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5 Stochastic Processes & Martingales
Basic Concepts of Random Processes

▶ In many real-world problems, we are not just facing a single random variable X : Ω → R.
We may have a sequence of random variables X1, X2, X3, . . . over the same sample space
evolving over time, which is called a random process (or stochastic process).

▶ Here, we informally define a random process as a (finite or infinite) sequence of random
variables {Xt : t ∈ T }. If T = {1, 2, . . . }, then it is called a discrete-time random process;
if T = [0, T ] ⊆ R, then it is called continuous-time. We will only study discrete-time
random processes in this class.

▶ Given a random process {Xt : t = 1, 2, . . . }, if we fix the time t, then we get a random
variable. If we fix the sample point ω ∈ Ω, then we get a sample path (or a trajectory).

Motivating Example: Random Walk

▶ A sequence of i.i.d. random variables X1, X2, . . . is random process but this is not very
interesting. A simple random process with interesting properties is the random walk.
Suppose X1, X2, . . . are i.i.d. random variables such that P (Xi = 1) = P (Xi = −1) = 0.5.
Then we can define a sequence of new random variables S1, S2, . . . by

Sn = X1 +X2 + · · ·+Xn

▶ A key question in random process is as follows: what is the sample space of {Si}? Suppose
that we only consider random walk with finite horizon of length T ∈ N. Then we can
construct the so called canonical probability space by

Ω = {−1, 1} × {−1, 1} × · · · × {−1, 1}︸ ︷︷ ︸
T -time

= {−1, 1}T

Since the individual “coin tosses” need to be fair and independent. This dictates that
any two sequences be equally likely. There are 2T possible sequences of length T , so we
can define the probability measure by

∀w ∈ Ω : P ({ω}) =
(
1

2

)T

Then we can define each random variable Si : Ω → Z by:

∀w = (c1, c2, . . . , cT ) : Sn(ω) = c1 + c2 + · · ·+ cn

Then {Sn : n = 1, . . . , T} is the desired random process for random walk.

▶ Based on the above construction, one may better understand why fixing ω ∈ Ω yields
a sample path. Because {Sn : n = 1, . . . , T} may live in a big sample space containing
all information. For example, fixing w = (1, 1, 1, 1), we get sample path 1, 2, 3, 4 and by
fixing w = (1,−1,−1,−1), we get sample path 1, 0,−1,−2.
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Filtrations

▶ Note that although X1, X2, . . . are defined over the same sample space Ω, the events we
can tell at each time instant are different. For example, for S2 in the random walk, it
makes sense to consider {(1, 1, 1, 1)} and {(−1,−1, 1, 1)} as two different events because
we already have the outcomes of the first two tosses at time t = 2. However, it does not
make much sense to consider {(1, 1, 1, 1)} and {(1, 1,−1,−1)} as two different events for
S2 because we cannot predict the future!

▶ Therefore, we are only interested in identifying the smallest event set that is sufficient
enough to describe the current information. Recall that our information can be encoded
as a σ-field. Furthermore, as time goes by, we should be able to tell more and more precise
events, i.e., the information set should be non-decreasing. This leads to the definition of
filtrations.

Definition: Filtrations

A sequence of σ-fields F1,F2, . . . on Ω is called a filtration if

F1 ⊆ F2 ⊆ · · · ⊆ F

▶ Recall that σ-field generated by X1, . . . , Xn, denoted by σ(X1, . . . , Xn) is the smallest
σ-field containing all events of form {Xi ∈ B}, where B ∈ B(R) is a Borel set. For
a sequence X1, X2, . . . of coin tosses, we take Fn = σ(X1, . . . , Xn). Then consider the
following event

A = {the first 5 tosses produce at least 2 heads}
Then we should have A ∈ F5 but A ̸∈ F4. This is because this information cannot be
determined at instant n = 4 but can be determined at n = 5. If we consider event

B = {there exists at least 1 head in the sequence X1, X2, . . . }

Then we have B ̸∈ Fn for any n. Also, if we consider event

C = {there are no more 2 heads and 2 tails among the first 5 tosses}

Then we have B ∈ F1 because B = ∅.

▶ Based on the above discussion, at time n, random variable Xn at least needs σ-field Fn

to support its information. This leads to the definition of adapted filtration.

Definition: Adapted Stochastic Processes

We say a sequence of random variables X1, X2, . . . is adapted to a filtration
F1,F2, . . . if for any n = 1, 2, . . . , Xn is Fn-measurable. In some books, we also
call the process {Xn} an {Fn}-adapted process.

▶ We can check easily (as a homework) that, by considering Fn = σ(X1, . . . , Xn), random
process X1, X2, . . . is adapted to filtration F1,F2, . . . . In fact, such an {Fn} is the smallest
filtration to which {Xn} is adapted.
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Random Walk

▶ Suppose we consider the above random walk for T = 3. Then

F1 =2{{HHH,HHT,HTH,HTT},{THH,THT,TTH,TTT}}

F2 =2{{HHH,HHT},{HTH,HTT},{THH,THT},{TTH,TTT}}

F3 =2{{HHH},{HHT},{HTH},{HTT},{THH},{THT},{TTH},{TTT}}

Gambling Example

▶ Let us consider the following game. You can play a sequence of independent fail coin
tosses. For each play, you can set c as your stake. If the result is T , then you lose ¥c; if
the result is H, then you win ¥c. There is a well-known strategy called the martingale
strategy saying that you double your stake every time a loss is faced. For example,
initially your stake is c1 = 1. If you lose, then set c2 = 2 and if you loss again and again,
then set c3 = 4, c4 = 8, c5 = 16 and so forth. For such a strategy, we will always win ¥1:
if H appears in the nth toss, then

2n−1 − 2n−2 − · · · − 4− 2− 1 = 1

Then by keeping playing the martingale strategy, you will win arbitrary amount of money.

▶ The problem of the above “sure winning” strategy is that (i) you are assumed to have an
infinite amount of capital; and (ii) you are allowed to play the game for an infinite time
horizon. In practice, you need a mechanism to quit the game either when the time is out
or you reach a desired capital or you are bankrupt.

▶ Suppose that you are allowed to play the martingale strategy for only at most n times.
Then your expected payoff is

1× 1

2
+ 1× 1

4
+ · · ·+ 1× 1

2n
− (1 + 2 + · · ·+ 2n−1)× 1

2n
= 0

▶ Question: Suppose you have unlimited time but your initial capital is a. Furthermore, you
set your stake as c = 1 constantly for each toss. What is your probability of bankrupt? If
you will quit game when your capital reaches some pre-defined value b > a, what is your
probability of bankrupt? (This is essentially a random walk with absorbing barriers)

What We Need to Describe a Game by Stochastic Processes

▶ First, we need to have a game dynamic. For this, we have already understood that it
can be described as a process {Xn} adapted to filtration {Fn}.

▶ Second, we need to have a staking strategy that determines {cn}. Each cn can be a
random variable lives in the information set up to time n− 1.

▶ Third, we need a stopping strategy that determines when we quit the game. How to
formally describe this?

▶ Finally, our ultimate goal is to evaluate if a game is inherently fair meaning that you
cannot beat the system no matter what you play.
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Martingales

Definition: Martingales

A discrete time process {Xn} is called a martingale with respect to filtration {Fn} if

• {Xn} is {Fn}-adapted;

• E(|Xn|) < ∞ for any n ≥ 1;

• E(Xn | Fn−1) = Xn−1 almost surely, for all n ≥ 2.

▶ Recall that X = Y almost surely if P (X = Y ) = P ({ω : X(ω) = Y (ω)}) = 1.

▶ In the last condition:
- if “=” is replaced by “≤”, then {Xn} is called a super-martingale;
- if “=” is replaced by “≥”, then {Xn} is called a sub-martingale.

Let us discuss some consequences of the above definition

▶ The last condition essentially says that: given the information available up to time n− 1,
i.e., Fn−1, the expectation for the value of the process is unchanged. By taking what is
known, we can see more clearly that

E(Xn −Xn−1 | Fn−1) = E(Xn | Fn−1)− E(Xn−1 | Fn−1) = E(Xn | Fn−1)−Xn−1 = 0

▶ Note that {Fn} is a filtration. If we use the tower property, then for any m < n, we have

E(Xn | Fm) = E(E(Xn | Fn−1) | Fm) = E(Xn−1 | Fm) = · · · = E(Xm | Fm) = Xm

By taking the expectation, we have

E(Xn) = E(X0),∀n ≥ 0

▶ Therefore, if we consider {Xn} as the capital of a gambler at time n, then this can be
interpreted that the game is fair in the sense that the expected profit in each step is 0.
In the super-martingale case, this value is ≤ 0 meaning that the game is unfavourable.

▶ A Simple Example of Martingale
Let X1, X2, . . . be a sequence of independent integrable random variables such that
E(Xn) = 0,∀n ≥ 1. We define

Sn = X1 + · · ·+Xn and Fn = σ(X1, . . . , Xn)

Then {Sn} is a martingale with respect to filtration {Fn} because

E(Sn+1 | Fn) = E(Xn+1 | Fn) + E(Sn | Fn) = E(Xn+1) + Sn = Sn

Note that here we just require independent not i.i.d.. As a special case, random walk is
also a martingale process.
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Games of Chance

▶ Let W1,W2, . . . be a sequence of random variables, where Wn are your winnings (or losses)
per unit stake in game n. If your stake in each game is one, then your total winnings after
n games will be

Xn = W1 +W2 + · · ·Wn

We take the filtration Fn = σ(W1, . . . ,Wn) with X0 = 0 and F0 = {∅,Ω}.

▶ Suppose that you can vary the stake to be Cn in game n. In particular, Cn may be zero
if you refrain from playing the nth game; it may even be negative if you own the casino
and can accept other people’s bets. When the time comes to decide your stake Cn, you
will know the outcomes of the first n − 1 games. Therefore it is reasonable to assume
that Cn is Fn−1-measurable, where Fn−1 represents your knowledge accumulated up to
and including game n− 1. In particular, since nothing is known before the first game, we
take F0 = {∅,Ω}.

Definition: Previsible

A sequence of random variables C1, C2, . . . is said to be previsible with respect to
filtration F1,F2, · · · if for any n ≥ 1, Cn is Fn−1-measurable, where F0 = {∅,Ω}.
Such a sequence in gambling is also called a gambling strategy.

▶ If you follow strategy {Cn}, then your total winnings after n games will be

Yn = C1W1 + · · ·+ CnWn = C1(X1 −X0) + · · ·+ Cn(Xn −Xn−1) =: (C •X)n

The process {(C • X)n} is called the martingale transform of {Xn} by {Cn}. Then
the big question now is: Can you choose {Cn} such that your expected total winnings
are positive? The following theorem shows that this is impossible if the system itself is
inherently fair!

Theorem: You Cannot Beat the Systems

Let {Cn} be a bounded previsible process, i.e., there exists C > 0 such that
|Cn(ω)| ≤ C for any n ≥ 1 and ω ∈ Ω. Then, if {Xn} is a (super or sub) martingale,
then so is {(C •X)n}.

Proof: Since Cn and (C • X)n−1 are Fn−1-measurable, by “taking out what is
known”, we have

E((C •X)n | Fn−1) =E((C •X)n−1 + Cn(Xn −Xn−1) | Fn−1)

=(C •X)n−1 + Cn(E(Xn | Fn−1)−Xn−1)

Since Xn is a martingale, we have

Cn(E(Xn | Fn−1)−Xn−1) = 0

Therefore, E((C •X)n | Fn−1) = (C •X)n−1.
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More Examples of Martingales

▶ Random Product
Let X1, X2, . . . be a sequence of independent integrable random variables such that
E(Xn) = 1,∀n ≥ 1. We define

Mn = X1 × · · · ×Xn and Fn = σ(X1, . . . , Xn)

Then {Mn} is martingale with respect to filtration {Fn} because

E(Mn+1 | Fn) = E(Xn+1Mn | Fn) = MnE(Xn+1 | Fn) = MnE(Xn+1) = Mn

▶ Accumulating Data about a Random Variable
Let {Fn} be an arbitrary filtration and X is an integrable random variable. We define
the data accumulated about X at time n by

Xn = E(X | Fn)

Then Xn is a martingale because of the tower property of conditional expectation

E(Xn+1 | Fn) = E(E(X | Fn+1) | Fn) = E(X | Fn) = Xn

▶ Polya’s Urn
At time 0, an urn contains one black ball and one white ball. At each time n = 1, 2, . . . ,
a ball is chosen at random from the urn and we add a new ball of the same colour. Just
after time n, we have n+ 2 balls in the urn, of which Bn + 1 black balls, where Bn is the
number of black balls chosen by time n. We consider the proportion of black balls in the
urn after time n

Mn =
Bn + 1

n+ 2

Then {Mn} is a martingale with respect to filtration Fn = σ(B1, . . . , Bn). To see this, we
consider a sequence of random variables {Xn}, where Xn takes value 1 if a black ball is
chosen at n and zero otherwise. Then Bn = X1 + · · ·+Xn. We have

P (X1 = 1) =
1

2
, P (Xn = 1 | Bn−1 = k) =

k + 1

n+ 1

In terms of conditional expectation, this means that

E(Xn | Fn−1) =
Bn−1 + 1

n+ 1

Then we have

E(Mn | Fn−1) =E

(
Bn−1 +Xn + 1

n+ 2
| Fn−1

)
=

Bn−1 + 1

n+ 2
+ E

(
Xn

n+ 2
| Fn−1

)
=
Bn−1 + 1

n+ 2
+

Bn−1 + 1

(n+ 1)(n+ 2)
=

Bn−1 + 1

n+ 1

=Mn−1
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