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10 Non-Random Parameter Estimations
Criteria for Non-Random Parameters

▶ For random parameter estimation problems, we assume that one has a prior distribution
on θ and we can define a global estimation error criterion, the Bayes risk, which depends
on the prior but not on any particular value of the parameter.

▶ In some cases, however, there is no such prior information. This is called non-random pa-
rameter estimation. For this problem, the formulation of optimal non-random parameter
estimation requires a completely different approach. This is because if we do not have
a prior distribution on the parameter virtually any reasonable estimation error criterion
will be local, i.e., it will depend on the true parameter value.

▶ One possible approach is to consider the minimax criteria for the worst-case, i.e.,

θ̂ = argmin
θ̂

{
max
θ∈Θ

{
Eθ(cost(θ̂, θ))

}}
, where Eθ(cost(θ̂, θ)) =

∫
x∈X

cost(θ̂(x), θ)f(x; θ)dx

▶ However, the above minmax formulation is in general very difficult to solve. Here we
consider several weaker conditions that a “good” estimator should satisfy. Formally,
given an estimator θ̂ : X → Θ, we define

– the estimator bias at a point θ to be bθ(θ̂) = Eθ[θ̂]− θ;
– the estimator variance at a point θ to be varθ(θ̂) = Eθ[(θ̂ − Eθ(θ̂))

2];

We say an estimator θ̂ is unbiased if ∀θ ∈ Θ : bθ(θ̂) = 0. Note that for MSE, we have

MSEθ(θ̂) = E[(θ̂−θ)2] = E[(θ̂−Eθ(θ̂))
2]+[Eθ(θ̂)−θ]2+2Eθ[θ̂−Eθ(θ̂)]bθ(θ̂) = varθ(θ̂)+b2

θ(θ̂)

▶ It is natural to require that a good estimator is unbiased. This suggests a reasonable
design approach: constrain the class of admissible estimators to be unbiased and try to
find one that minimizes variance over this class.

▶ In some cases such an approach leads to a really good, in fact optimal, unbiased estimator
called the Uniform Minimum Variance Unbiased (UMVU) estimator θ̂UMVU, i.e.,
θ̂UMVU is unbiased and ∀θ ∈ Θ : varθ(θ̂UMVU) ≤ varθ(θ̂) for any unbiased θ̂.

Asymptotic Properties of “Good” Estimators

▶ Consider estimator θ̂n = θ̂n(X1, . . . , Xn). In some cases, θ̂n may not be “good” enough
when observing finite n observations, but it may converge to some “good” properties
asymptotically. Formally, we say θ̂n is

– asymptotically unbiased: if ∀θ ∈ Θ : limn→∞ bθ(θ̂n) = 0;
– consistent: if ∀θ ∈ Θ : limn→∞ MSEθ(θ̂n) = 0;
– weakly consistent: if ∀θ ∈ Θ,∀ϵ > 0 : limn→∞ Pθ(|θ̂n − θ| > ϵ) = 0;

▶ Next, we will consider how to design good estimators for non-random parameters. We
consider two classes of estimations: method of moments and maximum likelihood.
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Method of Moments Estimators (Scalar Parameter)

▶ We consider the scalar case, i.e., θ = (θ1). The basic idea of the method of moments is as
follows. Suppose X = (X1, . . . , Xn) are i.i.d. and each Xi follows from the statistic model
f(x; θ), θ ∈ Θ. We can first compute kth order moment by

mk(θ) = Eθ[X
k
i ] =

∫
x∈X

xkf(x; θ)dx

▶ Note that mk is a function of θ, say mk = gk(θ). Suppose gk is invertible for some order
k. Then we can compute θ by θ = g−1

k (mk)

▶ The problem is that we do not know mk because we do not know the parameters θ ∈ Θ.
However, if observations X = (X1, . . . , Xn) are i.i.d. from f(x; θ), then we can estimate
the kth order moment mk by its kth sample moment

m̂k =
1

n

n∑
i=1

Xk
i

Note that m̂k is an unbiased, consistent estimator for mk(θ) because

bθ(m̂k) = Eθ

[
1

n

n∑
i=1

Xk
i

]
−mk =

1

n

(
Eθ

[
Xk

1

]
+ · · ·+ Eθ

[
Xk

n

])
−mk = 0

varθ(m̂k) = varθ

(
1

n

n∑
i=1

Xk
i

)
=

1

n2

n∑
i=1

varθ(Xk
i ) =

1

n
varθ(Xk

i ) → 0

▶ Therefore, by replacing mk by its unbiased estimate m̂k, we get the moment estimator

θ̂MOM = g−1
k (m̂k)

Maximum Likelihood Estimators (Scalar Parameter)

▶ The basic idea of the maximum likelihood method is as follows. For any observation
x = (x1, . . . , xn), we define the likelihood function

L(θ) = f(x; θ)

which is just the joint PDF of X = (X1, . . . , Xn). Sometimes it is more convenient to use
the log-likelihood function l(θ) = ln f(x; θ).

▶ Then the maximum likelihood estimator simply maximizes the likelihood function by

θ̂ML = argmax
θ

f(X; θ) = argmax
θ

L(θ) = argmax
θ

l(θ)

Intuitively, it chooses parameter θ under which the observation x is the most likely.
▶ Actually, the maximum likelihood estimator only depends on the sufficient statistic. For

example, when T = T (X) is an SS, we can write f(X; θ) = g(T ; θ)h(X). Therefore,

θ̂ML = argmax
θ

f(X; θ) = argmax
θ

g(T ; θ)
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Examples for Methods of Moments

▶ Example 1: Bernoulli Random Variables
Bernoulli measurements arise anytime one deals with binary quantized versions of con-
tinuous variables, e.g., exceed a threshold. Then the parameter of interest is typically the
probability of success, i.e., the probability that the measured variable is a “logical one”.
Then the model is X = (X1, . . . , Xn), where Xi are i.i.d. and Xi ∼ θx(1−θ)1−x, x ∈ {0, 1}.
Since m1(θ) = 1 ·P (Xi = 1)+ 0 ·P (Xi = 0) = θ, we can compute an MOM estimator by:

θ̂MOM = m̂1 =
1

n

n∑
i=1

Xi = X

▶ Example 2: Poisson Random Variables
Poisson measurements are ubiquitous in many scenarios where there are counting mea-
surements. That is the total number of counts registered over a finite time interval is a
Poisson random variable with a rate parameter.
Then the model is X = (X1, . . . , Xn), where Xi are i.i.d. and Xi ∼ f(x; θ) = θx

x!
e−θ, x ∈

{0, 1, 2, . . . }. As we have already verified before, m1(θ) = E(Xi) = θ. Therefore, like in
the Bernoulli example a possible MOM estimator of θ is the sample mean

θ̂1 = m̂1 =
1

n

n∑
i=1

Xi = X

Alternatively, we can compute the second moment, which is m2(θ) = E(X2
i ) = θ + θ2.

Therefore, another MOM estimator is the (positive) value of θ̂2 which satisfies the equation

θ̂2 + θ̂22 =
1

n

n∑
i=1

X2
i = X2 ⇒ θ̂2 =

−1±
√
1 + 4X2

2

As yet another example, we can express m2(θ) as m2(θ) = θ + m2
1(θ). Hence, another

MOM estimator is
θ̂3 = X2 − (X)2 =

1

n

n∑
i=1

(Xi −X)2

If we compare θ̂1 and θ̂3, we have

Eθ(θ̂1) = θ, varθ(θ̂1) =
θ

n
and Eθ(θ̂3) =

n− 1

n
θ, varθ(θ̂3) ≈

2θ2 + θ

n

Then we note that θ̂1 is unbiased while θ̂2 and θ̂3 are asymptotically unbiased. Further-
more, θ̂1 compares favorably to θ̂3 since it has both lower bias and lower variance.

General Properties for MOM Estimators

▶ The MOM estimator has the following properties:
– MOM estimators are asymptotically unbiased as n → ∞
– MOM estimators are consistent.
– MOM estimator is not unique, i.e., it depends on what order moment is used.
– MOM is inapplicable in cases where moments do not exist (e.g. Cauchy r.v.).
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Examples for Methods of Maximum Likelihood

▶ Example 1: Poisson Random Variables
For X = (X1, . . . , Xn), where each Xi ∼ f(x; θ) = θx

x!
e−θ, x = 0, 1, . . . is i.i.d., by consid-

ering sufficient statistic T =
∑n

i=1Xi, we have

f(X; θ) =
∏
i=1

θXi

Xi!
e−θ = θ

∑n
i=1 Xie−nθ

n∏
i=1

1

Xi!
= θT e−nθ︸ ︷︷ ︸

g(T,θ)

n∏
i=1

1

Xi!︸ ︷︷ ︸
h(X)

Then, by maximizing g(T, θ), we compute the ML estimator as

d

dθ
ln g(T, θ) =

d

dθ
(T ln θ − nθ) =

T

θ
− n = 0 ⇒ θ̂ML =

T

n
= X

Also, the ML estimator is unbiased and we have

bθ(θ̂ML) = Eθ(θ̂ML)− θ = 0 and varθ(θ̂ML) =
1

n2
varθ(T ) =

1

n
varθ(Xi) =

θ

n

▶ Example 2: Uniform Random Variables
For X = (X1, . . . , Xn), where each Xi ∼ f(x; θ) = 1

θ
1[0,θ](Xi) is i.i.d., by considering

sufficient statistic T = maxni=1Xi, we have

f(X; θ) =
∏
i=1

1

θ
1[Xi,∞)(θ) =

1

θn
1[T,∞)(θ)︸ ︷︷ ︸
g(T,θ)

Since g(T, θ) is decreasing in θ from T , to maximize g(T, θ), the ML estimator is

θ̂ML = T = max
i=1,...,n

Xi

In fact, we can compute the PDF of f(t; θ) by

f(t; θ) =
d

dt
Pθ(T ≤ t) =

d

dt
Pθ(X1 ≤ t, . . . , Xn ≤ t) =

d

dt

(
t

θ

)n

=
ntn−1

θn
1[t,∞)(θ)

Actually, we can see that the ML estimator is biased, but asymptotically unbiased

bθ(θ̂ML) = Eθ(θ̂ML)− θ =

∫ ∞

−∞
tf(t; θ)dt− θ =

n

θn

∫ θ

0

tndt− θ =
n

n+ 1
θ − θ

Also, we can show that the ML estimator is consistent because

varθ(θ̂ML) = Eθ(θ̂
2
ML)− E2

θ (θ̂ML) ∝
θ2

n
→ 0 a.s. n → ∞
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Examples for Methods of Maximum Likelihood (Cont.)

▶ Example 3: None-Existence of Unbiased Estimator
Let us consider i.i.d. X = (X1, . . . , Xn), where each Xi ∼ f(x; θ) = θx

1+θ
, x = {0, 1}. We

can show that T =
∑n

i=1Xi is a sufficient statistic

f(X; θ) =
1

(1 + θ)n
θ
∑n

i=1 Xi =
1

(1 + θ)n
θT︸ ︷︷ ︸

g(T,θ)

Then, by maximizing g(T, θ), we compute the ML estimator as

d

dθ
ln g(T, θ) =

d

dθ
(−n ln (1 + θ) + T ln θ) = − n

1 + θ
+

T

θ
= 0 ⇒ θ̂ML =

T

n− T

One can verify that the above ML estimator is biased. In fact, we argue a stronger result
that there is no unbiased estimator for this parameter! To this end, we consider the case
of n = 1, i.e., we only make a single observation X1. Let θ̂ be any function of X1 and
assume θ̂(1) = a and θ̂(0) = b. If θ̂ is unbiased, then we should have the following relation

Eθ(θ̂) = a · θ

1 + θ
+ b · 1

1 + θ
= θ

However, we cannot find such a and b because

aθ + b︸ ︷︷ ︸
linear

= θ(1 + θ)︸ ︷︷ ︸
quadratic

General Properties for ML Estimators

▶ MLEs are asymptotically unbiased, i.e.,
lim
n→∞

(bθ(θ̂ML)) = lim
n→∞

(Eθ(θ̂ML)− θ) = 0, ∀θ ∈ Θ

▶ MLEs are consistent , i.e.,

∀θ ∈ Θ : lim
n→∞

MSEθ(θ̂ML) = lim
n→∞

(
varθ(θ̂ML) + b2

θ(θ̂ML)
)
= 0

▶ MLEs are invariant under any transformation of parameters, i.e.,
φ = g(θ) ⇒ φ̂ = g(θ̂)

▶ MLEs are asymptotically UMVU in the sense that

lim
n→∞

nvarθ(θ̂ML) =
1

F1(θ)

where 1/F1(θ) is a quantity known as the Fisher information, which will be introduced
soon, and 1/F1(θ) specifies the fastest possible asymptotic rate of decay of any unbiased
estimator’s variance.

▶ MLEs are asymptotically Gaussian in the sense that
√
n(θ̂ML − θ) → N

(
0,

1

F1(θ)

)
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The Cramér-Rao Bound on Estimator Variance

▶ We naturally has the following question: “given a model f(x; θ), does there exist an
unbiased estimator with minimum variance?” The answer is actually provided by the
well-known Cramér-Rao Lower Bound (CRLB).

▶ To present the CRLB, we first introduce the notion of Fisher Information F (θ) asso-
ciated with a scalar parameter θ

F (θ) = Eθ

[(
∂

∂θ
ln f(X; θ)

)2
]
= Eθ

[
− ∂2

∂θ2
ln f(X; θ)

]

▶ Then the main theorem is as follows

Theorem: Cramér-Rao Lower Bound

Let θ ∈ Θ be a non-random scalar parameter and assume Θ is an open subset of R
and f(x; θ) is differentiable in θ. For any unbiased estimator θ̂ of θ, we have

varθ(θ̂) ≥
1

F (θ)

where “=” holds if and only if for some non-random scalar kθ such that
∂

∂θ
ln f(x; θ) = kθ(θ̂ − θ)

Then the quantify 1/F (θ) is called the Cramér-Rao Bound (CRB). When the CRB
is attainable it is said to be a tight bound.

Proof of the CRB

▶ The first step is to notice that the mean of the derivative of the log-likelihood is equal to
zero:

Eθ

[
∂ ln f(X; θ)

∂θ

]
= Eθ

[
1

f(X; θ)

∂

∂θ
f(X; θ)

]
=

∫
∂f(x; θ)

∂θ
dx =

∂

∂θ

∫
f(x; θ)dx = 0

▶ The second step is to show that the correlation between the derivative of the log-likelihood
and the estimator is zero:

Eθ

[
(θ̂ − θ)(

∂ ln f(X; θ)

∂θ
)

]
= Eθ

[
θ̂(

∂ ln f(X; θ)

∂θ
)

]
− θ Eθ

[
∂ ln f(X; θ)

∂θ

]
︸ ︷︷ ︸

=0

=

∫
θ̂
∂f(x; θ)

∂θ
dx =

∂

∂θ

∫
θ̂(x)f(x; θ)dx︸ ︷︷ ︸
=Eθ(θ̂)=θ

= 1

▶ Recall the Cauchy-Schwarz inequality E2(UV ) ≤ E(U2)E(V 2), where “=” when U = kV .

1 =

(
Eθ

[
(θ̂ − θ)(

∂ ln f(X; θ)

∂θ
)

])2

≤ E[(θ̂ − θ)2]Eθ

[(
∂

∂θ
ln f(X; θ)

)2
]
= varθ(θ̂)F (θ)

This gives us the CRLB 1
F (θ)

≤ varθ(θ̂)
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Examples of the CRB

▶ Example 1: For X = (X1, . . . , Xn), where each Xi ∼ θx

x!
e−θ is i.i.d Poisson

∂

∂θ
ln f(X; θ) =

∂

∂θ

[
(

n∑
i=1

Xi) ln(θ)− nθ + c

]
=

1

θ

n∑
i=1

Xi − n =
n

θ︸︷︷︸
kθ

 1

n

n∑
i=1

Xi︸ ︷︷ ︸
θ̂ML

−θ


Therefore, we can conclude that θ̂ML = X is actually optimal among all unbiased estima-
tors. Furthermore, the Fisher information is

F (θ) = Eθ

[
− ∂2

∂θ2
ln f(X; θ)

]
= Eθ

[
1

θ2

n∑
i=1

Xi

]
=

n

θ

Therefore, for any unbiased θ̂, we have varθ(θ̂) ≥ θ
n

and “=” is achieved by θ̂ = θ̂ML.

▶ Example 2: For X = (X1, . . . , Xn), where each Xi ∼
(
m
x

)
θx(1− θ)m−x is i.i.d. binomial

f(X; θ) =
n∏

i=1

f(Xi; θ) = θ
∑n

i=1 Xi(1−θ)mn−
∑n

i=1 Xi

n∏
i=1

(
m

Xi

)
= θnX(1−θ)n(m−X)

n∏
i=1

(
m

Xi

)
and

∂

∂θ
ln f(X; θ) =

n

θ
X − n(m−X)

1− θ
=

nm

θ(1− θ)︸ ︷︷ ︸
kθ

(
1

m
X︸︷︷︸
θ̂

−θ)

One can verify that 1
m
X is an unbiased estimator of θ

Eθ(θ̂) = Eθ(
1

m
X) =

1

nm

n∑
i=1

Eθ(Xi) =
1

nm
· n · Eθ(Xi) = θ

Therefore, it achieves the CRB and the Fisher information is

F (θ) = Eθ

[
− ∂2

∂θ2
ln f(X; θ)

]
=

nm

θ(1− θ)

which means that varθ(θ̂) = θ(1−θ)
nm

.
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Exponential Family

▶ We are interested in finding efficient estimators that are UMVU. However, as we have
already shown, unbiased estimator may not even exist. The concept of the fexponential
family provides us a sufficient condition for the existence of efficient estimators. Formally,
we say a random variable X is in the exponential family if its PDF is of form

f(x; θ) = a(θ)b(x)ec(θ)T (x)

▶ Examples of distributions in the exponential family include: Gaussian with unknown
mean or variance, Poisson with unknown mean, exponential with unknown mean,
Bernoulli with unknown success probability, binomial with unknown success probabil-
ity.

▶ Then the main theorem is as follows

Theorem: Exponential Family and Efficient Estimators

Efficient estimators only exist when f(x; θ) is a member of exponential family.

Proof: Based on the CRLB, for any efficient estimator θ̂, we have∫ θ′

θ0

∂

∂θ
ln f(x; θ)dθ =

∫ θ′

θ0

kθ(θ̂ − θ)dθ

This gives us

ln f(x; θ′)− ln f(x; θ0)︸ ︷︷ ︸
b(x)

= θ̂︸︷︷︸
T (x)

∫ θ′

θ0

kθdθ︸ ︷︷ ︸
c(θ′)

−
∫ θ′

θ0

kθθdθ︸ ︷︷ ︸
d(θ′)

⇒ f(x; θ) = e−d(θ)︸ ︷︷ ︸
a(θ)

b(x)ec(θ)T (x)

Therefore, f(x; θ) is a member of exponential family.
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