Game-Based LTL Control Synthesis

Role of Inputs

- Control input is not important in the verification problem since we want to check the satisfaction for all runs
- Some "bad" runs can be avoided by suitably choosing inputs
- $T_1 \not\models \Diamond \Box yes$, e.g., $(x_0 x_1)^{\omega}$ yields $(\{no\}\{yes\})^{\omega}$
- We can choose input sequence $u_1(u_2)^{\omega}$, which gives $\{no\}(\{yes\})^{\omega}$
- In general, the effect of an input is non-deterministic |Post(x, u)| > 1
- We also need to handle all possible consequences of the input

Deterministic LTS T_1 with $U = \{u_1, u_2\}$

Non-Deterministic LTS T₂

Synthesis Problem

- A control strategy is a function $C: X(X)^* \to U$
- State run under C: $x_0 x_1 \cdots x_n \cdots$ such that $x_{i+1} \in Post(x_i, C(x_0 \cdots x_n))$
- The set of all infinite runs of T under C: Run(C/T)
- The set of all infinite traces of T under C: Trace(C/T)

Control Synthesis Problem

Given an LTS *T* and a property $P \subseteq (2^{AP})^{\omega}$, find a control strategy $C: X(X)^* \to U$ such that $C/T \models P$, i.e., $Trace(C/T) \subseteq P$.

 \succ for LTL formula ϕ , *C*/*T* ⊨ ϕ means *Trace*(*C*/*T*) ⊆ *Word*(ϕ)

Case of Deterministic System

- A control strategy is not a single input sequence
- A controller should be reactive to non-determinism
- A singe (infinite) input sequence is enough when it is deterministic
- Deterministic synthesis problem is essentially a path planning problem or open-loop control problem and can be solved by model checking (returns a counter-example if negative)

LTL Path Planning by Model Checking

Given: T and LTL Formula ϕ

- Use model checker to verify whether or not $T \vDash \neg \phi$
- If $CHECK(T, \neg \phi) = "Yes"$, then return "no controller exists"
- If $CHECK(T, \neg \phi) = "No"$, then the model-checker will provide an infinite run $\rho \in X^{\omega}$ as counter-example, i.e., $L(\rho) \not\models \neg \phi$. Return " ρ " as the planned path

General Case as a Two-Player Game

- Player-C: controller chooses an input $u \in U$ that is defined at $x \in X$
- Player-A: adversary chooses a successor x' ∈ Post(x, u) and the system moves to x'; then Player-C chooses and so forth...
- The strategy of Player-C is actually a controller $C: X(X)^* \to U$
- The strategy of Player-A is a function $A: X(X)^*U \to X$ that resolves non-deter.
- If *C* and *A* are given, the initial-state $x_0 \in X_0$ is given, then the run is uniquely determined, denoted by $\rho(A, C, x_0)$ and denote the trace by $\sigma(A, C, x_0)$
- Then $C/T \vDash P$ iff $\forall A, \forall x_0 \in X_0$: $\sigma(A, C, x_0) \in P$

> $C/T \models \Box \neg 3$ can be achieved by fixing u_2

> $C/T ⊨ \diamond 2$ cannot be achieved by any C

control with non-determinism as a two-player game

Two-Player Games

- Safety Game: stay within safe states (not to reach unsafe states)
- Reachability Game: reach desired states within finite number of steps
- Büchi Game: visit desired states infinitely often
- Rabin Game: visit desired states infinitely often avoiding rejected states
- Safety game is related to regular safety
- Reachability game is related to scLTL
- > Büchi game and Rabin game are related to general LTL
- Two-player game can also be formulated by explicitly partitioning the statespace for each player

Player-A

Player-C

A different formulation of two-player game

Safety Game

Safety Game (Reach Avoid Game)

For LTS *T* and a set of unsafe region $B \subseteq X$, find a controller *C* such that the run never reaches *B* under any possible adversary *A*.

- □ Winning Region: the set of states from which Player-C can win
- **D** Player-C wins (exists a controller) if $X_0 \subseteq X_{win}$
- By definition, control strategy is history based, but state-based strategy (memoryless) strategy is sufficient for many games

Can you avoid state 8?

Solving Safety Game

- We need to avoid unsafe states $B \subseteq X$
- To avoid *B*, we need to avoid states that cannot avoid *B*

 $B_1 = Avoid(B) = \{x \in X : \forall u \in U, Post(x, u) \cap B \neq \emptyset\}$

- Then we also need to avoid $B_2 = Avoid(B_1)$
- Keep deleting states until we get the winning region $X_{win} \subseteq X$ s.t.

 $X_{win} \cap B = \emptyset$ and $\forall x \in X_{win}, \exists u \in U: Post(x, u) \subseteq X_{win}$

Safety Game Algorithm

- Delete *B* from *X*, $B \leftarrow B \cup Avoid(B)$
- Repeat the above until $B = B \cup Avoid(B)$
- State remained are X_{win}
- If $X_0 \not\subseteq X_{win}$, then "no controller"
- Otherwise, *C* chooses an input $u \in U$ at each $x \in X$ s.t. $Post(x, u) \subseteq X_{win}$

Solving Safety Game

- We need to avoid unsafe states $B \subseteq X$
- To avoid *B*, we need to avoid states that cannot avoid *B*

 $B_1 = Avoid(B) = \{x \in X : \forall u \in U, Post(x, u) \cap B \neq \emptyset\}$

- Then we also need to avoid $B_2 = Avoid(B_1)$
- Keep deleting states until we get the winning region $X_{win} \subseteq X$ s.t.

 $X_{win} \cap B = \emptyset$ and $\forall x \in X_{win}, \exists u \in U: Post(x, u) \subseteq X_{win}$

Safety Game Algorithm

- Delete *B* from *X*, $B \leftarrow B \cup Avoid(B)$
- Repeat the above until $B = B \cup Avoid(B)$
- State remained are X_{win}
- If $X_0 \not\subseteq X_{win}$, then "no controller"
- Otherwise, *C* chooses an input $u \in U$ at each $x \in X$ s.t. $Post(x, u) \subseteq X_{win}$

Reachability Game

Reachability Game

For LTS *T* and a set of desired region $D \subseteq X$, find a controller *C* such that the run can always reaches *D* within finite steps under any possible *A*.

Player-C losses the game iff the adversary can let the system loop in a cycle in which there is no desired state

I If Player-C wins the game, then it can always reaches D within |X| steps

Can you reach state 3?

Solving Reachability Game

- To guarantee reaching $D \subseteq X$ in one step, we must in states $D_1 = D \cup CPre(D)$ $CPre(D) = \{x \in X : \exists u \in U, Post(x, u) \subseteq D\}$
- To guarantee reach *D* in two steps, we must in states $D_2 = D_1 \cup CPre(D_1)$
- By keep expending the region of attraction, we get the winning region $X_{win} = \operatorname{Attr}(D) := D \cup D_1 \cup \cdots \cup D_n = D_n$. For each D_{i+1} we can always move to D_i to be "closer" to the target region

- $D_0 = \{3\}, D_1 = \{3, 5\}, D_3 = \{1, 3, 5\}$
- $D_4 = X_{win} = \{0, 1, 3, 5\}$

•
$$C(0) = C(1) = C(5) = u_1, C(3) = u_2$$

Reachability Game Algorithm

- **Define** $D_0 = D$
- Repeat $D_{i+1} = D_i \cup CPre(D_i)$ until $D_i = CPre(D_i)$
- If $X_0 \nsubseteq X_{win} = D_n$, then "no controller"
- Otherwise, *C* chooses an input $u \in U$ at each $x \in D_i$ s.t. $Post(x, u) \subseteq D_0 \cup \cdots \cup D_{i-1}$

Büchi Game

Büchi Game

For LTS *T* and a set of accepting states $F \subseteq X$, find a controller *C* such that the run can always visits *F* infinitely often under any possible *A*.

- Player-C wins the reachability game but cannot win the Büchi game for $F = \{3\}$
- State 3 can only be guaranteed to be visited once
- We should also take care of recurrence for what happens after reaching *F*

Solving Büchi Game

- To visit *F* again, we must in Attr(*F*)
- We need to avoid $W_A = X \setminus \operatorname{Attr}(F)$ from F
- Therefore, we shrink accepting states to $F = F \setminus APre(W_A)$, where

 $\operatorname{APre}(W_A) = \{x \colon \forall u \in U, \operatorname{Post}(x, u) \cap W_A \neq \emptyset\}$

• Since F is changed, we need to computed Attr(F) and $APre(W_A)$ again

- $F = \{1, 4\}, W_A = \{5\}, APre(W_A) = \{4, 5\}$
- $F = \{1\}, Attr(F) = \{0, 1\}, W_A = \{2, 3, 4, 5\},$ $APre(W_A) = \{3, 4, 5\}$
- $F \setminus \{3, 4, 5\} = \{1\}$

Büchi Game Algorithm

- $F = F \setminus \operatorname{APre}(X \setminus \operatorname{Attr}(F))$
- Repeat above until $\operatorname{APre}(X \setminus \operatorname{Attr}(F)) \cap F = \emptyset$
 - If $X_0 \not\subseteq X_{win} = Attr(F)$, then "no controller"
 - Otherwise, *C* chooses an input $u \in U$ based on the reachability game for *F*

LTL Synthesis: Deterministic Case

- Suppose we have an LTS T and an LTL formula ϕ
- We want to find a controller C such that $C/T \vDash \phi$
- Assume LTL formula ϕ can be accepted by a DBA A_{ϕ} (dLTL)
- Then we build $T \otimes A_{\phi}$ with accepting states F_{\otimes}
- Solve the Büchi game for $T \otimes A_{\phi}$ with F_{\otimes}
- The winning strategy in $T \otimes A_{\phi}$ can be mapped directly to T by looking at the first component

> Note: we cannot use NBA for ϕ because the LTS *T* may be non-deterministic; otherwise, we cannot really control the system

LTL Synthesis: Deterministic Case

LTS T

LTL Synthesis: General Case

- Suppose we have an LTS T and an LTL formula ϕ
- We want to find a controller *C* such that $C/T \vDash \phi$
- We first build DRA A_{ϕ} such that $\mathcal{L}^{\omega}(A_{\phi}) = Word(\phi)$
- Then we build $T \otimes A_{\phi}$ with $Acc_{\otimes} = \{(X \times L_1, X \times K_1), \dots, (X \times L_n, X \times K_n)\}$
- Solve the Rabin game for $T \otimes A_{\phi}$ with Acc_{\otimes}
- The winning strategy in $T \otimes A_{\phi}$ can be mapped directly to T by looking at the first component

> Note: we cannot use NBA for ϕ because the LTS *T* may be non-deterministic; otherwise, we cannot really control the system

Rabin Automata

- In many problems we do need deterministic mechanism, but the expressiveness of DFA is limited
- Using different accepting condition: Rabin acceptance

A Deterministic Rabin Automata (DRA) is a tuple $A = (Q, q_0, \delta, \Sigma, Acc)$

- Q is a finite set of states, $q_0 \in Q$ is the initial state, Σ is the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is a partial deterministic transition function
- $Acc = \{(L_1, K_1), \dots, (L_n, K_n)\} \subseteq 2^Q \times 2^Q$ is the acceptance condition.
- A run $\rho = q_0 q_1 q_2$... is accepting if there exists a pair $(L, K) \in Acc$ s.t. $[Inf(\rho) \cap L = \emptyset] \wedge [Inf(\rho) \cap K \neq \emptyset]$
- Accepted language of DBA A is

 $\mathcal{L}^{\omega}(A) = \{ w \in \Sigma^{\omega} : \text{the run induced by } w \text{ is accepting in } A \}$

Rabin Automata

- > DRA for " $\Diamond \Box a$ "
- $► Acc = \{(\{q_0\}, \{q_1\}))\}$
- > Looping between q_0 and q_1 is rejected

- The class of languages accepted by DRA is the same as that of NBA
- For any LTL formula ϕ over AP, there exists a DRA A_{ϕ} with alphabet $\Sigma = 2^{AP}$ such that $\mathcal{L}^{\omega}(A_{\phi}) = Word(\phi)$
- Cost: we may need $2^{2^{|\phi| \cdot \log |\phi|}}$ states and $2^{|\phi|}$ pairs
- Tools: ltl2dstar <u>https://www.ltl2dstar.de/</u>

Rabin Game

Rabin Game

For LTS *T* and a set of accepting pairs $Acc = \{(L_1, K_1), ..., (L_n, K_n)\} \subseteq 2^X \times 2^X$, find a controller *C* such that for any adversary *A* there exists a pair (L_i, K_i) such that the run visits K_i infinite times and L_i only finite times.

General Idea:

- For each pair (L_i, K_i) , consider a Büchi Game for K_i + Safety Game for L_i
- Then we get $K'_i \subseteq K_i$ that can be visited infinitely often without visiting L_i
- Then we consider a reachability game for $\bigcup_{i=1,\dots,n} K'_i$
- The winning region is actually $Attr(\bigcup_{i=1,\dots,n} K'_i)$

Stage Summary

- Control problem can be viewed as a two-player game
- Safety game can be solved by inductively extending the unsafe region
- Reachability game can be solved by using *n*-step attractor
- Büchi game can be solved by identifying recurrent accepting states
- Rabin game can be solved by combing safety, reachability and Büchi
- LTL control synthesis can be solved as a game over the product
- General LTL needs to solve Rabin game
- dLTL can be solved by Büchi game
- scLTL can be solved by reachability game

Course Summary

- How to describe dynamic systems using formal models
 - labeled transition systems
 - bisimulation and quotient-based abstraction
- How to describe formal specifications/requirements
 - linear-time properties
 - Inear-temporal logics, computation tree logics
- How to formally verify whether a model satisfies a specification
 - automata-based LTL model checking
 - finite-state automata, Büchi automata, Rabin automata
- How to synthesize a reactive controller to enforce a specification
 - game-based LTL controller synthesis
 - > safety game, reachability game, Büchi game, Rabin game

Advanced Topics

- Timed & hybrid dynamic systems
- Formal abstraction of continuous dynamic systems
- Stochastic systems and probabilistic verification/synthesis
- Real-valued & real-time logics, e.g., MTL and STL
- Information-flow analysis or hyper-properties
- Control synthesis under imperfect information
- Verification & synthesis for multi-agent systems
- Temporal-logic-guided learning

Thank You!

yinxiang@sjtu.edu.cn http://xiangyin.sjtu.edu.cn

