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6 Stopping Times & Applications of Martingale Theory
Stopping Times

▶ In games of chance, you usually have the option to quit at any time. For example, you
can fix in advance that you will quit after k rounds. Or you can decide to quit either
when you bankrupt or when you win enough many. Therefore, you need a condition to
trigger when you quit, which is called the stopping time.

▶ Note that a stopping time is not a fixed number because it depends on the specific
realization of your process. Therefore, a stopping time is a random variable τ : Ω →
{1, 2, . . . } ∪ {∞}.

▶ Furthermore, after the outcome at instant n, the information you have is Fn. Therefore,
your information must be sufficient enough to support your decision.

Definition: Stopping Times

A random variable τ : Ω → {1, 2, . . . } ∪ {∞} is said to be a stopping time w.r.t. a
filtration {Fn} if

∀n = 1, 2, · · · : {τ = n} = {ω ∈ Ω : τ(ω) = n} ∈ Fn

▶ A naive stopping time is ∀ω ∈ Ω : τ(ω) = k that fixes the quit time in advance. This is
indeed a stopping time because {τ = n} = ∅ when n ̸= k and {τ = n} = Ω when n = k.

▶ One of the most commonly used stopping time is the time of first entry. Formally, let
{Xn} be a process adapted to filtration {Fn} and let B ∈ B(R) be a Borel set. Then the
following random variable τ : Ω → {1, 2, . . . } ∪ {∞} is a stopping time

τ = min{n : Xn ∈ B}

To see why it is a stopping time, for any n = 1, 2, . . . , we write

{τ = n} = {X1 /∈ B} ∩ {X2 /∈ B} ∩ · · · ∩ {Xn−1 /∈ B} ∩ {Xn ∈ B}

Because B is a Borel set, we have each of the sets on the right-hand side above belongs
to Fn = σ(X1, . . . , Xn). Therefore, their intersection also belongs to Fn.

▶ Remark: An Equivalent Definition
In some textbook, stopping times are defined by {τ ≤ n} ∈ Fn rather than {τ = n} ∈ Fn.
However, these two conditions are equivalent:

– If ∀n = 1, 2, . . . : {τ ≤ n} ∈ Fn, then ∀n = 1, 2, . . . : {τ ≤ n− 1} ∈ Fn−1 ⊆ Fn. So

∀n = 1, 2, . . . : {τ = n} = {τ ≤ n} \ {τ ≤ n− 1} ∈ Fn

– If ∀n = 1, 2, . . . : {τ = n} ∈ Fn, then ∀k = 1, 2, . . . , n : {τ = k} ∈ Fk ⊆ Fn. So

∀n = 1, 2, . . . : {τ ≤ n} = {τ = 1} ∪ · · · ∪ {τ = n} ∈ Fn
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Stopped Processes

▶ Given a process {Xn} adapted to filtration {Fn} and a stopping time τ . Essentially, τ
truncates the process at the instant of τ(ω). That is, after you quit the game, your total
capital remains unchanged.

▶ For any numbers a and b, we denote a∧b = min{a, b}. Then we call {Xτ∧n} the process
stopped at τ , which is also denoted by Xτ

n . Specifically, we have

∀ω ∈ Ω : Xτ
n(ω) = Xτ(ω)∧n(ω)

▶ The stopped process {Xτ∧n} is also adapted to {Fn}. To see this, for any Borel set
B ∈ B(R), we can write

{Xτ∧n ∈ B} = {Xn ∈ B, τ > n} ∪
n∪

k=1

{Xk ∈ B, τ = k}

where {Xn ∈ B, τ > n} = {Xn ∈ B} ∩ {τ > n} ∈ Fn and for each k = 1, . . . , n, we have

{Xk ∈ B, τ = k} = {Xk ∈ B} ∩ {τ = k} ∈ Fk ⊆ Fn

Therefore, we have Xτ∧n ∈ Fn

Elementary Stopping Theorem

▶ In fact, we can consider a stopping time τ : Ω → {1, 2, . . . }∪{∞} as a gambling strategy
(previsible process) {Cn} defined by

Cn =

{
1 if τ ≥ n
0 if τ < n

To see why Cn is Fn−1-measurable, for any B ∈ B(R), there are four cases for {Cn ∈ B}:

– If 0 /∈ B and 1 /∈ B, then {Cn ∈ ∅} = ∅ ∈ Fn−1

– If 0 ∈ B and 1 ∈ B, then {Cn ∈ {0, 1}} = Ω ∈ Fn−1

– If 0 ∈ B and 1 /∈ B, then {Cn = 0} = {τ < n} = {τ ≤ n− 1} ∈ Fn−1

– If 0 /∈ B and 1 ∈ B, then {Cn = 1} = {τ ≥ n} = {τ > n− 1} ∈ Fn−1

Therefore, the Xτ∧n is the martingale transform

Xτ∧n = (C •X)n = C1(X1 −X0) + · · ·+ Cn(Xn −Xn−1)

This gives use the following theorem

Elementary Stopping Theorem

Let τ be a stopping time. If Xn is a (super or sub) martingale, then so is Xτ∧n.
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Doob’s Optional Stopping Theorem

▶ When {Xn} is a martingale, we know that E(Xn) = E(X1). Furthermore, the elemen-
tary stopping theorem just makes sure that E(Xτ∧n) = E(X1) for any stopping time τ .
However, it does not mean that E(Xτ ) = E(X1)!

▶ For example, when we play the martingale strategy, we have E(Xτ ) = 1 ̸= E(X1) = 0,
although E(Xτ∧n) = E(X1) = 0 (check this by yourself). The key issue is that, the
gambler’s expected loss just before the ultimate win is infinite, i.e.,

E(Xτ−1) =
∞∑
n=1

Xn−1P (τ = n)) =
∞∑
n=1

−1− 2− · · · − 2n−2

2n
= −

∞∑
n=1

2n−1 − 1

2n
= −∞

▶ Another example is the random walk with absorbing barriers. Specifically, let Y1, Y2, . . . be
i.i.d. with P (Yi = 1) = P (Yi = −1) = 0.5 and let Xn = Y1+ · · ·+Yn. We have shown that
{Xn} is a martingale. Let τ = min{n : Xn = 1}. Then we have E(Xτ∧n) = E(X1) = 0.
However, since P (τ < ∞) = 1, we have E(Xτ ) = 1 ̸= 0 = E(X1).

▶ Therefore, it will be very useful to investigate, under what condition, we further have
E(Xτ ) = E(X1). This is given by the following theorem.

Doob’s Optional Stopping Theorem

Let Xn be a super-martingale and τ be a stopping time. Then Xτ is integrable and

E(Xτ ) ≤ E(X1)

if one of the following conditions hold:

1. τ is bounded, i.e., ∃N ∈ N,∀ω ∈ Ω : τ(ω) < N ;

2. X is bounded, i.e., ∃K ∈ R,∀ω ∈ Ω,∀n ∈ N : |Xn(ω)| < K, and τ is almost
surely finite;

3. E(τ) < ∞ and ∃K ∈ R,∀n ∈ N, ω ∈ Ω : |Xn(ω)−Xn−1(ω)| ≤ K.

If any of the above conditions holds and X is a martingale, then

E(Xτ ) = E(X1)

Proof: Since {Xn} is a super-martingale, we know that {Xτ∧n} is also a super-
martingale, which is integrable and

E(Xτ∧n −X1) ≤ 0

(1) is straightforward by choosing n = N .
(2) follows from the bounded convergence theorem, which says that, if Xn → X
almost surely and for some K, |Xn(ω)| ≤ K, ∀n, ω, then E(|Xn −X|) → 0.
(3) follows from the observation that

|Xτ∧n −X1| = |
τ∧n∑
k=1

(Xk −Xk−1)| ≤ Kτ
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Applications of Martingales: The First Run of Three Sixes

▶ A fair die is thrown independently at each time instant. A gambler wins a fixed amount
of money as soon as the first run of three consecutive sixes appears.
What is the expected number of the throws of the dice until the gambler wins for the first
time?
Formally, let X1, X2, . . . be the outcomes of the throws, which are i.i.d. with P (Xi = k) =
1/6, k = 1, . . . , 6. Write Fn = σ(X1, . . . , Xn) and let τ be the first time three consecutive
sixes appears. Clearly, τ is a stopping time and we are looking for E(τ).
First, we can roughly estimate E(τ) < ∞. To have τ = k, we need to have one number
different from six in every tuple (X3m+1, X3m+2, X3m+3), 3m+ 3 < k. Hence we have

P (τ = k) ≤
(
1− (1/6)3

) k−3
3

This means that E(τ) =
∑∞

k=1 kP (τ = k) converges.
Let us consider the following thought experiment. Suppose that just before each time n,
a gambler appears on the scene and bets ¥1 that the nth throw will show six. If he loses,
he leaves; otherwise he receives ¥6 and uses all these money to bet that the (n + 1)th
throw shows six. Again, if he loses, he leaves; otherwise he bet ¥36 on a six in the third
throw. Since the game is fair, at any time n ≥ 3, the expected winnings should be equal
to the total money spent by the gamblers up to time n. As τ is a stopping time satisfying
the condition of optional stopping theorem, this should hold at time T as well, hence

E(τ) = 6 + 62 + 63 = 258

Indeed, E(τ) is the expected money spent by the gamblers, and at time τ the last gambler
has won ¥6, the one before has won ¥36 and the one before that has won ¥216. All
other gambler have lost their stakes.

To be more specific, let Sn be the total stakes of all players at time n, i.e., Sn = 1 + 6 +
· · ·+6k if we are in a run of k sixes at time n, and let Mn = Sn−n, where M0 = 1. Then
{Mn} is a martingale because

E(Mn+1 | Fn) =
5

6
(1− (n+ 1)) +

1

6
(6Sn + 1− (n+ 1)) = Sn − n = Mn

For the stopped martingale {Mτ∧n}, since E(τ) < ∞ and |Mn−Mn−1| ≤ 260, by applying
the Doob’s Optional Stopping Theorem, we have

1 = E(M0) = E(Mτ ) = E(Sτ )− E(τ) = 1 + 6 + 62 + 63 − E(τ)
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Applications of Martingales: The Gambler’s Ruin Problem

▶ Let X1, X2, . . . be a sequence of i.i.d. random variables with P (Xi = 1) = p and P (Xi =
−1) = q = 1− p such that p > 0.5. Let Fn = σ(X1, . . . , Xn) and consider 0 < a < b. Let
Sn = a+X1+ · · ·+Xn be the capital of a gambler starting with a capital a in a favourable
game. Suppose that the gambler stops when he is bankrupt or when his capital reaches
b. The the stopping time is

τ = min{n : Sn = 0 or Sn = b}

We want to find (i) the probability of ruin P (Sτ = 0), (ii) the expected time of the game
E(τ), and (iii) the expected capital when the game ends E(Sτ ).
One can easily argue that E(τ) < ∞ (check by yourself). Then we choose

Mn =

(
q

p

)Sn

and Nn = Sn − n(p− q)

Note that processes {Mn} and {Nn} are both martingales. For process {Mn}, we have

E(Mn+1 | Fn) = p

(
q

p

)Sn+1

+ q

(
q

p

)Sn−1

=

(
q

p

)Sn

(q + p) = Mn

For process {Nn}, we have

E(Nn+1 | Fn) = E(Sn+1 | Fn)− (n+ 1)(p− q) = Sn + p− q − (n+ 1)(p− q) = Nn

For process {Mn}, since |Mn −Mn−1| ≤ 1, we have(
q

p

)a

= E(M0) = E(Mτ ) = P (Sτ = 0) +

(
q

p

)b

P (Sτ = b)

Since P (Sτ = 0) = 1− P (Sτ = b), we obtain

P (Sτ = 0) =

(
q
p

)a

−
(

q
p

)b

1−
(

q
p

)b

Also, we can obtain

E(Sτ ) = bP (Sτ = b) = b×
1−

(
q
p

)a

1−
(

q
p

)b

For process {Nn}, since |Nn −Nn−1| ≤ 1 + p− q, we have

a = E(N0) = E(Nτ ) = E(Sτ − τ(p− q)) = E(Sτ )− E(τ)(p− q)

This gives us

E(τ) =
1

p− q
(E(Sτ )− a) =

b

p− q

1−
(

q
p

)a

1−
(

q
p

)b
− a

p− q
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Applications of Martingales: The Secretary Problem

▶ N candidates present themselves for a job interview. The ith candidate’s suitability for the
job is Xi, which are independent and uniformly distributed on [0, 1]. The boss interviews
each in turn and can determine the value of Xi perfectly. He must immediately decide
whether to accept or reject the candidate, no recall of rejected candidates is possible.
The problem is that the boss has to find a stopping time τ which maximizes E(Xτ ). We
now use martingale theory to solve this problem.
Claim: The stopping time τ ∗ = min{n : Xn > αn}, where

αN = 0 and αn−1 =
1

2
+

α2
n

2

solves the problem.
Step 1: For any 0 ≤ α ≤ 1, we have E(Xn ∨ α) = 1

2
+ α2

2
. This can be seen

E(Xn ∨ α) =

∫ 1

0

Xn ∨ αdx =

∫ α

0

αdx+

∫ 1

α

xdx = α2 +
1

2
− α2

2
=

1

2
+

α2

2

Step 2: For any stopping time τ , we define a new process {Yn}

Y0 = α0 and Yn = (Xτ∧n) ∨ αn

Show by yourself that {Yn} is a super-martingale.
Step 3: We show that τ = τ ∗ is actually a martingale still by the following two cases.
Step 4: We show that for any stopping time τ , we have E(Xτ ) ≤ E(Xτ∗). Since the
stopping time is bounded, we can apply Doob’s theorem to obtain

E(Xτ ) ≤ E(Xτ ∨ ατ ) = E(Yτ ) ≤ E(Y0) = α0

Furthermore, for the specific choice τ ∗, we have

E(Xτ∗) = E(Xτ∗ ∨ ατ ) = E(Yτ∗) = E(Y0) = α0

This completes the proof.
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Applications of Martingales: The Second Hearts Problem

▶ In a deck of 52 cards, well-shuffled, we turn the cards from the top until the first ♡
appears. If we turn one more card, what is the probability that this card shows ♡ again?
Let Xn be the proportion of ♡ remaining in the deck after the nth card is turned. Let
Yn be the indicator of the event that the nth card is ♡, and let Fn = σ(Y0, . . . , Yn) =
σ(X0, . . . , Xn). We claim that {Xn : 0 ≤ n ≤ 51} is a martingale.

E(Xn | Fn−1) =
(53− n)Xn−1 − 1

52− n
Xn−1 +

(53− n)Xn−1

52− n
(1−Xn−1) = Xn−1

Now we let τ = min{n : Yn = 1} be the first time ♡ appears. Note that, given Xτ , the
probability that the τ+1st card is again hearts is Xτ . Hence the unconditional probability
that the τ +1st card is again hearts is E(Xτ ). As τ is a bounded stopping, we can apply
the Doob’s optional stopping theorem, which gives

E(Xτ ) = E(X0) = 0.25
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