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10 Non-Random Parameter Estimations

Criteria for Non-Random Parameters

» For random parameter estimation problems, we assume that one has a prior distribution
on # and we can define a global estimation error criterion, the Bayes risk, which depends
on the prior but not on any particular value of the parameter.

» In some cases, however, there is no such prior information. This is called non-random pa-
rameter estimation. For this problem, the formulation of optimal non-random parameter
estimation requires a completely different approach. This is because if we do not have
a prior distribution on the parameter virtually any reasonable estimation error criterion
will be local, i.e., it will depend on the true parameter value.

» One possible approach is to consider the minimax criteria for the worst-case, i.e.,

0 = arg min {max {E@(COSt(é, 0))}} , where Ey(cost(d,0)) = / cost(A(z), 0) f (x; 0)dx
6 0cO zeX

» However, the above minmax formulation is in general very difficult to solve. Here we
consider several weaker conditions that a “good” estimator should satisfy. Formally,
given an estimator 6 : X — O, we define

— the estimator bias at a point 6 to be by() = Ey[d] — 0;
— the estimator variance at a point 6 to be vary(0) = Ey[(0 — Ey(0))?];

We say an estimator 6 is unbiased if V0 € © : b@(é) = 0. Note that for MSE, we have

MSE,(8) = E[(0—0)%] = E[(0—Ey(0))*]+[Es(0)—0]*+2Ey[0—Ep(6)]by(8) = varg(8)+b3(0)

» [t is natural to require that a good estimator is unbiased. This suggests a reasonable
design approach: constrain the class of admissible estimators to be unbiased and try to
find one that minimizes variance over this class.

» In some cases such an approach leads to a really good, in fact optimal, unbiased estimator
called the Uniform Minimum Variance Unbiased (UMVU) estimator QUMVU, ie.,
Ourvu is unbiased and VO € © : varg(eUMVU) < var9(9) for any unbiased 0.

Asymptotic Properties of “Good” Estimators

» Consider estimator 6§, = én(Xl, ..., X,). In some cases, 0, may not be “good” enough
when observing finite n observations, but it may converge to some “good” properties
asymptotically. Formally, we say 6, is

— asymptotically unbiased: if V0 € O : lim,,_, bg(én> =0;
— consistent: if V0 € © : lim,,_, MSE@(én> =0;
— weakly consistent: if V0 € ©,Ve > 0 : lim,,_, P@(|én — 0] >¢€) =0;

» Next, we will consider how to design good estimators for non-random parameters. We
consider two classes of estimations: method of moments and maximum likelihood.
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Method of Moments Estimators (Scalar Parameter)

» We consider the scalar case, i.e., @ = (0;). The basic idea of the method of moments is as
follows. Suppose X = (X7,...,X,) are i.i.d. and each X follows from the statistic model
f(z;0),0 € ©. We can first compute kth order moment by

mi(0) = Bg[XF) = / z* f(x;0)dx

TEX

» Note that my is a function of 6, say my = gr(0). Suppose gy is invertible for some order
k. Then we can compute 6 by 8 = g, ' (my,)

» The problem is that we do not know m; because we do not know the parameters 6 € ©.
However, if observations X = (Xji,...,X,,) are i.i.d. from f(z;0), then we can estimate
the kth order moment m; by its kth sample moment

R 1=
1=1
Note that 7 is an unbiased, consistent estimator for my () because

bg (ﬁ”l,k> = E@

n

%ZXZ“] —my = ! (Eo [Xﬂ—i-'“—i-Ee [Xﬂ)—mk:()
i=1

A 1O k 1 ¢ k 1 k
varg (1) = varg <ﬁ ZXi > = Zvarg(Xi = gvarg(Xi ) —0
i=1 =1
» Therefore, by replacing my, by its unbiased estimate my, we get the moment estimator

Orviom = g (M)

Maximum Likelihood Estimators (Scalar Parameter)

» The basic idea of the maximum likelihood method is as follows. For any observation

x = (x1,...,2,), we define the likelihood function
L(0) = f(x;0)
which is just the joint PDF of X = (X3,...,X,,). Sometimes it is more convenient to use

the log-likelihood function [(0) = In f(x;0).
» Then the maximum likelihood estimator simply maximizes the likelihood function by

Oy, = argmax f(X; ) = arg max L(0) = arg max [(6)
0 o 0

Intuitively, it chooses parameter § under which the observation x is the most likely.

» Actually, the maximum likelihood estimator only depends on the sufficient statistic. For
example, when 7' = T'(X) is an SS, we can write f(X;60) = g(T;0)h(X). Therefore,

Oa, = arg max f(X; ) = arg max g(T'; )
0 o
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Examples for Methods of Moments

» Example 1: Bernoulli Random Variables
Bernoulli measurements arise anytime one deals with binary quantized versions of con-
tinuous variables, e.g., exceed a threshold. Then the parameter of interest is typically the
probability of success, i.e., the probability that the measured variable is a “logical one”.

Then the model is X = (X1,..., X,,), where X; arei.i.d. and X; ~ 6*(1—-0)'"%,2 € {0,1}.
Since my(f) =1-P(X; =1)+0- P(X; =0) = 0, we can compute an MOM estimator by:

. 1 <& _
o =11 =—» X;=X
MOM ma nlzl

» Example 2: Poisson Random Variables
Poisson measurements are ubiquitous in many scenarios where there are counting mea-
surements. That is the total number of counts registered over a finite time interval is a
Poisson random variable with a rate parameter.

Then the model is X = (X3,...,X,), where X; are i.i.d. and X; ~ f(z;0) = Z—Te_e,x €
{0,1,2,...}. As we have already verified before, m,(0) = E(X;) = 6. Therefore, like in
the Bernoulli example a possible MOM estimator of # is the sample mean

. ] — —
01 =my =— X=X
1=y n ;
Alternatively, we can compute the second moment, which is m»(0) = E(X7) = 6 + 6°.

Therefore, another MOM estimator is the (positive) value of 5 which satisfies the equation

L 1 — ~ —14++1+4X2
92+95252X3:X2 = b= 2+
=1

As yet another example, we can express my(6) as mo(f) = 0 + m3(0). Hence, another
MOM estimator is 2

If we compare 6, and ég, we have

. . 0 ~ n—1 A 20% 40
Ey(01) = 0,varg(0,) = - and  FEy(03) = - 0, vary(6s) ~ -

Then we note that 6; is unbiased while 6 and 5 are asymptotically unbiased. Further-
more, 6; compares favorably to 3 since it has both lower bias and lower variance.

J

General Properties for MOM Estimators

» The MOM estimator has the following properties:

— MOM estimators are asymptotically unbiased as n — oo
— MOM estimators are consistent.
— MOM estimator is not unique, i.e., it depends on what order moment is used.

— MOM is inapplicable in cases where moments do not exist (e.g. Cauchy r.v.).
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Examples for Methods of Maximum Likelihood

» Example 1: Poisson Random Variables
For X = (Xi,...,X,), where each X; ~ f(x;0) = 9—, 0 2 =0,1,... is i.i.d., by consid-
ering sufficient statistic 7' =Y " | X;, we have

6~ n
f(X;9)=HX' ! = g e _nGHXI_HT _MHXI

h(X)
Then, by maximizing g(T, 6), we compute the ML estimator as
d d T A T —
delng(T 0) = de(Tln@—n@)z;—n:() = HML:E:X

Also, the ML estimator is unbiased and we have

. . A 1 1 0
bg(QML) = EQ(HML) — 60 =0and varg(HML) = ﬁvarg(T) = ﬁvarg(Xi) = ﬁ

» Example 2: Uniform Random Variables
For X = (Xy,...,X,), where each X; ~ f(z;0) = %1[0,9}()(1-) is i.i.d., by considering
sufficient statistic 7" = max}" ; X;, we have

1 1
= 11 7100 (0) = 22 17,00)(0)

~——
9(T,0)

Since ¢(T,0) is decreasing in 6 from T, to maximize g(7),6), the ML estimator is

In fact, we can compute the PDF of f(¢;0) by

d d d (t\" nt"!
)= P T <t)=—Py(Xy<t,.. . Xp<t)=— (=] =21

Actually, we can see that the ML estimator is biased, but asymptotically unbiased

[%S) 0
bg(Onr.) = Ep(Omw) —0:/ tf(t;0)dt — 0 = gﬁn/ tdt — 0 = 6—6
—00 0

n+1

Also, we can show that the ML estimator is consistent because

2

VaI’g(éML) = EG(él%/IL) — Eg(éML) X E —0as. n— o
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Examples for Methods of Maximum Likelihood (Cont.)

» Example 3: None-Existence of Unbiased Estimator
Let us consider i.i.d. X = (Xy,...,X,), where each X; ~ f(x;0) = %,x = {0,1}. We
can show that 7= 3" | X; is a sufficient statistic

1 D 1
X:0) = 2im1 Xi — T
F(X;6) (1+9)n9 (1+9)”9
9(T,0)

Then, by maximizing ¢(T, 6), we compute the ML estimator as

1 +T—O = Oy = I
1+6 6 ML= T

d d

@lng(T, 0) = @(—nln (14+6)+TIno) =
One can verify that the above ML estimator is biased. In fact, we argue a stronger result
that there is no unbiased estimator for this parameter! To this end, we consider the case
of n =1, i.e., we only make a single observation X;. Let 6 be any function of X; and
assume 0(1) = a and 6(0) = b. If § is unbiased, then we should have the following relation
. 0 1

Bo0)=a g+ 155 ="

However, we cannot find such a and b because

af +b=0(1+06)
N~ ——

linear quadratic

General Properties for ML Estimators

» MLEs are asymptotically unbiased, i.e.,
11_)111 (bg(éML)) = h_)m (E@(éML> = 0) = O,V@ €06

» MLEs are consistent , i.e.,

Vo € O : lim MSEg(éML> = lim (varg(éML) + bg(éML)> =0

n—oo n—oo

» MLEs are invariant under any transformation of parameters, i.e.,

~

p=90) = ¢=g(0)

» MLEs are asymptotically UMVU in the sense that

A 1
am nvarg(fhi) = o

where 1/F;(0) is a quantity known as the Fisher information, which will be introduced
soon, and 1/F(f) specifies the fastest possible asymptotic rate of decay of any unbiased
estimator’s variance.

» MLEs are asymptotically Gaussian in the sense that

V(O —0) - N (0, ﬁ)
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The Cramér-Rao Bound on Estimator Variance

» We naturally has the following question: “given a model f(z;0), does there exist an
unbiased estimator with minimum variance?” The answer is actually provided by the
well-known Cramér-Rao Lower Bound (CRLB).

» To present the CRLB, we first introduce the notion of Fisher Information F'(#) asso-
ciated with a scalar parameter 6

9 2

— 1l X0
(551 r0x:0))
» Then the main theorem is as follows

Theorem: Cramér-Rao Lower Bound

Let 6 € © be a non-random scalar parameter and assume © is an open subset of R

and f(x;0) is differentiable in 6. For any unbiased estimator 6 of 6, we have
1

F(9)

2

= E, {_a_ lnf(X;é))}

F(0) = E, o

varg(é) >

where “=" holds if and only if for some non-random scalar ky such that
9 .
%lnf(x;e) = ko(0 — 0)

Then the quantify 1/F(#) is called the Cramér-Rao Bound (CRB). When the CRB
is attainable it is said to be a tight bound.

Proof of the CRB

» The first step is to notice that the mean of the derivative of the log-likelihood is equal to
Zero:

ol f(X;0)] T 0f(x:6) |
EH{T}_E"[ﬂx;e@ﬂ){’m}‘/ e = g | T 0de =

» The second step is to show that the correlation between the derivative of the log-likelihood
and the estimator is zero:

Eo {(é—e)(ialng;“e))} = By {é(ialn’;(;(?e))} —0E, {dlnf(x 9)] /98“:‘ 6) 4 — %/é(x)f(x;e)da:: 1

N———— N————
=0 =Ey(0)=0

» Recall the Cauchy-Schwarz inequality E*(UV) < E(U?)E(V?), where “=" when U = kV .

1= (& |0~ e)(%@f“”w < B[(0 - 0)")E,

( (,;99 In f(X; 9))2] — varg(6)F(0)

This gives us the CRLB +5 < varg(6)

)

(@)
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Examples of the CRB

» Example 1: For X = (X,...,X,), where each X; ~ %¢~? is i.i.d Poisson

oML

0 0
55 0 f(X:6) = =2 [(in) In(f) —nd + c

Therefore, we can conclude that O, = X is actually optimal among all unbiased estima-
tors. Furthermore, the Fisher information is

82
F Ey|———1 X: X;
)= B |~ 3w f(X:0)| = 922 ]
Therefore, for any unbiased é, we have varg(é) > % and “=" is achieved by 0 = Oy

» Example 2: For X = (X,..., X,), where each X; ~ (")6"(1 —6)™" is i.i.d. binomial

n

£(x;0) = [[ £(::6) = 65 ¥ (1 -y 5 ] (;7? ) — o (1-oye D ] (Zg )
i=1 N0 i=1 N

=1

and ( _)
0 — nm-X nm 1 —
gg 1/ (X:6) = eX_ P i Trw e
SN—— Y
ko 0

One can verify that %7 is an unbiased estimator of

Eg(é):Eg anEg = —— .n-Ey(X;) =9

Therefore, it achieves the CRB and the Fisher information is

2

0 nm
F(0) = Ey [—@QQIHf(X 9)] 00— )
which means that varg(6) = 9(:”;9).
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Exponential Family

» We are interested in finding efficient estimators that are UMVU. However, as we have
already shown, unbiased estimator may not even exist. The concept of the fexponential
family provides us a sufficient condition for the existence of efficient estimators. Formally,
we say a random variable X is in the exponential family if its PDF is of form

F(:0) = a(0)b(x)e®T@

» Examples of distributions in the exponential family include: Gaussian with unknown
mean or variance, Poisson with unknown mean, exponential with unknown mean,
Bernoulli with unknown success probability, binomial with unknown success probabil-
ity.

» Then the main theorem is as follows

Theorem: Exponential Family and Efficient Estimators

Efficient estimators only exist when f(z;60) is a member of exponential family.

Proof: Based on the CRLB, for any efficient estimator é, we have

0/

9/
9 In f(x;0)d0 = / ko(0 — 0)d6
6, 00 o

This gives us

0’ o’
/ kodf — / ke0dd = f(l‘, Q) = e_d(e) b(x)ec(e)T(iv)
T(z) 200 % a(6)

—_—— N——
c(6") d(e’)

In f(z;0") — In f(x;6) =

=
&
<%>

Therefore, f(z;0) is a member of exponential family.




