all runs

• Some “bad” runs can be avoided by suitably choosing inputs

• 𝑻𝟏 ⊭ ◇𝒚𝒆𝒔, e.g., 𝒙𝟎𝒙𝟏
𝝎 yields 𝒏𝒐 {𝒚𝒆𝒔} 𝝎

• We can choose input sequence 𝒖𝟏 𝒖𝟐
𝝎, which gives 𝒏𝒐 {𝒚𝒆𝒔} 𝝎

• In general, the effect of an input is non-deterministic 𝑷𝒐𝒔𝒕 𝒙, 𝒖 > 𝟏

• We also need to handle all possible consequences of the input

Deterministic LTS 𝑻𝟏 with 𝑼 = {𝒖𝟏, 𝒖𝟐}

𝒙𝟏

𝒖𝟐

𝒙𝟎 𝒖𝟏

𝒖𝟐

𝒖𝟏
{𝒏𝒐} {𝒚𝒆𝒔}

𝒙𝟏

𝒖𝟐

𝒙𝟎 𝒖𝟏

𝒖𝟏, 𝒖𝟐

𝒖𝟏
{𝒏𝒐} {𝒚𝒆𝒔}

Non-Deterministic LTS 𝑻𝟐

Page . 3

Xiang Yin SJTU-XMU 2021

Synthesis Problem

• A control strategy is a function 𝑪:𝑿 𝑿 ∗ → 𝑼

• State run under 𝑪: 𝒙𝟎𝒙𝟏⋯𝒙𝒏⋯ such that 𝒙𝒊+𝟏 ∈ 𝑷𝒐𝒔𝒕 𝒙𝒊, 𝑪 𝒙𝟎⋯𝒙𝒏

• The set of all infinite runs of 𝑻 under 𝑪: 𝑹𝒖𝒏(𝑪/𝑻)

• The set of all infinite traces of 𝑻 under 𝑪: 𝑻𝒓𝒂𝒄𝒆(𝑪/𝑻)

Control Synthesis Problem

Given an LTS 𝑻 and a property 𝑷 ⊆ 𝟐𝑨𝑷
𝝎

, find a control strategy

𝑪:𝑿 𝑿 ∗ → 𝑼 such that 𝑪/𝑻 ⊨ 𝑷, i.e., 𝑻𝒓𝒂𝒄𝒆 𝑪/𝑻 ⊆ 𝑷.

➢ for LTL formula 𝝓, 𝑪/𝑻 ⊨ 𝝓 means 𝑻𝒓𝒂𝒄𝒆 𝑪/𝑻 ⊆ 𝑾𝒐𝒓𝒅(𝝓)

Page . 4

Xiang Yin SJTU-XMU 2021

Case of Deterministic System

• A control strategy is not a single input sequence

• A controller should be reactive to non-determinism

• A singe (infinite) input sequence is enough when it is deterministic

• Deterministic synthesis problem is essentially a path planning problem

or open-loop control problem and can be solved by model checking

(returns a counter-example if negative)

Given: 𝑻 and LTL Formula 𝝓

• Use model checker to verify whether or not 𝑻 ⊨ ¬𝝓

• If CHECK 𝑻,¬𝝓 = "𝐘𝐞𝐬“, then return “no controller exists”

• If CHECK 𝑻,¬𝝓 = "𝐍𝐨“, then the model-checker will provide an infinite run 𝝆 ∈

𝑿𝝎 as counter-example, i.e., 𝑳 𝝆 ⊭ ¬𝝓. Return “𝝆” as the planned path

LTL Path Planning by Model Checking

Page . 5

Xiang Yin SJTU-XMU 2021

General Case as a Two-Player Game

• Player-C: controller chooses an input 𝒖 ∈ 𝑼 that is defined at 𝒙 ∈ 𝑿

• Player-A: adversary chooses a successor 𝒙′ ∈ 𝑷𝒐𝒔𝒕(𝒙, 𝒖) and the system

moves to 𝒙′; then Player-C chooses and so forth…

• The strategy of Player-C is actually a controller 𝑪:𝑿 𝑿 ∗ → 𝑼

• The strategy of Player-A is a function 𝑨:𝑿 𝑿 ∗𝑼 → 𝑿 that resolves non-deter.

• If 𝑪 and 𝑨 are given, the initial-state 𝒙𝟎 ∈ 𝑿𝟎 is given, then the run is uniquely

determined, denoted by 𝝆(𝑨, 𝑪, 𝒙𝟎) and denote the trace by 𝝈(𝑨, 𝑪, 𝒙𝟎)

• Then 𝑪/𝑻 ⊨ 𝑷 iff ∀𝑨, ∀𝒙𝟎 ∈ 𝑿𝟎: 𝝈 𝑨, 𝑪, 𝒙𝟎 ∈ 𝑷

𝟏 𝟑𝟐
𝒖𝟏𝒖𝟏

𝒖𝟐𝒖𝟐

𝒖𝟏

𝒖𝟐

𝒖𝟐
➢ 𝑪/𝑻 ⊨ ¬𝟑 can be achieved by fixing 𝒖𝟐

➢ 𝑪/𝑻 ⊨ ◇2 cannot be achieved by any 𝑪

control with non-determinism as a two-player game

Page . 6

Xiang Yin SJTU-XMU 2021

Two-Player Games

• Safety Game: stay within safe states (not to reach unsafe states)

• Reachability Game: reach desired states within finite number of steps

• Büchi Game: visit desired states infinitely often

• Rabin Game: visit desired states infinitely often avoiding rejected states

➢ Safety game is related to regular safety

➢ Reachability game is related to scLTL

➢ Büchi game and Rabin game are related to general LTL

➢ Two-player game can also be formulated by explicitly partitioning the state-

space for each player

Player-A

Player-C

A different formulation of two-player game

Page . 7

Xiang Yin SJTU-XMU 2021

Safety Game

Safety Game (Reach Avoid Game)

For LTS 𝑻 and a set of unsafe region 𝑩 ⊆ 𝑿, find a controller 𝑪 such that

the run never reaches 𝑩 under any possible adversary 𝑨.

 Winning Region: the set of states from which Player-C can win

 Player-C wins (exists a controller) if 𝑿𝟎 ⊆ 𝑿𝒘𝒊𝒏

 By definition, control strategy is history based, but state-based strategy

(memoryless) strategy is sufficient for many games

Can you avoid state 𝟖?

Page . 8

Xiang Yin SJTU-XMU 2021

Solving Safety Game

• We need to avoid unsafe states 𝑩 ⊆ 𝑿

• To avoid 𝑩, we need to avoid states that cannot avoid 𝑩

𝑩𝟏 = 𝐀𝐯𝐨𝐢𝐝 𝑩 = {𝒙 ∈ 𝑿: ∀𝒖 ∈ 𝑼,𝑷𝒐𝒔𝒕 𝒙, 𝒖 ∩ 𝑩 ≠ ∅}

• Then we also need to avoid 𝑩𝟐 = 𝐀𝐯𝐨𝐢𝐝(𝑩𝟏)

• Keep deleting states until we get the winning region 𝑿𝒘𝒊𝒏 ⊆ 𝑿 s.t.

𝑿𝒘𝒊𝒏 ∩ 𝑩 = ∅ 𝐚𝐧𝐝 ∀𝒙 ∈ 𝑿𝒘𝒊𝒏, ∃𝒖 ∈ 𝑼:𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑿𝒘𝒊𝒏

• Delete 𝑩 from 𝑿, 𝑩 ← 𝑩 ∪ 𝐀𝐯𝐨𝐢𝐝(𝑩)

• Repeat the above until 𝑩 = 𝑩 ∪ 𝑨𝒗𝒐𝒊𝒅(𝑩)

• State remained are 𝑿𝒘𝒊𝒏

• If 𝑿𝟎 ⊈ 𝑿𝒘𝒊𝒏, then “no controller”

• Otherwise, 𝑪 chooses an input 𝒖 ∈ 𝑼 at

each 𝒙 ∈ 𝑿 s.t. 𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑿𝒘𝒊𝒏

Safety Game Algorithm

𝒖𝟏

𝟖𝟕𝟔

𝟓𝟒𝟑

𝟐𝟏𝟎

𝒖𝟏

𝒖𝟏

𝒖𝟏𝒖𝟐

𝒖𝟐
𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟏
𝒖𝟐

𝒖𝟐

𝒖𝟏

𝒖𝟏

𝒖𝟏𝒖𝟐

𝒖𝟐
𝒖𝟏

𝑿𝒘𝒊𝒏

Page . 9

Xiang Yin SJTU-XMU 2021

Solving Safety Game

• We need to avoid unsafe states 𝑩 ⊆ 𝑿

• To avoid 𝑩, we need to avoid states that cannot avoid 𝑩

𝑩𝟏 = 𝐀𝐯𝐨𝐢𝐝 𝑩 = {𝒙 ∈ 𝑿: ∀𝒖 ∈ 𝑼,𝑷𝒐𝒔𝒕 𝒙, 𝒖 ∩ 𝑩 ≠ ∅}

• Then we also need to avoid 𝑩𝟐 = 𝐀𝐯𝐨𝐢𝐝(𝑩𝟏)

• Keep deleting states until we get the winning region 𝑿𝒘𝒊𝒏 ⊆ 𝑿 s.t.

𝑿𝒘𝒊𝒏 ∩ 𝑩 = ∅ 𝐚𝐧𝐝 ∀𝒙 ∈ 𝑿𝒘𝒊𝒏, ∃𝒖 ∈ 𝑼:𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑿𝒘𝒊𝒏

• Delete 𝑩 from 𝑿, 𝑩 ← 𝑩 ∪ 𝐀𝐯𝐨𝐢𝐝(𝑩)

• Repeat the above until 𝑩 = 𝑩 ∪ 𝑨𝒗𝒐𝒊𝒅(𝑩)

• State remained are 𝑿𝒘𝒊𝒏

• If 𝑿𝟎 ⊈ 𝑿𝒘𝒊𝒏, then “no controller”

• Otherwise, 𝑪 chooses an input 𝒖 ∈ 𝑼 at

each 𝒙 ∈ 𝑿 s.t. 𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑿𝒘𝒊𝒏

Safety Game Algorithm

𝒖𝟏

𝟖𝟕𝟔

𝟓𝟒𝟑

𝟐𝟏𝟎

𝒖𝟏

𝒖𝟏

𝒖𝟏𝒖𝟐

𝒖𝟐
𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟏
𝒖𝟐

𝒖𝟐

𝒖𝟏

𝒖𝟏

𝒖𝟏𝒖𝟐

𝒖𝟐
𝒖𝟏

𝑿𝒘𝒊𝒏

Page . 10

Xiang Yin SJTU-XMU 2021

Reachability Game

Reachability Game

For LTS 𝑻 and a set of desired region 𝑫 ⊆ 𝑿, find a controller 𝑪 such that

the run can always reaches 𝑫 within finite steps under any possible 𝑨.

 Player-C losses the game iff the adversary can let the system loop in a

cycle in which there is no desired state

 If Player-C wins the game, then it can always reaches 𝑫 within |𝑿| steps

𝒖𝟏

𝟓𝟑

𝟒 𝟏𝟎

𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟐

𝒖𝟐

𝒖𝟐

𝟒
𝒖𝟐

𝒖𝟏

𝒖𝟏 Can you reach state 𝟑?

Page . 11

Xiang Yin SJTU-XMU 2021

Solving Reachability Game

• To guarantee reaching 𝑫 ⊆ 𝑿 in one step, we must in states 𝑫𝟏 = 𝑫 ∪ 𝐂𝐏𝐫𝐞(𝑫)

𝐂𝐏𝐫𝐞 𝑫 = 𝒙 ∈ 𝑿: ∃𝒖 ∈ 𝑼,𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑫

• To guarantee reach 𝑫 in two steps, we must in states 𝑫𝟐 = 𝑫𝟏 ∪ 𝐂𝐏𝐫𝐞(𝑫𝟏)

• By keep expending the region of attraction, we get the winning region

𝑿𝒘𝒊𝒏 = 𝐀𝐭𝐭𝐫 𝑫 := 𝑫 ∪ 𝑫𝟏 ∪⋯∪𝑫𝒏 = 𝑫𝒏. For each 𝑫𝒊+𝟏 we can always move to

𝑫𝒊 to be “closer” to the target region

• Define 𝑫𝟎 = 𝑫

• Repeat 𝑫𝒊+𝟏 = 𝑫𝒊 ∪ 𝐂𝐏𝐫𝐞(𝑫𝒊) until 𝑫𝒊 = 𝐂𝐏𝐫𝐞(𝑫𝒊)

• If 𝑿𝟎 ⊈ 𝑿𝒘𝒊𝒏 = 𝑫𝒏, then “no controller”

• Otherwise, 𝑪 chooses an input 𝒖 ∈ 𝑼 at each

𝒙 ∈ 𝑫𝒊 s.t. 𝑷𝒐𝒔𝒕 𝒙, 𝒖 ⊆ 𝑫𝟎 ∪⋯∪ 𝑫𝒊−𝟏

Reachability Game Algorithm

𝒖𝟏

𝟓𝟑

𝟒 𝟏𝟎

𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟐

𝒖𝟐

𝒖𝟐

𝟒
𝒖𝟐

𝒖𝟏

𝒖𝟏

• 𝑫𝟎 = 𝟑 ,𝑫𝟏 = 𝟑, 𝟓 ,𝑫𝟑 = {𝟏, 𝟑, 𝟓}

• 𝑫𝟒 = 𝑿𝒘𝒊𝒏 = 𝟎, 𝟏, 𝟑, 𝟓

• 𝑪 𝟎 = 𝑪 𝟏 = 𝑪 𝟓 = 𝒖𝟏, 𝑪 𝟑 = 𝒖𝟐

Page . 12

Xiang Yin SJTU-XMU 2021

Büchi Game

Büchi Game

For LTS 𝑻 and a set of accepting states 𝑭 ⊆ 𝑿, find a controller 𝑪 such

that the run can always visits 𝑭 infinitely often under any possible 𝑨.

• Player-C wins the reachability game but

cannot win the Büchi game for 𝑭 = {𝟑}

• State 𝟑 can only be guaranteed to be

visited once

• We should also take care of recurrence

for what happens after reaching 𝑭

Page . 13

Xiang Yin SJTU-XMU 2021

Solving Büchi Game

• To visit 𝑭 again, we must in 𝐀𝐭𝐭𝐫 𝑭

• We need to avoid 𝑾𝑨 = 𝑿 ∖ 𝐀𝐭𝐭𝐫 𝑭 from 𝑭

• Therefore, we shrink accepting states to 𝑭 = 𝑭 ∖ 𝐀𝐏𝐫𝐞(𝑾𝑨), where

𝐀𝐏𝐫𝐞 𝑾𝑨 = {𝒙: ∀𝒖 ∈ 𝑼,𝑷𝒐𝒔𝒕 𝒙, 𝒖 ∩𝑾𝑨 ≠ ∅}

• Since 𝑭 is changed, we need to computed 𝐀𝐭𝐭𝐫 𝑭 and 𝐀𝐏𝐫𝐞(𝑾𝑨) again

• 𝑭 = 𝑭 ∖ 𝐀𝐏𝐫𝐞 𝑿 ∖ 𝐀𝐭𝐭𝐫 𝑭

• Repeat above until 𝐀𝐏𝐫𝐞 𝑿 ∖ 𝐀𝐭𝐭𝐫 𝑭 ∩ 𝑭 = ∅

• If 𝑿𝟎 ⊈ 𝑿𝒘𝒊𝒏 = 𝑨𝒕𝒕𝒓 𝑭 , then “no controller”

• Otherwise, 𝑪 chooses an input 𝒖 ∈ 𝑼 based

on the reachability game for 𝑭

Büchi Game Algorithm

𝒖𝟏

𝟓𝟒

𝟎 𝟐𝟏

𝒖𝟏

𝒖𝟏𝒖𝟐

𝒖𝟐

𝟑
𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟏

𝒖𝟏

• 𝑭 = 𝟏, 𝟒 ,𝑾𝑨 = 𝟓 ,𝐀𝐏𝐫𝐞 𝑾𝑨 = 𝟒, 𝟓

• 𝑭 = 𝟏 ,𝐀𝐭𝐭𝐫 𝑭 = 𝟎, 𝟏 ,𝑾𝑨 = 𝟐, 𝟑, 𝟒, 𝟓 ,

𝐀𝐏𝐫𝐞 𝑾𝑨 = 𝟑, 𝟒, 𝟓

• 𝑭 ∖ 𝟑, 𝟒, 𝟓 = {𝟏}

Page . 14

Xiang Yin SJTU-XMU 2021

LTL Synthesis: Deterministic Case

• Suppose we have an LTS 𝑻 and an LTL formula 𝝓

• We want to find a controller 𝑪 such that 𝑪/𝑻 ⊨ 𝝓

• Assume LTL formula 𝝓 can be accepted by a DBA 𝑨𝝓 (dLTL)

• Then we build 𝑻⊗𝑨𝝓 with accepting states 𝑭⊗

• Solve the Büchi game for 𝑻⊗𝑨𝝓 with 𝑭⊗

• The winning strategy in 𝑻⊗𝑨𝝓 can be mapped directly to 𝑻 by looking at

the first component

➢ Note: we cannot use NBA for 𝝓 because the LTS 𝑻 may be non-deterministic;

otherwise, we cannot really control the system

Page . 15

Xiang Yin SJTU-XMU 2021

LTL Synthesis: Deterministic Case

𝒙𝟐

𝒖𝟐
𝒙𝟎 𝒖𝟏

𝒙𝟏 𝒖𝟏
𝒖𝟏 𝒙𝟑𝒖𝟏

𝒖𝟏

𝒒𝟏

! 𝒐𝟏

𝒒𝟎 𝒒𝟐

{𝒐𝟏}

{𝒐𝟐}

{𝒐𝟐} ∅
! 𝒐𝟐

! 𝒐𝟏

𝒐𝟏 𝒐𝟐

𝒐𝟏

LTS 𝑻 DBA for dLTL 𝝓 = (◇𝒐𝟏 ∧ ◇𝒐𝟐)

𝒖𝟐

(𝒙𝟑, 𝒒𝟎)

(𝒙𝟎, 𝒒𝟎)(𝒙𝟏, 𝒒𝟎) (𝒙𝟑, 𝒒𝟐)(𝒙𝟐, 𝒒𝟏)𝒖𝟏
𝒖𝟏 𝒖𝟏

𝒖𝟐

𝒖𝟏

𝒖𝟏

𝒖𝟐

𝒖𝟏Büchi game for 𝑻⊗ 𝑨𝝓

𝒖𝟐

Page . 16

Xiang Yin SJTU-XMU 2021

LTL Synthesis: General Case

• Suppose we have an LTS 𝑻 and an LTL formula 𝝓

• We want to find a controller 𝑪 such that 𝑪/𝑻 ⊨ 𝝓

• We first build DRA 𝑨𝝓 such that 𝓛𝝎 𝑨𝝓 = 𝑾𝒐𝒓𝒅(𝝓)

• Then we build 𝑻⊗𝑨𝝓 with 𝑨𝒄𝒄⊗ = { 𝑿 × 𝑳𝟏, 𝑿 × 𝑲𝟏 , … , (𝑿 × 𝑳𝒏, 𝑿 × 𝑲𝒏)}

• Solve the Rabin game for 𝑻⊗𝑨𝝓 with 𝑨𝒄𝒄⊗

• The winning strategy in 𝑻⊗𝑨𝝓 can be mapped directly to 𝑻 by looking at

the first component

➢ Note: we cannot use NBA for 𝝓 because the LTS 𝑻 may be non-deterministic;

otherwise, we cannot really control the system

Page . 17

Xiang Yin SJTU-XMU 2021

Rabin Automata

• In many problems we do need deterministic mechanism, but the

expressiveness of DFA is limited

• Using different accepting condition: Rabin acceptance

A Deterministic Rabin Automata (DRA) is a tuple

𝑨 = (𝑸, 𝒒𝟎, 𝜹, 𝚺, 𝑨𝒄𝒄)

• 𝑸 is a finite set of states, 𝒒𝟎 ∈ 𝑸 is the initial state, 𝚺 is the alphabet

• 𝜹:𝑸 × 𝚺 → 𝑸 is a partial deterministic transition function

• 𝑨𝒄𝒄 = { 𝑳𝟏, 𝑲𝟏 , … , (𝑳𝒏, 𝑲𝒏)} ⊆ 𝟐𝑸 × 𝟐𝑸 is the acceptance condition.

• A run 𝝆 = 𝒒𝟎𝒒𝟏𝒒𝟐… is accepting if there exists a pair 𝑳,𝑲 ∈ 𝑨𝒄𝒄 s.t.

𝑰𝒏𝒇 𝝆 ∩ 𝑳 = ∅ ∧ [𝑰𝒏𝒇 𝝆 ∩ 𝑲 ≠ ∅]

• Accepted language of DBA 𝑨 is

𝓛𝝎 𝑨 = {𝒘 ∈ 𝚺𝝎: the run induced by 𝒘 is accepting in 𝑨}

Page . 18

Xiang Yin SJTU-XMU 2021

Rabin Automata

• The class of languages accepted by DRA is the same as that of NBA

• For any LTL formula 𝝓 over 𝑨𝑷, there exists a DRA 𝑨𝝓 with alphabet

𝚺 = 𝟐𝑨𝑷 such that 𝓛𝝎 𝑨𝝓 = 𝑾𝒐𝒓𝒅(𝝓)

• Cost: we may need 𝟐𝟐
𝝓 ⋅𝐥𝐨𝐠|𝝓|

states and 𝟐|𝝓| pairs

• Tools: ltl2dstar https://www.ltl2dstar.de/

𝒒𝟏

𝒃

𝒂

𝒒𝟎 𝒂

𝒃

➢ DRA for “◇𝒂”

➢ 𝑨𝒄𝒄 = { 𝒒𝟎 , {𝒒𝟏})}

➢ Looping between 𝒒𝟎 and 𝒒𝟏is rejected

https://www.ltl2dstar.de/

Page . 19

Xiang Yin SJTU-XMU 2021

Rabin Game

Rabin Game

For LTS 𝑻 and a set of accepting pairs 𝑨𝒄𝒄 = { 𝑳𝟏, 𝑲𝟏 , … , (𝑳𝒏, 𝑲𝒏)} ⊆ 𝟐𝑿 × 𝟐𝑿,

find a controller 𝑪 such that for any adversary 𝑨 there exists a pair

𝑳𝒊, 𝑲𝒊 such that the run visits 𝑲𝒊 infinite times and 𝑳𝒊 only finite times.

General Idea:

• For each pair 𝑳𝒊, 𝑲𝒊 , consider a Büchi Game for 𝑲𝒊 + Safety Game for 𝑳𝒊

• Then we get 𝑲𝒊
′ ⊆ 𝑲𝒊 that can be visited infinitely often without visiting 𝑳𝒊

• Then we consider a reachability game for ∪𝒊=𝟏,…,𝒏 𝑲𝒊
′

• The winning region is actually 𝐀𝐭𝐭𝐫(∪𝒊=𝟏,…,𝒏 𝑲𝒊
′)

Page . 20

Xiang Yin SJTU-XMU 2021

Stage Summary

• Control problem can be viewed as a two-player game

• Safety game can be solved by inductively extending the unsafe region

• Reachability game can be solved by using 𝒏-step attractor

• Büchi game can be solved by identifying recurrent accepting states

• Rabin game can be solved by combing safety, reachability and Büchi

• LTL control synthesis can be solved as a game over the product

• General LTL needs to solve Rabin game

• dLTL can be solved by Büchi game

• scLTL can be solved by reachability game

Page . 21

Xiang Yin SJTU-XMU 2021

Course Summary

• How to describe dynamic systems using formal models

➢ labeled transition systems

➢ bisimulation and quotient-based abstraction

• How to describe formal specifications/requirements

• How to formally verify whether a model satisfies a specification

➢ linear-time properties

➢ linear-temporal logics, computation tree logics

➢ automata-based LTL model checking

➢ finite-state automata, Büchi automata, Rabin automata

• How to synthesize a reactive controller to enforce a specification

➢ game-based LTL controller synthesis

➢ safety game, reachability game, Büchi game, Rabin game

Page . 22

Xiang Yin SJTU-XMU 2021

Advanced Topics

• Timed & hybrid dynamic systems

• Formal abstraction of continuous dynamic systems

• Stochastic systems and probabilistic verification/synthesis

• Real-valued & real-time logics, e.g., MTL and STL

• Information-flow analysis or hyper-properties

• Control synthesis under imperfect information

• Verification & synthesis for multi-agent systems

• Temporal-logic-guided learning

Thank You!

yinxiang@sjtu.edu.cn

http://xiangyin.sjtu.edu.cn

