5 Stochastic Processes \& Martingales

Basic Concepts of Random Processes

- In many real-world problems, we are not just facing a single random variable $X: \Omega \rightarrow \mathbb{R}$. We may have a sequence of random variables $X_{1}, X_{2}, X_{3}, \ldots$ over the same sample space evolving over time, which is called a random process (or stochastic process).
- Here, we informally define a random process as a (finite or infinite) sequence of random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$. If $\mathcal{T}=\{1,2, \ldots\}$, then it is called a discrete-time random process; if $\mathcal{T}=[0, T] \subseteq \mathbb{R}$, then it is called continuous-time. We will only study discrete-time random processes in this class.
- Given a random process $\left\{X_{t}: t=1,2, \ldots\right\}$, if we fix the time t, then we get a random variable. If we fix the sample point $\omega \in \Omega$, then we get a sample path (or a trajectory).

Motivating Example: Random Walk

- A sequence of i.i.d. random variables X_{1}, X_{2}, \ldots is random process but this is not very interesting. A simple random process with interesting properties is the random walk. Suppose X_{1}, X_{2}, \ldots are i.i.d. random variables such that $P\left(X_{i}=1\right)=P\left(X_{i}=-1\right)=0.5$. Then we can define a sequence of new random variables S_{1}, S_{2}, \ldots by

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

- A key question in random process is as follows: what is the sample space of $\left\{S_{i}\right\}$? Suppose that we only consider random walk with finite horizon of length $T \in \mathbb{N}$. Then we can construct the so called canonical probability space by

$$
\Omega=\underbrace{\{-1,1\} \times\{-1,1\} \times \cdots \times\{-1,1\}}_{T \text {-time }}=\{-1,1\}^{T}
$$

Since the individual "coin tosses" need to be fair and independent. This dictates that any two sequences be equally likely. There are 2^{T} possible sequences of length T, so we can define the probability measure by

$$
\forall w \in \Omega: P(\{\omega\})=\left(\frac{1}{2}\right)^{T}
$$

Then we can define each random variable $S_{i}: \Omega \rightarrow \mathbb{Z}$ by:

$$
\forall w=\left(c_{1}, c_{2}, \ldots, c_{T}\right): S_{n}(\omega)=c_{1}+c_{2}+\cdots+c_{n}
$$

Then $\left\{S_{n}: n=1, \ldots, T\right\}$ is the desired random process for random walk.

- Based on the above construction, one may better understand why fixing $\omega \in \Omega$ yields a sample path. Because $\left\{S_{n}: n=1, \ldots, T\right\}$ may live in a big sample space containing all information. For example, fixing $w=(1,1,1,1)$, we get sample path $1,2,3,4$ and by fixing $w=(1,-1,-1,-1)$, we get sample path $1,0,-1,-2$.

Filtrations

- Note that although X_{1}, X_{2}, \ldots are defined over the same sample space Ω, the events we can tell at each time instant are different. For example, for S_{2} in the random walk, it makes sense to consider $\{(1,1,1,1)\}$ and $\{(-1,-1,1,1)\}$ as two different events because we already have the outcomes of the first two tosses at time $t=2$. However, it does not make much sense to consider $\{(1,1,1,1)\}$ and $\{(1,1,-1,-1)\}$ as two different events for S_{2} because we cannot predict the future!
- Therefore, we are only interested in identifying the smallest event set that is sufficient enough to describe the current information. Recall that our information can be encoded as a σ-field. Furthermore, as time goes by, we should be able to tell more and more precise events, i.e., the information set should be non-decreasing. This leads to the definition of filtrations.

Definition: Filtrations

A sequence of σ-fields $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ on Ω is called a filtration if

$$
\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \subseteq \cdots \subseteq \mathcal{F}
$$

- Recall that σ-field generated by X_{1}, \ldots, X_{n}, denoted by $\sigma\left(X_{1}, \ldots, X_{n}\right)$ is the smallest σ-field containing all events of form $\left\{X_{i} \in B\right\}$, where $B \in \mathcal{B}(\mathbb{R})$ is a Borel set. For a sequence X_{1}, X_{2}, \ldots of coin tosses, we take $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Then consider the following event

$$
A=\{\text { the first } 5 \text { tosses produce at least } 2 \text { heads }\}
$$

Then we should have $A \in \mathcal{F}_{5}$ but $A \notin \mathcal{F}_{4}$. This is because this information cannot be determined at instant $n=4$ but can be determined at $n=5$. If we consider event

$$
B=\left\{\text { there exists at least } 1 \text { head in the sequence } X_{1}, X_{2}, \ldots\right\}
$$

Then we have $B \notin \mathcal{F}_{n}$ for any n. Also, if we consider event

$$
C=\{\text { there are no more } 2 \text { heads and } 2 \text { tails among the first } 5 \text { tosses }\}
$$

Then we have $B \in \mathcal{F}_{1}$ because $B=\emptyset$.

- Based on the above discussion, at time n, random variable X_{n} at least needs σ-field \mathcal{F}_{n} to support its information. This leads to the definition of adapted filtration.

Definition: Adapted Stochastic Processes

We say a sequence of random variables X_{1}, X_{2}, \ldots is adapted to a filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$ if for any $n=1,2, \ldots, X_{n}$ is \mathcal{F}_{n}-measurable. In some books, we also call the process $\left\{X_{n}\right\}$ an $\left\{F_{n}\right\}$-adapted process.

- We can check easily (as a homework) that, by considering $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$, random process X_{1}, X_{2}, \ldots is adapted to filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots$. In fact, such an $\left\{\mathcal{F}_{n}\right\}$ is the smallest filtration to which $\left\{X_{n}\right\}$ is adapted.

Random Walk

Suppose we consider the above random walk for $T=3$. Then

$$
\begin{aligned}
& \mathcal{F}_{1}=2^{\{\{H H H, H H T, H T H, H T T\},\{T H H, T H T, T T H, T T T\}\}} \\
& \mathcal{F}_{2}=2^{\{\{H H H, H H T\},\{H T H, H T T\},\{T H H, T H T\},\{T T H, T T T\}\}} \\
& \mathcal{F}_{3}=2^{\{\{H H H\},\{H H T\},\{H T H\},\{H T T\},\{T H H\},\{T H T\},\{T T H\},\{T T T\}\}}
\end{aligned}
$$

Gambling Example

- Let us consider the following game. You can play a sequence of independent fail coin tosses. For each play, you can set c as your stake. If the result is T, then you lose $¥ c$; if the result is H, then you win $¥ c$. There is a well-known strategy called the martingale strategy saying that you double your stake every time a loss is faced. For example, initially your stake is $c_{1}=1$. If you lose, then set $c_{2}=2$ and if you loss again and again, then set $c_{3}=4, c_{4}=8, c_{5}=16$ and so forth. For such a strategy, we will always win $¥ 1$: if H appears in the nth toss, then

$$
2^{n-1}-2^{n-2}-\cdots-4-2-1=1
$$

Then by keeping playing the martingale strategy, you will win arbitrary amount of money.

- The problem of the above "sure winning" strategy is that (i) you are assumed to have an infinite amount of capital; and (ii) you are allowed to play the game for an infinite time horizon. In practice, you need a mechanism to quit the game either when the time is out or you reach a desired capital or you are bankrupt.
- Suppose that you are allowed to play the martingale strategy for only at most n times. Then your expected payoff is

$$
1 \times \frac{1}{2}+1 \times \frac{1}{4}+\cdots+1 \times \frac{1}{2^{n}}-\left(1+2+\cdots+2^{n-1}\right) \times \frac{1}{2^{n}}=0
$$

- Question: Suppose you have unlimited time but your initial capital is a. Furthermore, you set your stake as $c=1$ constantly for each toss. What is your probability of bankrupt? If you will quit game when your capital reaches some pre-defined value $b>a$, what is your probability of bankrupt? (This is essentially a random walk with absorbing barriers)

What We Need to Describe a Game by Stochastic Processes

- First, we need to have a game dynamic. For this, we have already understood that it can be described as a process $\left\{X_{n}\right\}$ adapted to filtration $\left\{\mathcal{F}_{n}\right\}$.
- Second, we need to have a staking strategy that determines $\left\{c_{n}\right\}$. Each c_{n} can be a random variable lives in the information set up to time $n-1$.
- Third, we need a stopping strategy that determines when we quit the game. How to formally describe this?
- Finally, our ultimate goal is to evaluate if a game is inherently fair meaning that you cannot beat the system no matter what you play.

Martingales

Definition: Martingales

A discrete time process $\left\{X_{n}\right\}$ is called a martingale with respect to filtration $\left\{\mathcal{F}_{n}\right\}$ if

- $\left\{X_{n}\right\}$ is $\left\{\mathcal{F}_{n}\right\}$-adapted;
- $E\left(\left|X_{n}\right|\right)<\infty$ for any $n \geq 1$;
- $E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=X_{n-1}$ almost surely, for all $n \geq 2$.
- Recall that $X=Y$ almost surely if $P(X=Y)=P(\{\omega: X(\omega)=Y(\omega)\})=1$.
- In the last condition:
- if "=" is replaced by " \leq ", then $\left\{X_{n}\right\}$ is called a super-martingale;
- if "=" is replaced by " \geq ", then $\left\{X_{n}\right\}$ is called a sub-martingale.

Let us discuss some consequences of the above definition

- The last condition essentially says that: given the information available up to time $n-1$, i.e., \mathcal{F}_{n-1}, the expectation for the value of the process is unchanged. By taking what is known, we can see more clearly that

$$
E\left(X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right)=E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-E\left(X_{n-1} \mid \mathcal{F}_{n-1}\right)=E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-X_{n-1}=0
$$

- Note that $\left\{\mathcal{F}_{n}\right\}$ is a filtration. If we use the tower property, then for any $m<n$, we have

$$
E\left(X_{n} \mid \mathcal{F}_{m}\right)=E\left(E\left(X_{n} \mid \mathcal{F}_{n-1}\right) \mid \mathcal{F}_{m}\right)=E\left(X_{n-1} \mid \mathcal{F}_{m}\right)=\cdots=E\left(X_{m} \mid \mathcal{F}_{m}\right)=X_{m}
$$

By taking the expectation, we have

$$
E\left(X_{n}\right)=E\left(X_{0}\right), \forall n \geq 0
$$

- Therefore, if we consider $\left\{X_{n}\right\}$ as the capital of a gambler at time n, then this can be interpreted that the game is fair in the sense that the expected profit in each step is 0 . In the super-martingale case, this value is ≤ 0 meaning that the game is unfavourable.

- A Simple Example of Martingale

Let X_{1}, X_{2}, \ldots be a sequence of independent integrable random variables such that $E\left(X_{n}\right)=0, \forall n \geq 1$. We define

$$
S_{n}=X_{1}+\cdots+X_{n} \text { and } \mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)
$$

Then $\left\{S_{n}\right\}$ is a martingale with respect to filtration $\left\{\mathcal{F}_{n}\right\}$ because

$$
E\left(S_{n+1} \mid \mathcal{F}_{n}\right)=E\left(X_{n+1} \mid \mathcal{F}_{n}\right)+E\left(S_{n} \mid \mathcal{F}_{n}\right)=E\left(X_{n+1}\right)+S_{n}=S_{n}
$$

Note that here we just require independent not i.i.d.. As a special case, random walk is also a martingale process.

Games of Chance

- Let W_{1}, W_{2}, \ldots be a sequence of random variables, where W_{n} are your winnings (or losses) per unit stake in game n. If your stake in each game is one, then your total winnings after n games will be

$$
X_{n}=W_{1}+W_{2}+\cdots W_{n}
$$

We take the filtration $\mathcal{F}_{n}=\sigma\left(W_{1}, \ldots, W_{n}\right)$ with $X_{0}=0$ and $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.

- Suppose that you can vary the stake to be C_{n} in game n. In particular, C_{n} may be zero if you refrain from playing the nth game; it may even be negative if you own the casino and can accept other people's bets. When the time comes to decide your stake C_{n}, you will know the outcomes of the first $n-1$ games. Therefore it is reasonable to assume that C_{n} is \mathcal{F}_{n-1}-measurable, where \mathcal{F}_{n-1} represents your knowledge accumulated up to and including game $n-1$. In particular, since nothing is known before the first game, we take $\mathcal{F}_{0}=\{\emptyset, \Omega\}$.

Definition: Previsible

A sequence of random variables C_{1}, C_{2}, \ldots is said to be previsible with respect to filtration $\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots$ if for any $n \geq 1, C_{n}$ is \mathcal{F}_{n-1}-measurable, where $\mathcal{F}_{0}=\{\emptyset, \Omega\}$. Such a sequence in gambling is also called a gambling strategy.

- If you follow strategy $\left\{C_{n}\right\}$, then your total winnings after n games will be

$$
Y_{n}=C_{1} W_{1}+\cdots+C_{n} W_{n}=C_{1}\left(X_{1}-X_{0}\right)+\cdots+C_{n}\left(X_{n}-X_{n-1}\right)=:(C \bullet X)_{n}
$$

The process $\left\{(C \bullet X)_{n}\right\}$ is called the martingale transform of $\left\{X_{n}\right\}$ by $\left\{C_{n}\right\}$. Then the big question now is: Can you choose $\left\{C_{n}\right\}$ such that your expected total winnings are positive? The following theorem shows that this is impossible if the system itself is inherently fair!

Theorem: You Cannot Beat the Systems

Let $\left\{C_{n}\right\}$ be a bounded previsible process, i.e., there exists $C>0$ such that $\left|C_{n}(\omega)\right| \leq C$ for any $n \geq 1$ and $\omega \in \Omega$. Then, if $\left\{X_{n}\right\}$ is a (super or sub) martingale, then so is $\left\{(C \bullet X)_{n}\right\}$.

Proof: Since C_{n} and $(C \bullet X)_{n-1}$ are \mathcal{F}_{n-1}-measurable, by "taking out what is known", we have

$$
\begin{aligned}
E\left((C \bullet X)_{n} \mid \mathcal{F}_{n-1}\right) & =E\left((C \bullet X)_{n-1}+C_{n}\left(X_{n}-X_{n-1}\right) \mid \mathcal{F}_{n-1}\right) \\
& =(C \bullet X)_{n-1}+C_{n}\left(E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-X_{n-1}\right)
\end{aligned}
$$

Since X_{n} is a martingale, we have

$$
C_{n}\left(E\left(X_{n} \mid \mathcal{F}_{n-1}\right)-X_{n-1}\right)=0
$$

Therefore, $E\left((C \bullet X)_{n} \mid \mathcal{F}_{n-1}\right)=(C \bullet X)_{n-1}$.

More Examples of Martingales

- Random Product

Let X_{1}, X_{2}, \ldots be a sequence of independent integrable random variables such that $E\left(X_{n}\right)=1, \forall n \geq 1$. We define

$$
M_{n}=X_{1} \times \cdots \times X_{n} \text { and } \mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)
$$

Then $\left\{M_{n}\right\}$ is martingale with respect to filtration $\left\{\mathcal{F}_{n}\right\}$ because

$$
E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=E\left(X_{n+1} M_{n} \mid \mathcal{F}_{n}\right)=M_{n} E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=M_{n} E\left(X_{n+1}\right)=M_{n}
$$

- Accumulating Data about a Random Variable

Let $\left\{\mathcal{F}_{n}\right\}$ be an arbitrary filtration and X is an integrable random variable. We define the data accumulated about X at time n by

$$
X_{n}=E\left(X \mid \mathcal{F}_{n}\right)
$$

Then X_{n} is a martingale because of the tower property of conditional expectation

$$
E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=E\left(E\left(X \mid \mathcal{F}_{n+1}\right) \mid \mathcal{F}_{n}\right)=E\left(X \mid \mathcal{F}_{n}\right)=X_{n}
$$

- Polya's Urn

At time 0 , an urn contains one black ball and one white ball. At each time $n=1,2, \ldots$, a ball is chosen at random from the urn and we add a new ball of the same colour. Just after time n, we have $n+2$ balls in the urn, of which $B_{n}+1$ black balls, where B_{n} is the number of black balls chosen by time n. We consider the proportion of black balls in the urn after time n

$$
M_{n}=\frac{B_{n}+1}{n+2}
$$

Then $\left\{M_{n}\right\}$ is a martingale with respect to filtration $\mathcal{F}_{n}=\sigma\left(B_{1}, \ldots, B_{n}\right)$. To see this, we consider a sequence of random variables $\left\{X_{n}\right\}$, where X_{n} takes value 1 if a black ball is chosen at n and zero otherwise. Then $B_{n}=X_{1}+\cdots+X_{n}$. We have

$$
P\left(X_{1}=1\right)=\frac{1}{2}, P\left(X_{n}=1 \mid B_{n-1}=k\right)=\frac{k+1}{n+1}
$$

In terms of conditional expectation, this means that

$$
E\left(X_{n} \mid \mathcal{F}_{n-1}\right)=\frac{B_{n-1}+1}{n+1}
$$

Then we have

$$
\begin{aligned}
E\left(M_{n} \mid \mathcal{F}_{n-1}\right) & =E\left(\left.\frac{B_{n-1}+X_{n}+1}{n+2} \right\rvert\, \mathcal{F}_{n-1}\right)=\frac{B_{n-1}+1}{n+2}+E\left(\left.\frac{X_{n}}{n+2} \right\rvert\, \mathcal{F}_{n-1}\right) \\
& =\frac{B_{n-1}+1}{n+2}+\frac{B_{n-1}+1}{(n+1)(n+2)}=\frac{B_{n-1}+1}{n+1} \\
& =M_{n-1}
\end{aligned}
$$

