Game-Based LTL Control Synthesis

Role of Inputs

« Control inputis not important in the verification problem since we want to
check the satisfaction for all runs

« Some “bad” runs can be avoided by suitably choosing inputs

T, & <©0yes, e.q., (xgx1)® yields ({no}{yes})®

« We can choose input sequence u4(u,)®, which gives {no}({yes})®

* In general, the effect of an input is non-deterministic |[Post(x,u)| > 1

« We also need to handle all possible consequences of the input

Deterministic LTS T with U = {uq, u,} Non-Deterministic LTS T,

Synthesis Problem

« A control strategy is a function C: X(X)* - U
- State run under C: xgxq - X, - such that x;,q € Post(x; C(xg -+ x,,))
 The set of all infinite runs of T under C: Run(C/T)

 The set of all infinite traces of T under C: Trace(C/T)

Control Synthesis Problem

Given an LTS T and a property P € (24P)®, find a control strategy
C:X(X)* > Usuchthat C/T = P,i.e., Trace(C/T) € P.

» for LTL formula ¢, C/T = ¢ means Trace(C/T) € Word(¢)

Case of Deterministic System

« A control strategy is not a single input sequence
« A controller should be reactive to non-determinism
« A singe (infinite) input sequence is enough when it is deterministic

« Deterministic synthesis problem is essentially a path planning problem
or open-loop control problem and can be solved by model checking
(returns a counter-example if negative)

LTL Path Planning by Model Checking

Given: T and LTL Formula ¢

« Use model checker to verify whether or not T & —¢
 If CHECK(T,—¢) = "Yes", then return “no controller exists”

* If CHECK(T,—¢) = "No“, then the model-checker will provide an infinite run p €
X® as counter-example, i.e., L(p) ¥ —¢. Return “p” as the planned path

General Case as a Two-Player Game

* Player-C: controller chooses an input u € U that is defined at x € X

« Player-A: adversary chooses a successor x’' € Post(x,u) and the system
moves to x'; then Player-C chooses and so forth...

« The strategy of Player-C is actually a controller C: X(X)* - U
« The strategy of Player-A is a function A: X(X)*U — X that resolves non-deter.

 If C and A are given, the initial-state xy € X, is given, then the run is uniquely
determined, denoted by p(4, C, x¢) and denote the trace by a(4, C, xy)

. Then C/T & P iff VA, Vxy € X: 6(4, C, x;) € P

U

Uy ‘eno Uy uz » C/T =0-3 can be achieved by fixing u,
K T

» CJ/T = <2 cannot be achieved by any C

control with non-determinism as a two-player game

Two-Player Games

Safety Game: stay within safe states (not to reach unsafe states)
Reachability Game: reach desired states within finite number of steps
Blchi Game: visit desired states infinitely often

Rabin Game: visit desired states infinitely often avoiding rejected states

S

vV V V V

Safety game is related to regular safety
Reachability game is related to scLTL
Bichi game and Rabin game are related to general LTL

Two-player game can also be formulated by explicitly partitioning the state-
space for each player

¢ O Player-A
<

Player-C

A different formulation of two-player game

Safety Game

Safety Game (Reach Avoid Game)

For LTS T and a set of unsafe region B € X, find a controller € such that
the run never reaches B under any possible adversary A.

O Winning Region: the set of states from which Player-C can win

O Player-C wins (exists a controller) if Xy € Xyyin

O By definition, control strategy is history based, but state-based strategy
(memoryless) strategy is sufficient for many games

Can you avoid state 8?

Solving Safety Game

4)
« We need to avoid unsafe states B € X

e To avoid B, we need to avoid states that cannot avoid B
B{ = Avoid(B) = {x € X:Vu € U, Post(x,u) N B + @}
« Then we also need to avoid B, = Avoid(B4)

 Keep deleting states until we get the winning region X,,;, € X s.t.

XyinNB=0 and Vx € X,,;,,,3u € U: Post(x,u) € X,,;n,
\ J

Safety Game Algorithm

* Delete B from X, B < B U Avoid(B)

* Repeat the above until B = B U Avoid(B)
« State remained are X,,;,,
 If Xg € X\yin, then “no controller”

« Otherwise, € chooses an input u € U at

L each x € X s.t. Post(x,u) € X,,i,,)

Solving Safety Game

4)
« We need to avoid unsafe states B € X

e To avoid B, we need to avoid states that cannot avoid B
B{ = Avoid(B) = {x € X:Vu € U, Post(x,u) N B + @}
« Then we also need to avoid B, = Avoid(B4)

 Keep deleting states until we get the winning region X,,;, € X s.t.

XyinNB=0 and Vx € X,,;,,,3u € U: Post(x,u) € X,,;n,
\ J

Safety Game Algorithm

* Delete B from X, B < B U Avoid(B)

* Repeat the above until B = B U Avoid(B)
« State remained are X,,;,,
 If Xg € X\yin, then “no controller”

« Otherwise, € chooses an input u € U at

L each x € X s.t. Post(x,u) € X,,i,,)

Reachability Game

Reachability Game

For LTS T and a set of desired region D € X, find a controller € such that
the run can always reaches D within finite steps under any possible A.

O Player-C losses the game iff the adversary can let the system loop in a
cycle in which there is no desired state

O If Player-C wins the game, then it can always reaches D within |X| steps

Can you reach state 3?

Solving Reachability Game

r- To guarantee reaching D € X in one step, we must in states D; = D U CPre(D;
CPre(D) = {x € X:3u € U, Post(x,u) € D}
« To guarantee reach D in two steps, we must in states D, = D; U CPre(D4)
By keep expending the region of attraction, we get the winning region
Xyin = Attr(D):=DuD,U---UD, = D,. For each D;.; we can always move to
D; to be “closer” to the target region
. J

Reachability Game Algorithm

« Define Dy =D
° Repeat Di+1 = Di U CPI‘E(Di) until Di = CPFE(Di)

 If Xg € Xyyin = D,,, then “no controller”

Dy =1{3},D, ={3,5},D; = {1,3,5} « Otherwise, € chooses an input u € U at each
D4_ = Xwin = {0, 1, 3, 5} X € Di S.t. POSt(x,u) - DO U--uU Di—l
C0)=C(1)=C(5)=u,€3)=u; _ J

Blichi Game

Bluchi Game

For LTS T and a set of accepting states F € X, find a controller € such
that the run can always visits F infinitely often under any possible A.

« Player-C wins the reachability game but
cannot win the Buichi game for F = {3}

« State 3 can only be guaranteed to be
visited once

« We should also take care of recurrence
for what happens after reaching F

Solving Buichi Game

4)
* To visit F again, we must in Attr(F)

« We need to avoid W, = X \ Attr(F) from F

« Therefore, we shrink accepting states to F = F \ APre(W,), where
APre(W,) = {x:Vu € U, Post(x,u) N W, # 0}

« Since F is changed, we need to computed Attr(F) and APre(W,) again

Buchi Game Algorithm

« F=F\APre(X\ Attr(F))

+ Repeat above until APre(X \ Attr(F))NnF = ¢

° If X X..... = Attr(F ,th £ troller”
F={1,4},W, = {5},APre(W,) = {4,5} 0 & Xwin r(F), then “no controller

F = {1}, Attr(F) = {0,1},W, = {2,3,4,5}| ° Otherwise, € chooses an input u € U based
APre(W,) = {3,4,5} on the reachability game for F

F\{3,4,5} = {1) ~ o

LTL Synthesis: Deterministic Case

4 N
« Suppose we have an LTS T and an LTL formula ¢

« We want to find a controller € such that C/T = ¢

* Assume LTL formula ¢ can be accepted by a DBA A4 (dLTL)
« Then webulld T ® Ay with accepting states Fg

« Solve the Blchi game for T Q Ay with Fg

« The winning strategy in T @ A4 can be mapped directly to T by looking at
the first component

» Note: we cannot use NBA for ¢p because the LTS T may be non-deterministic;
otherwise, we cannot really control the system

LTL Synthesis: Deterministic Case

!01 ! 0, 01

{02} {01} L N ‘
“((e @@@) O D2
1 U {02} I 01
LTS T DBA for dLTL ¢ = O (¢04 A G0y)

v
u . \
u1C[(x1» q0)}{x0. 20) 3 L(xz»fh)flil’[(xz: CIz)]
\b . 4/
2 (x3,40) “

Blchi game for T ® Ay W

LTL Synthesis: General Case

« Supposewe have an LTS T and an LTL formula ¢

« We want to find a controller € such that C/T = ¢

- We first build DRA A4, such that £L*(4,) = Word(¢)

« Thenwebuild T ® Ay With Accg = {(X X L1, X X K1), ..., (X X Lp, X X Ky,)}

« Solve the Rabin game for T @ Ay With Accg

« The winning strategy in T @ A4 can be mapped directly to T by looking at
the first component

» Note: we cannot use NBA for ¢p because the LTS T may be non-deterministic;
otherwise, we cannot really control the system

Rabin Automata

* In many problems we do need deterministic mechanism, but the
expressiveness of DFA is limited

« Using different accepting condition: Rabin acceptance

7

A Deterministic Rabin Automata (DRA) is a tuple
A=(0,q9, X Acc)

Qs afinite set of states, g € Q is the initial state, X is the alphabet
e §:Q XX - Qis apartial deterministic transition function
e Acc={(Ly,Ky),...,(L,, K;))} € 29 x 29 is the acceptance condition.

\

« Arun p=qeq19: ---is accepting if there exists a pair (L, K) € Acc s.t.
[Inf(p) NL = @] A[Inf(p) NK # @]

 Accepted language of DBA A is
L?(A) = {w € X?: the run induced by w is accepting in A}

Rabin Automata

P > DRA for “o[a”
.a (q1) > Acc = {(ao (a1))
/ ./ » Looping between g, and q4is rejected
b a

« The class of languages accepted by DRA is the same as that of NBA
« Forany LTL formula ¢ over AP, there exists a DRA A4 with alphabet
X = 24P such that £%(A44) = Word(¢)

219|-log|¢|

- Cost: we may need 2 states and 2!?! pairs

 Tools: Itl2dstar https://www.ltI2dstar.de/

https://www.ltl2dstar.de/

Rabin Game

Rabin Game

For LTS T and a set of accepting pairs Acc = {(L{,K), ..., (L, K;,)} € 2% x 2%,
find a controller € such that for any adversary A there exists a pair
(L;, K;) such that the run visits K; infinite times and L; only finite times.

General ldea:
« For each pair (L;, K;), consider a Biichi Game for K; + Safety Game for L;

« Then we get K; € K; that can be visited infinitely often without visiting L;

!

« Then we consider areachability game for U;=y ., K;

« The winning region is actually Attr(U;—1 _, K})

Stage Summary

Control problem can be viewed as a two-player game

« Safety game can be solved by inductively extending the unsafe region
« Reachability game can be solved by using n-step attractor

« Bichi game can be solved by identifying recurrent accepting states

« Rabin game can be solved by combing safety, reachability and Blichi
 LTL control synthesis can be solved as a game over the product
 General LTL needs to solve Rabin game

« dLTL can be solved by Blchi game

 SCLTL can be solved by reachability game

Course Summary

How to describe dynamic systems using formal models
» labeled transition systems
» bisimulation and quotient-based abstraction

How to describe formal specifications/requirements
> linear-time properties
> linear-temporal logics, computation tree logics

How to formally verify whether a model satisfies a specification
» automata-based LTL model checking
» finite-state automata, Blchi automata, Rabin automata

How to synthesize a reactive controller to enforce a specification
» game-based LTL controller synthesis
» safety game, reachability game, Blichi game, Rabin game

Advanced Topics

« Timed & hybrid dynamic systems

 Formal abstraction of continuous dynamic systems

« Stochastic systems and probabilistic verification/synthesis
 Real-valued & real-time logics, e.g., MTL and STL

« Information-flow analysis or hyper-properties

« Control synthesis under imperfect information

« Verification & synthesis for multi-agent systems

« Temporal-logic-guided learning

Thank You!

yinxiang@sjtu.edu.cn
http://xiangyin.sjtu.edu.cn

